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AVERAGE CONVERGENCE RATE OF THE FIRST RETURN TIME

BY

GEON HO CHOE AND DONG HAN KIM (TAEJON)

Abstract. The convergence rate of the expectation of the logarithm of the first re-
turn time Rn, after being properly normalized, is investigated for ergodic Markov chains.
I. Kontoyiannis showed that for any β > 0 we have log[Rn(x)Pn(x)] = o(nβ) a.s. for
aperiodic cases and A. J. Wyner proved that for any ε > 0 we have −(1 + ε) logn ≤
log[Rn(x)Pn(x)] ≤ log logn eventually, a.s., where Pn(x) is the probability of the initial
n-block in x. In this paper we prove that E[logR(L,S) − (L− 1)h] converges to a constant
depending only on the process where R(L,S) is the modified first return time with block
length L and gap size S. In the last section a formula is proposed for measuring entropy
sharply; it may detect periodicity of the process.

1. Introduction. Convergence of the logarithm of first return time nor-
malized by the block length has recently been investigated in relation to
data compression methods such as Ziv–Lempel algorithms [17], [18]. For
each sample sequence x = (ξ1, ξ2, . . .) from an ergodic stationary information
source, define Pn(x) to be the probability of the initial n-block in x, i.e.,
Pn(x) = Pr(x1 . . . xn). The classical Shannon–Breiman–McMillan Theorem
states that −(logPn)/n converges to measure-theoretic entropy h in L1 and
almost surely. Define

Rn(x) = min{j ≥ 1 : ξ1 . . . ξn = ξj+1 . . . ξj+n}.

Kac’s Lemma [2] states that E[Rn | a1 . . . an] = 1/Pr(a1 . . . an).

Lemma 1.1. E[Rn] = E[1/Pn] = the number of n-blocks with positive
probability.

P r o o f. Let Pn be the partition according to the first n-blocks. Note that

E[Rn] =
∑

B∈Pn,Pr(B)>0

E[Rn |B] Pr(B) =
∑

B∈Pn,Pr(B)>0

1,
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which equals the number of n-blocks B with positive probability. Similarly,

E

[
1

Pn

]
=

∑
B∈Pn,Pr(B)>0

E

[
1

Pn

∣∣∣∣B]Pr(B) =
∑

B∈Pn,Pr(B)>0

1

Pr(B)
Pr(B),

and we obtain the same number.

Observe that E[Rn] is an integer. This suggests that Rn(x) is close to
1/Pn(x), hence we expect that (logRn)/n converges to entropy h in a suit-
able sense. It may be viewed in the following way: According to the Asymp-
totic Equipartition Property the number of typical subsets is approximately
equal to 2nh in the nth stage. Because of ergodicity a generic orbit would
visit almost all the typical subsets, hence we conjecture that the return time
Rn(x) for almost every starting point x would be approximately equal to 2nh.
This is indeed the case. Conventionally a slightly modified definition for the
first return time is used. It was proved that (logRn)/n converges to entropy
in probability by Wyner and Ziv [16] and almost surely by Ornstein and
Weiss [9]. See [13] for a related result. For a comprehensive introduction to
the subject consult Shields [11] and the references therein. Recently several
interesting results have been obtained regarding convergence rates by other
investigators for Rn and related concepts such as the longest match-length,
waiting time and redundancy rate, etc. See [1], [4], [5], [7], [12], [15].

In this article we define a modified first return time for estimating en-
tropy for a Markov chain and obtain a very sharp estimate of the convergence
rate of its average and propose an algorithm for estimating the entropy for a
Markov chain. Since the formula contains a correction terms it approximates
the entropy very well. See the last section for simulations.

A Markov chain with a stochastic matrix P = (pij)0≤i,j≤k−1 is the set of
all sample paths on symbols {0, 1, . . . , k−1} with Pr(xs+1 = j |xs = i) = pij .
The probability of the cylinder set [b1, . . . , bn] = [b1, . . . , bn]1,...,n or the initial
n-block b1 . . . bn is given by πb1pb1b2 . . . pbn−1bn . The entropy of the Markov
chain is equal to h = −

∑
i,j πipij log pij .

Throughout the paper we assume that P is irreducible, i.e., for every
(i, j) there exists n = n(i, j) > 0 such that (Pn)i,j > 0. For 0 ≤ i ≤ k − 1,
the period of a state i, denoted by Per(i), is the greatest common divisor of
those integers n ≥ 1 for which (Pn)ii > 0. The period of P is the greatest
common divisor of the numbers Per(i) that are finite. If P is irreducible,
then all the states have the same period, so the period of P is the period of
any of its states. A matrix is aperiodic if it has period 1. If P is aperiodic,
then there exists n > 0 satisfying (Pn)i,j > 0 for every (i, j). For the details,
consult p. 125 in [6]. Let π = (π0, π1, . . . , πk−1),

∑
i πi = 1, πi > 0, be the

unique left eigenvector corresponding to the simple eigenvalue 1, which is



FIRST RETURN TIME 161

called the Perron–Frobenius eigenvector . Put

H0 = −
k−1∑
i=0

πi log πi.

If P is aperiodic, then all the eigenvalues other than 1 have modulus less
than 1. The irreducibility of P implies the ergodicity of the Markov chain,
and the aperiodicity gives the mixing property.

Definition 1.2. Given an integer S ≥ 0 and a block size L, the modified
first return time R(L,S) is defined by

R(L,S)(x) = min{j ≥ 1 : ξ1 . . . ξL = ξj(L+S)+1 . . . ξj(L+S)+L}.
Definition 1.3. For 0 < r < 1, define

v(r) ≡ r
∞∑
i=1

(1− r)i−1 log i.

Put r = 2−L. Then the expectation of logR(L,S) equals v(r) in the case
of the Bernoulli (1/2, 1/2)-shift. Note that

lim
r→0+

[v(r) + log r] = lim
s→1−

[v(1− s) + log(1− s)]

=

∞∑
i=1

(
ln
i+ 1

i
− 1

i

)/
ln 2 = −γ/ln 2 = −0.832746 . . . ,

where γ = limn→∞(
∑n
i=1(1/i) − lnn) is Euler’s constant. Hence the expec-

tation of logR(L,0) is approximately equal to L− γ/ln 2 for large L.
In this paper we investigate the speed of convergence of the average of

logR(L,S) to entropy after being properly normalized. The case of Bernoul-
li processes was solved by Maurer [8]. His algorithm corresponds to R(L,S)

for S = 0. He showed that the speed is asymptotically proportional to
1/L and conjectured that a similar result would hold for Markov chains. In
Section 2 we prove the conjecture for Markov chains using the modified algo-
rithm given in Definition 1.2. The dependence on the past memory decreases
exponentially, hence the odd-numbered blocks become almost independent
of each other as the gap between the neighboring blocks increases.

In his Ph.D. thesis [14] A. J. Wyner discovered that for a stationary
aperiodic Markov chain with entropy h we have a second order limit law:

lim
n→∞

Pr

(
logRn − nh

σ
√
n

≤ α
)

= Φ(α)

where

Φ(α) =

α\

−∞

1√
2π

exp

(
− x2

2

)
dx and σ2 = lim

n→∞

Var(− logPn(x))

n
.
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I. Kontoyiannis ([4], Corollary 1) showed that for any β > 0,

log[Rn(x)Pn(x)] = o(nβ)

almost surely for ergodic Markov chains where Pn(x) is the probability of
the initial n-block in x. Later A. J. Wyner ([15], Corollary B5) proved that
for any ε > 0,

−(1 + ε) log n ≤ log[Rn(x)Pn(x)] ≤ log log n

eventually, almost surely for ergodic Markov chains. Note that

E[log Pr(x1 . . . xL)] =
∑

πa1pa1a2 . . . pan−1an log(πa1pa1a2 . . . pan−1an)

=
∑
i

πi log πi + (L− 1)
∑
i,j

πipij log pij

= −H0 − (L− 1)h,

where the first sum is taken over all L-blocks a1 . . . aL. Hence from the above
we have

−(1 + ε) log n ≤ E[logRn]− (n− 1)h−H0 ≤ log log n

approximately for large n and we expect that the corresponding result would
hold for R(L,S). On the other hand, Kac’s Lemma implies that

E[RnPn] =
∑
B∈Pn

E[RnPn |B] Pr(B) =
∑
B∈Pn

E[Rn |B]Pn(B) Pr(B)

=
∑
B∈Pn

1

Pr(B)
Pn(B) Pr(B) =

∑
B∈Pn

Pn(B) = 1,

hence
logE[RnPn] = 0.

Therefore we have

−(1 + ε) log n ≤ E[logRn]− (n− 1)h−H0 ≤ 0

for large n. This answers Maurer’s question for Markov chains. In fact we
prove a sharp estimate of the convergence rate for expectation:

Theorem. (i) If P is aperiodic, then

lim
L,S→∞

E[logR(L,S) − (L− 1)h]−H0 = − γ

ln 2
.

(ii) If P has period m > 1, then choose any m′ ≥ 1 such that m′ |m.
Let (Lk, Sk), k = 1, 2, 3, . . . , be a sequence of pairs of positive integers such
that m′ = gcd(Lk + Sk,m) and Lk, Sk →∞ as k →∞. Then

lim
k→∞

E[logR(Lk,Sk) − (Lk − 1)h]−H0 = − γ

ln 2
− logm′.
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Preliminary computer simulations indicate that the divisibility condition
may be indispensable in this formulation. Another possible application of
the theorem other than estimating entropy is that we may tell whether a
given ergodic Markov chain is mixing or not by checking the presence of
the term logm′ in the collected data from the source when we have a priori
knowledge of entropy. Since m is an integer we would find it easily by taking
the integer that best represents the experimental data.

2. Proof of the Theorem. The following facts will be needed:

Fact 2.1 ([3], p. 71). Assume that P is aperiodic. There exist constants
c and 0 < d < 1 such that for any nonnegative vector ~v with ‖~v‖1 = 1 we
have

‖~vPn − ~π‖∞ ≤ cdn.

Fact 2.2 ([6]). Assume that P has period m > 1. The set of sym-
bols {0, 1, . . . , k − 1} is decomposed into a disjoint union {0, 1, . . . , k − 1} =⋃m−1
t=0 Kt such that if i ∈ Kt then (~eiP )j = 0 if j 6∈ Kt+1, where Km ≡

K0. After a reordering of coordinates, Pm has square matrices P (t) of size
|Kt| × |Kt| on its diagonal. In other words, (P (t))ij = (Pm)ij for i, j ∈ Kt,
after a renaming of indices. Each P (t) is irreducible and aperiodic. We
let ~π(t) denote the Perron–Frobenius eigenvector of P (t). Note that ~π =
(1/m)(~π(0), . . . , ~π(m−1)). By Fact 1 there exist constants c(t) and d(t) such
that for any nonnegative |Kt|-dimensional vector ~v(t) with ‖~v (t)‖1 = 1,

‖~v(t)(P (t))n − ~π(t)‖∞ ≤ c(t)(d(t))n.

Proof of the Theorem. (i) Aperiodic case. Put CP = c/mini πi and
suppose S is large enough so that dS+1CP < 1 where c and d are the constants
obtained in Fact 2.1. Let T denote the left shift on the Markov chain defined
by T (x1, x2, . . .) = (x2, x3, . . .). For arbitrary blocks a1 . . . aL and b1 . . . bL,
we have

Pr([b1 . . . bL] ∩ T−(L+S)[a1 . . . aL])

= πb1pb1b2 . . . pbL−1bL(ebLP
S+1)a1pa1a2 . . . paL−1aL ,

where ~ei is the ith unit row vector. Hence

|Pr([b1 . . . bL] ∩ T−(L+S)[a1 . . . aL])− Pr(b1 . . . bL) Pr(a1 . . . aL)|
= πb1pb1b2 . . . pbL−1bL |(ebLPS+1)a1 − πa1 |pa1a2 . . . paL−1bL

≤ Pr(b1 . . . bL) Pr(a1 . . . aL)dS+1c/πb1

≤ Pr(b1 . . . bL) Pr(a1 . . . aL)dS+1 · CP ,

and
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Pr(a1 . . . aL)(1− dS+1CP )

≤ Pr(xL+S+1 . . . xL+S+L = a1 . . . aL |x1 . . . xL = b1 . . . bL)

≤ Pr(a1 . . . aL)(1 + dS+1CP ).

Put a
(0)
1 . . . a

(0)
L = a

(i)
1 . . . a

(i)
L = a1 . . . aL. Then

Pr(R(L,S) = i | x1 . . . xL = a1 . . . aL)

=
∑

a
(i−1)
1 ...a

(i−1)

L
6=a1...aL

. . .
∑

a
(1)
1 ...a

(1)

L
6=a1...aL

i∏
j=1

Aj

where

Aj = Pr(xL+S+1 . . . xL+S+L = a
(j)
1 . . . a

(j)
L |x1 . . . xL = a

(j−1)
1 . . . a

(j−1)
L )

because Aj is equal to the probability of xj(L+S)+1 . . . xj(L+S)+L=a
(j)
1 . . . a

(j)
L

given the condition x(j−1)(L+S)+1 . . . x(j−1)(L+S)+L = a
(j−1)
1 . . . a

(j−1)
L . Hence

Pr(a1 . . . aL)(1− dS+1CP ) · U1 ≤ Pr(R(L,S) = i | x1 . . . xL = a1 . . . aL)

≤ Pr(a1 . . . aL)(1 + dS+1CP ) · U1

where

U1 =
∑

a
(i−1)
1 ...a

(i−1)

L
6=a1...aL

. . .
∑

a
(1)
1 ...a

(1)

L
6=a1...aL

i−1∏
j=1

Aj .

Since ∑
a
(i−1)
1 ...a

(i−1)

L
6=a1...aL

Ai−1

= 1− Pr(xL+S+1 . . . xL+S+L = a1 . . . aL | x1 . . . xL = a
(i−2)
1 . . . a

(i−2)
L ),

the sum is bounded by 1−Pr(a1 . . . aL)(1 + dS+1CP ) and 1−Pr(a1 . . . aL)×
(1− dS+1CP ). Hence

Pr(a1 . . . aL)(1− dS+1CP )(1− Pr(a1 . . . aL)(1 + dS+1CP ))U2

≤ Pr(R(L,S) = i |x1 . . . xL = a1 . . . aL)

≤ Pr(a1 . . . aL)(1 + dS+1CP )(1− Pr(a1 . . . aL)(1− dS+1CP ))U2

where

U2 =
∑

a
(i−2)
1 ...a

(i−2)

L
6=a1...aL

. . .
∑

a
(1)
1 ...a

(1)

L
6=a1...aL

i−2∏
j=1

Aj .

Inductively we have
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Pr(a1 . . . aL)(1− dS+1CP )(1− Pr(a1 . . . aL)(1 + dS+1CP ))i−1

≤ Pr(R(L,S) = i | x1 . . . xL = a1 . . . aL)

≤ Pr(a1 . . . aL)(1 + dS+1CP )(1− Pr(a1 . . . aL)(1− dS+1CP ))i−1.

Hence

Pr(a1 . . . aL)(1− dS+1CP )

∞∑
i=1

(1− Pr(a1 . . . aL)(1 + dS+1CP ))i−1 log i

≤ E[logR(L,S) | x1 . . . xL = a1 . . . aL]

≤ Pr(a1 . . . aL)(1 + dS+1CP )

∞∑
i=1

(1− Pr(a1 . . . aL)(1− dS+1CP ))i−1 log i.

Let v be the function in Definition 1.3. The average over all L-blocks
a1 . . . aL is bounded by

E[v(PL(x)(1 + dS+1CP ))]
1− dS+1CP
1 + dS+1CP

≤ E[logR(L,S)] ≤ E[v(PL(x)(1− dS+1CP ))]
1 + dS+1CP
1− dS+1CP

.

Multiplying by (1 + dS+1CP )/(1− dS+1CP ) and subtracting Lh we have

E[v(PL(x)(1 + dS+1CP ))]− Lh ≤ E[logR(L,S)]
1 + dS+1CP
1− dS+1CP

− Lh

or

(2.1) E[v(PL(x)(1 + dS+1CP )) + log(PL(x)(1 + dS+1CP ))]

−E[logPL(x) + L · h]− log(1 + dS+1CP )

≤ E[logR(L,S)]
1 + dS+1CP
1− dS+1CP

− Lh

and similarly from the second inequality

(2.2) E[logR(L,S)]
1− dS+1CP
1 + dS+1CP

− Lh

≤ E[v(PL(x)(1− dS+1CP )) + log(PL(x)(1− dS+1CP ))]

−E[logPL(x) + Lh]− log(1− dS+1CP ).

Recall that v(r)+log r converges to −γ/ln 2 as r ↓ 0. For any small δ > 0
there exists L0 such that if L ≥ L0 then PL(x)(1 + dS+1CP ) ≤ δ. Hence we
see that the function

v(PL(x)(1 + dS+1CP )) + log(PL(x)(1 + dS+1CP ))

is uniformly bounded for such L by taking

r = PL(x)(1 + dS+1CP ).
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The Lebesgue Dominated Convergence Theorem implies that

lim
L→∞

E[v(PL(x)(1 + dS+1CP )) + log(PL(x)(1 + dS+1CP ))] = −γ/ln 2.

Recall that E[logPL(x) + Lh] = −H0 + h.
As L goes to infinity, (2.1) implies

− γ

ln 2
+H0−h− log(1 + dS+1CP ) ≤ lim

L→∞

(
E[logR(L,S)]

1 + dS+1CP
1− dS+1CP

−Lh
)

and similarly (2.2) implies

lim
L→∞

(
E[logR(L,S)]

1− dS+1CP
1 + dS+1CP

−Lh
)
≤ − γ

ln 2
+H0−h− log(1−dS+1CP ).

Since dS+1CP → 0 as S →∞, we have

lim
L,S→∞

(E[logR(L,S)]− Lh) = −γ/ln 2 +H0 − h.

(ii) Periodic case. Take Lk, Sk satisfying the given conditions. We will
write L, S for simplicity of notation. Then Pr(R(L,S) = i) = 0 if i is not a
multiple of m/m′ ≡ m0.

Recall Fact 2.2. Put CP = maxt c
(t)/mini πi and d = maxt d

(t). Choose
S large enough so that dβCP < m where β = [(m0(S + L) − L + 1)/m],
the greatest integer that does not exceed (m0(S + L) − L + 1)/m. Put
m0(S + L) − L + 1 = βm + r, where 0 ≤ r < m. Consider a1 . . . aL and
b1 . . . bL with positive probability. Suppose bL ∈ Kt for some t; then

(ebLP
r)i = 0 if i 6∈ Kt+r.

First consider the case when ai, bi are contained in the same component for
every i = 1, . . . , L. Since m0(L + S) ≡ 0 (mod m), we have L − 1 ≡ −r
(mod m) and b1 ∈ Kt−(L−1) = Kt+r and a1 ∈ Kt+r. Hence by Fact 2.2,

|(ebLPm0(S+L)−L+1)a1 −m~πa1 | = |((ebLP r)Pmβ)a1 −m~πa1 |
= |(v(t+r)(P (t+r))β)a1 − ~π(t+r)

a1 |
≤ c(t+r)(d(t+r))β ,

where v(t+r) is a |Kt+r|-dimensional vector such that

(v(t+r))i = (ebLP
r)i if i ∈ Kt+r.

Then

|Pr([b1 . . . bL] ∩ T−m0(L+S)[a1 . . . aL])−mPr(b1 . . . bL) Pr(a1 . . . aL)|
= πb1pb1b2 . . . pbL−1bL |(ebLPm0(S+L)−L+1)a1 −mπa1 |pa1a2 . . . paL−1bL

= πb1pb1b2 . . . pbL−1bL |((ebLP r)P βm)a1 −mπa1 |pa1a2 . . . paL−1bL

≤ Pr(b1 . . . bL) Pr(a1 . . . aL)c(t+r)(d(t+r))β/πa1

≤ Pr(b1 . . . bL) Pr(a1 . . . aL)dβCP
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and

Pr(b1 . . . bL) Pr(a1 . . . aL)(m− dβCP )

≤ Pr([b1 . . . bL] ∩ T−m0(L+S)[a1 . . . aL])

≤ Pr(b1 . . . bL) Pr(a1 . . . aL)(m+ dβCP ).

Next, if ai and bi are not contained in the same component for some i, then

Pr([b1 . . . bL] ∩ T−m0(L+S)[a1 . . . aL])

= πb1pb1b2 . . . pbL−1bL(ebLP
m0(S+L)−L+1)a1pa1a2 . . . paL−1bL

≤ πb1pb1b2 . . . pbi−1bi(ebiP
m0(S+L))aipaiai+1

. . . paL−1bL = 0

since (eiP
m)j = 0 if j 6∈ Ki for all i ∈ Ki. Hence we have

Pr(a1 . . . aL)(m− dβCP )(1− Pr(a1 . . . aL)(1 + dβCP ))i−1

≤ Pr(R(L,S) = m0i | x1 . . . xL = a1 . . . aL)

≤ Pr(a1 . . . aL)(m+ dβCP )(1− Pr(a1 . . . aL)(1− dβCP ))i−1

and Pr(R(L,S) = j |x1 . . . xL = a1 . . . aL) = 0 for all j -m0. Now we proceed
as before.

3. Comparison of logR(L,S) and logRL. In this section we compare
averages and variances of logR(L,S) and logRL. The notations are the same
as in Section 2. Sometimes we write PL(x) to denote Pr(x1 . . . xL). As before
we have

Pr(a1 . . . aL)(1− dS+1CP )(1− Pr(a1 . . . aL)(1 + dS+1CP ))i−1

≤ Pr(R(L,S) = i |x1 . . . xL = a1 . . . aL)

≤ Pr(a1 . . . aL)(1 + dS+1CP )(1− Pr(a1 . . . aL)(1− dS+1CP ))i−1.

Hence

Pr(a1 . . . aL)(1− dS+1CP )

∞∑
i=1

(1− Pr(a1 . . . aL)(1 + dS+1CP ))i−1i

≤ E[R(L,S) | x1 . . . xL = a1 . . . aL]

≤ Pr(a1 . . . aL)(1 + dS+1CP )

∞∑
i=1

(1− Pr(a1 . . . aL)(1− dS+1CP ))i−1i.

Put

w(r) = r

∞∑
i=1

(1− r)i−1i, 0 < r < 1.
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Then w(r) = 1/r. Hence averaging over all L-blocks a1 . . . aL we obtain

E[w(PL(x)(1 + dS+1CP ))]
1− dS+1CP
1 + dS+1CP

≤ E[R(L,S)] ≤ E[w(PL(x)(1− dS+1CP ))]
1 + dS+1CP
1− dS+1CP

,

hence

E

[
1

PL(x)

]
1− dS+1CP

(1 + dS+1CP )2
≤ E[R(L,S)] ≤ E

[
1

PL(x)

]
1 + dS+1CP

(1− dS+1CP )2
.

Recall that E[1/PL] = E[RL] by Lemma 1.1. Thus

E[RL]
1− dS+1CP

(1 + dS+1CP )2
≤ E[R(L,S)] ≤ E[RL]

1 + dS+1CP
(1− dS+1CP )2

,

and we conclude that for sufficiently large S there is not much difference
between E[RL] and E[R(L,S)].

4. Estimation of entropy

4.1. Aperiodic case. Since E[logR(L,S)−(L−1)h] is close to −γ/ln 2+H0

for sufficiently large L and S, it is recommended that we should approximate
the entropy by the formula

h(L,D,S) ≡
E[logR(L+D,S)]− E[logR(L,S)]

D

for any integer D > 0.

Example 4.1. Consider the Markov chain associated with the aperiodic
matrix

P =

 1/2 1/4 1/4

1/4 0 3/4

1/2 1/2 0


and initial vector ~π = (10/23, 6/23, 7/23). Note that h = 1.16815951 . . . The
ergodicity of the Markov chain enables us to apply the Birkhoff Ergodic
Theorem and we estimate E[logR(L,S)] by taking the average of logR(L,S)

over 10,000 sample paths x, TLx, . . . , T 9999Lx, which are obtained by shifting
L times to reduce the correlation among the sample values of logR(L,S).
We used a pseudorandom number generator in Fortran 90 to generate a
sequence x. Here the sample size is rather large to demonstrate the accuracy
of the theoretical prediction and in practical applications a sample of small
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size will do. The test result is given in Table 1, where Error and S.E.M.
denotes h(L,D,S) − h and the standard error mean of h(L,D,S) respectively.

The error h(L,D,S) − h is similar to or less than the size of S.E.M.

Table 1. Test result for Example 4.1

S = 10 S = 5

L D h(L,D,S) Error S.E.M. h(L,D,S) Error S.E.M.

7 1 1.11888 −0.04928 0.03230 1.14740 −0.02076 0.03199
7 2 1.17008 0.00192 0.01618 1.17964 0.01148 0.01633

7 3 1.17913 0.01097 0.01082 1.16996 0.00180 0.01094

7 4 1.16273 −0.00543 0.00827 1.16359 −0.00457 0.00839
7 5 1.16677 −0.00139 0.00670 1.16994 0.00178 0.00676

8 1 1.22128 0.05312 0.03328 1.21188 0.04372 0.03295

8 2 1.20925 0.04109 0.01691 1.18124 0.01308 0.01686

8 3 1.17734 0.00918 0.01138 1.16899 0.00083 0.01126

8 4 1.17875 0.01059 0.00858 1.17558 0.00742 0.00856

9 1 1.19723 0.02907 0.03393 1.15060 −0.01756 0.03374
9 2 1.15538 −0.01278 0.01732 1.14754 −0.02062 0.01723
9 3 1.16457 −0.00359 0.01152 1.16346 −0.00470 0.01149

4.2. Periodic case. It is recommended that we should approximate the
entropy by the formula

h(L,D,S) ≡
E[logR(L+D,S)]− E[logR(L,S)]

D
,

for any integer D > 0 that is a multiple of the period of the chain.

Example 4.2. Consider the Markov chain associated with the periodic
matrix

P =


0 0 1/2 1/2 0
0 0 1/4 3/4 0
0 0 0 0 1
0 0 0 0 1

3/4 1/4 0 0 0


and initial vector ~π = (1/4, 1/12, 7/48, 3/16, 1/3). Its period is m = 3. Note
that h = 0.58803255 . . . We test this example by the same method as be-
fore. The test result is given in Table 2 and Table 3 for m |D and m -D
respectively.
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Table 2. Test result for Example 4.2

S = 7 S = 5

L D h(L,D,S) Error S.E.M. h(L,D,S) Error S.E.M.

10 3 0.57920 −0.00883 0.01030 0.58531 −0.00272 0.01027
10 6 0.57540 −0.01263 0.00534 0.58072 −0.00731 0.00530
10 9 0.57996 −0.00807 0.00374 0.57883 −0.00920 0.00368
11 3 0.57013 −0.01791 0.01056 0.56322 −0.02482 0.01066
11 6 0.58144 −0.00659 0.00537 0.57941 −0.00863 0.00545
12 3 0.59832 0.01028 0.01092 0.58483 −0.00320 0.01097
12 6 0.58883 0.00080 0.00557 0.58418 −0.00385 0.00556
13 3 0.57161 −0.01642 0.01103 0.57613 −0.01190 0.01097
13 6 0.58034 −0.00769 0.00568 0.57559 −0.01244 0.00572

Table 3. Test result for Example 4.2 with inadequate D

S = 7 S = 5

L D h(L,D,S) Error S.E.M. h(L,D,S) Error S.E.M.

10 1 −0.99516 −1.58319 0.03147 2.18021 1.59218 0.03144

10 2 0.57029 −0.01774 0.01549 1.37486 0.78683 0.01558

11 1 2.13574 1.54771 0.03166 0.56950 −0.01853 0.03169
11 2 1.36637 0.77834 0.01612 −0.21214 −0.80017 0.01632
12 1 0.59701 0.00898 0.03203 −0.99378 −1.58181 0.03209
12 2 −0.21268 −0.80071 0.01617 0.56007 −0.02796 0.01655
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