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Abstract. It is shown that in the group of invertible measurable nonsingular trans-
formations on a Lebesgue probability space, endowed with the coarse topology, the trans-
formations with infinite ergodic index are generic; they actually form a dense Gδ set.
(A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.)
This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva
in 1971, for the group of transformations preserving an infinite measure. Exploring other
possible (more restrictive) definitions of infinite ergodic index, we find, somewhat surpris-
ingly, that if a nonsingular transformation on a Lebesgue probability space has an infinite
Cartesian power which is nonsingular with respect to the power measure, then it has to
be measure preserving.

Let G = G(X,M, µ) be the group of invertible measurable nonsingular
transformations on a Lebesgue (probability) space, endowed with the coarse
topology, and M(λ) the subgroup preserving a finite or σ-finite measure
λ ∼ µ. Let T ∈ G, k ∈ N. Then T is said to have ergodic index k if the
Cartesian product T (k) = T × . . . × T (k factors) is ergodic, but T (k+1) is
not ergodic. We say that T has ergodic index 0 if T is not ergodic, and that
T has ergodic index ∞ if T (k) is ergodic for all k ∈ N. Note that if E is
the set of ergodics in G and Lk = {T ∈ G : T has ergodic index k} then
E =

⋃
1≤k≤∞Lk. For T ∈ M(µ), T is weakly mixing iff T × T is ergodic

and this implies T (k) ergodic for all k ∈ N; thus in M(µ) the ergodic index
can only be 0, 1 or ∞. However, if ν is an infinite σ-finite measure ∼ µ,
then Kakutani and Parry [K-P] have shown that Lk 6= ∅ for all k ∈ N, and
also for k = 0 or ∞. Sachdeva [S] has shown that for such infinite, σ-finite
ν, L∞ is a dense Gδ in M(ν) (coarse topology), and since E =

⋃
1≤k≤∞

Lk,
it follows that Lk is meagre in E for all k ∈ N. Recently, Cesar Silva asked
us if a similar result holds in G. Combining the methods of Sachdeva with
those of Choksi and Kakutani [C-K], we show that indeed it does.
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Notation, etc. We follow that of [C-K, pp. 453–457]. Put

ωn(x) =
dµ ◦ T−n

dµ
(x), n = 0, 1, 2, . . . ,

and

ω(k)
n (x) =

dµ(k) ◦ (T (k))−n

dµ(k)
(x), k ∈ N, n = 0, 1, 2, . . . ,

where x = (x1, . . . , xk) and µ(k) is the kth power measure of µ on X(k) =

X × . . .×X (k factors). Note that by Fubini’s Theorem, ω
(k)
n (x1, . . . , xk) =

ωn(x1) . . . ωn(xk). For each T ∈ G, we denote by UT the invertible L1 isom-
etry given by

UT f(x) = f(T−1x)
dµ ◦ T−1

dµ
(x)

for f ∈ L1(µ). [Note that in [C-K] elements of G are denoted by τ etc. and
UT by Tτ .] Note that Un

T 1 = ωn(x). For f ∈ L1 put

Rn(T, f) =
n−1∑

j=0

f(T−jx)ωj(x)
/ n−1∑

j=0

ωj(x)

=

n−1∑

j=0

(U j
T f)(x)

/ n−1∑

j=0

U j
T 1(x).

The Hopf decomposition theorem says that given T ∈ G, X = Ωi ∪ Ωw

where Ωi, Ωw are disjoint and T |Ωi is incompressible, T |Ωw completely
dissipative. Further

Ωi =
{
x :

∞∑

n=0

ωn(x) = ∞
}
, Ωw =

{
x :

∞∑

n=0

ωn(x) < ∞
}
.

We will also need the Hurewicz–Halmos–Oxtoby ergodic theorem for
T ∈ G [C-K, pp. 456–457], and for T (k) on (X(k), µ(k)).

Ergodic Theorem. Let T ∈G. Then on Ωi, for all f ∈L1(µ), Rn(T, f)

converges a.e. µ to a limit function f̃ ∈ L1(µ); f̃(Tx) = f̃(x) a.e. µ and\
X

f̃ dµ =
\
X

f dµ.

If T is ergodic then f̃ is a constant ,
T
X
f dµ. If in addition f = χE , then

f̃ = µ(E).

On Ωw, for all f ∈ L1(µ), Rn(T, f) converges to the ratio of the two

convergent series
∑∞

n=0 f(T
−nx)ωn(x) and

∑∞

n=0 ωn(x).

Theorem 1. L∞ is a dense Gδ in G endowed with the coarse topology.
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P r o o f. The proof is analogous to that of Theorem 1 in [C-K, pp. 457–
458]. Let A = {Aj : j ∈ N} be a countable dense sequence in the measure
algebra of µ, which is also an algebra of sets. For each k ∈ N, let A(k) be the
algebra of finite disjoint unions of sets of the form Aj1 × . . .×Ajk , Aji ∈ A.
Note that in addition to being an algebra, A(k) is countable and dense

in the measure algebra of µ(k). Write A(k) = {B
(k)
1 , B

(k)
2 , . . .}. For each

j, k,m, n, p ∈ N, let

H(j, k,m, n, p) = {T ∈ G :

µ(k)({(x1, . . . , xk) : |Rn(T
(k), χ

B
(k)
j

(x1 . . . xk)− µ(k)(B
(k)
j )| ≥ 1/m}) < 1/p}

(where Rn is as in the ergodic theorem). Then each H(j, k,m, n, p) is open
in G in the coarse topology. Hence

H =

∞⋂

j=1

∞⋂

k=1

∞⋂

m=1

∞⋂

n=1

∞⋂

p=1

H(j, k,m, n, p)

is a Gδ in G in the coarse topology. We claim that H = L∞.
For each k ∈ N, put

Hk =

∞⋂

j=1

∞⋂

m=1

∞⋂

n=1

∞⋂

p=1

H(j, k,m, n, p).

First note that if k = 1, then the proof of Theorem 1 of [C-K, pp. 457–458]
shows that H1 = E , the set of ergodics in G. [In [C-K], H(j, 1,m, n, p)
is denoted by A(j,m, n, p) and H1 by A.] Since H =

⋂∞

k=1Hk, it follows
that H ⊆ E , i.e. every T ∈ H is ergodic, and so incompressible. If T (k)

is ergodic, then by the ergodic theorem, for any µ(k)-measurable set E,
Rn(T

(k), χE) → µ(k)(E) a.e. µ(k) and hence in µ(k) measure; in particular

this happens for E = B
(k)
j , and so T ∈ Hk. Thus L∞ ⊆

⋂∞

k=1Hk = H.

To prove that H ⊆ L∞ suppose that T ∈ H \ L∞. Then T (k) is not
ergodic for some k ∈ N. Then T (k) has a nontrivial invariant set F , clearly
Rn(T

(k), χF ) = χF for all n, and so limn→∞ Rn(T
(k), χF ) = χF 6= µ(k)(F ).

However since T ∈ H ⊆ Hk, Rn(T
(k), χ

(k)
Bj

) → µ(k)(B
(k)
j ) in µ(k) measure

for each j ∈ N. Since Rn(T
(k), χ

(k)
Bj

) does converge a.e. µ(k) by the ergodic

theorem, it follows that Rn(T
(k), χ

(k)
Bj

) → µ(k)(B
(k)
j ) a.e. µ(k) for each j ∈ N,

i.e. for all sets in the algebra A(k). Now every µ(k)-measurable set is equal,

up to a set of zero µ(k) measure, to a set in A
(k)
σδ .

Case (i): T (k) is incompressible. We obtain a contradiction by showing
that Rn(T

(k), χE) → µ(k)(E) for all µ(k)-measurable E.
Since this is trivially true if µ(k)(E) = 0, it is sufficient to show this for

all E ∈ A
(k)
σδ . Suppose first that E ∈ A

(k)
σ . Then since A(k) is an algebra
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there exist B
(k)
jr

↑ E as r → ∞, so that χ
B

(k)
jr

↑ χE . Since UT (k) and so

Rn(T
(k), ·) are positive operators, it follows that

Rn(T
(k), χ

(k)
Bjr

) ≤ Rn(T
(k), χE).

Hence

µ(k)(B
(k)
jr

) ≤ lim
n→∞

Rn(T
(k), χE)

for all r ∈ N, and so

µ(k)(E) ≤ lim
n→∞

Rn(T
(k), χE).

But

µ(k)(E)

=
\

X(k)

µ(k)(E)µ(k)(d(x1, . . . , xk))

≤
\

X(k)

lim
n→∞

Rn(T
(k), χE)(x1, . . . , xk)µ

(k)(d(x1, . . . , xk))

=
\

X(k)

χE(x1, . . . , xk)µ
(k)(d(x1, . . . , xk)) (by the ergodic theorem)

= µ(k)(E).

Hence µ(k)(E) = limn→∞ Rn(T
(k), χE). A similar argument with decreasing

sequences in A
(k)
σ proves that for every set E ∈ A

(k)
σδ ,

lim
n→∞

Rn(T
(k), χE) = µ(k)(E) a.e. µ(k).

This gives the desired contradiction by taking a set in A
(k)
σδ µ(k)-equivalent

to the T (k)-invariant set F .

Case (ii): T (k) is completely dissipative. We first show that in this case if
for any µ(k)-measurable set E the limit function φ = limn→∞ Rn(T

(k), χE)
is T (k)-invariant, then T (k)(E) = E. For, by the ergodic theorem, this limit
function φ is the ratio of the two convergent series

φ(x1, . . . , xk)

=

∞∑

j=0

χE((T
(k))−j(x1, . . . , xk))ω

(k)
j (x1, . . . , xk)

/ ∞∑

j=0

ω
(k)
j (x1, . . . , xk).

Hence since

ω
(k)
j ((T (k))−1(x1, . . . , xk)) = ω

(k)
j+1(x1, . . . , xk)/ω

(k)
1 (x1, . . . , xk),
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if φ is T (k)-invariant then

φ(x1, . . . , xk)

= φ((T (k))−1(x1, . . . , xk))

=

∞∑

j=1

χE((T
(k))−j(x1, . . . , xk))ω

(k)
j (x1, . . . , xk)

/ ∞∑

j=1

ω
(k)
j (x1, . . . , xk).

This implies that

φ(x1, . . . , xk) =
χE(x1, . . . , xk)ω0(x1, . . . , xk)

ω0(x1, . . . , xk)
= χE(x1, . . . , xk),

since for any four positive numbers a, a′, b, b′, (a+a′)/(b+b′) = a/b implies

a/b = a′/b′. Since each µ(k)(B
(k)
j ) is a T (k)-invariant constant function it

follows that each B
(k)
j is T (k)-invariant and so T (k) is the identity, contra-

dicting the assumption that it is completely dissipative.

Case (iii): Neither Ω
(k)
i nor Ω

(k)
w (the incompressible and dissipative

components of T (k)) is empty. We shall see that if Ω
(k)
w is nonempty, the

argument of Case (ii) can be applied. Since T (k)Ω
(k)
w = Ω

(k)
w , the argument

of Case (ii) applies to any E ⊆ Ω
(k)
w . For each j ∈ N, let Fj = Ω

(k)
w ∩ B

(k)
j .

Then {Fj : j ∈ N} is dense in the measure algebra of µ(k)|Ω
(k)
w . Now

Rn(T
(k), χFj

) = χ
Ω

(k)
w

Rn(T
(k), χ

B
(k)
j

) → χ
Ω

(k)
w

µ(k)(B
(k)
j )

as n → ∞, which is invariant under T (k). By the argument of Case (ii),

T (k)Fj = Fj for all j ∈ N and so T (k)|Ω
(k)
w is the identity, which contradicts

the fact that T (k)|Ωw is completely dissipative.

We thus have a contradiction to the assumption that H\L∞ is nonempty
and so H = L∞ and L∞ is a Gδ in G for the coarse topology.

Now if T is weakly mixing and µ measure preserving then T ∈ L∞, so
L∞ is nonempty. Since such a T is antiperiodic, by the conjugacy lemma in
G [C-K, Theorem 2] its conjugates, which also belong to L∞, are dense in
G; thus L∞ is dense in G. This completes the proof of the theorem.

Corollary 1. For each k ∈ N, Lk is meagre in G.

P r o o f. E =
⋃

1≤k≤∞
Lk, the Lk are disjoint and both E and L∞ are

dense Gδ sets. Hence each Lk, k ∈ N, is meagre in G. (Of course the
Kakutani–Parry results show that they are all nonempty.)

Corollary 2. C = {T ∈ G : T has no L∞ eigenvalue} is residual in G.

P r o o f. C ⊇ {T ∈ G : T × T is ergodic} ⊇ L∞.
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Remark 1. It is an easy corollary of Theorems 1 and 3 of [C-K] that
the set {T ∈ G : T totally ergodic} = {T ∈ G : T i ergodic for all i ∈ N} is a
dense Gδ in G.

Remark 2. Since (X,M, µ) is a probability measure space, we can form
the infinite product measure space

(X(ω),M(ω), µ(ω)) = (X ×X × . . . ,M⊗M⊗ . . . , µ × µ× . . .)

and for T ∈ G(X,M, µ), T (ω) = T × T × . . . , the obvious bijection on
X(ω). One would naturally tend to assume that T (ω) ∈ G(X(ω),M(ω), µ(ω)).
However we have (somewhat surprisingly)

Proposition 1. T (ω) is nonsingular on (X(ω),M(ω), µ(ω)) if and only if

T is measure preserving.

P r o o f. The “if” part is obvious. To prove the “only if” part note that
T is measure preserving if and only if µ◦T−1 = µ or dµ ◦ T−1/dµ = 1 a.e. µ.

We claim that if µ ◦ T−1 6= µ, then the power measures (µ ◦ T−1)(ω) =
(µ ◦ T−1) × (µ ◦ T−1) × . . . and µ(ω) = µ × µ × . . . are mutually singular.
This will prove the “only if” part of Proposition 1. It follows from

Proposition 2. If µ, ν are two equivalent probability measures on

(X,M), then the power measures µ(ω) and ν(ω) are mutually singular unless

µ = ν.

First proof of Proposition 2. This follows easily from the main result
of Kakutani’s by now classical paper [K] on equivalence of infinite product
measures. By hypothesis µ ∼ ν, put w(x) = dν

dµ
(x), and put ̺(µ, ν) =T

X

√
w(x)µ(dx). Then the Cauchy–Schwarz inequality shows that 0 <

̺(µ, ν) ≤ 1, and that ̺(µ, ν) = 1 if and only if µ = ν. So if µ 6= ν, then
(̺(µ, ν))n → 0 as n → ∞. Hence by the Main Theorem of [K, p. 218], the
power measures µ(ω) and ν(ω) are mutually singular, proving Proposition 2,
and so completing the proof of Proposition 1.

Second proof of Proposition 2 (not using the Kakutani criterion). First
observe that if we have a product measure on the countable product {0, 1}ω

of the two-point space {0, 1} with P ({0}) = p, P ({1}) = 1 − p = q, then
different probability vectors (p, q) give mutually singular product measures.
This is an easy consequence of the strong law of large numbers. We apply
this to the situation on hand. Assume that µ 6= ν and let A ⊆ X be a
measurable set with µ(A) 6= ν(A). Let B be the σ-algebra {X, ∅, A,X \ A}
and consider the sub-σ-algebra of M(ω) given by B×B× . . . The restrictions
of µ(ω) and ν(ω) to this sub-σ-algebra are mutually singular and so supported
on disjoint subsets of M(ω). The proposition follows.
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Note. Even if T preserves a finite measure m ∼ µ, m 6= µ, it is still
false that T (ω) ∈ G(X(ω),M(ω), µ(ω)) though T (ω) ∈ M(X(ω),M(ω),m(ω)).

Stochastic operators. In 1979–80, Anzelm Iwanik [I] extended the results
of Choksi–Kakutani [C-K, Theorems 1 and 3] to the set S of stochastic oper-
ators, i.e. positive, integral preserving contractions on L1(X,M, µ) endowed
with the strong operator topology, which induces the coarse topology when
restricted to G. He showed [I, Theorem 3] that in S, the set of ergodic,
conservative operators forms a dense Gδ in the strong operator topology. In
the absence of a natural definition of ergodic index for stochastic operators,
we are unable to extend the results of the present paper to the situation of
stochastic operators.
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