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Abstract. An integral Markov operator P appearing in biomathematics is investi-
gated. This operator acts on the space of probabilistic Borel measures. Let µ and ν be
probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the
sequence (Pnµ− Pnν) to 0 are given.

1. Introduction. Many biological and physical processes can be mod-
elled by means of randomly perturbed dynamical systems. Such systems are
generally of the form

(1.1) Xn+1 = S(Xn, ξn+1),

where (ξn)
∞

n=1 is a sequence of independent random variables (or elements)
with the same distribution, and the initial value of the system X0 is inde-
pendent of the sequence (ξn)

∞

n=1. Studying systems of the form (1.1) we are
often interested in the behaviour of the sequence of measures (µn) defined
by

(1.2) µn(A) = Prob(Xn ∈ A).

The evolution of these measures can be described by a Markov operator P
given by µn+1=Pµn. The operator P is defined on the space of probability
measures. If the distribution of the random variables ξn is absolutely con-
tinuous with respect to the Lebesgue measure and the partial derivative ∂S

∂ξ

exists and ∂S
∂ξ

(x, ξ) 6= 0 a.e., then P is given by a stochastic kernel, i.e.

(1.3) Pµ(A) =
\
A

( \
X

k(x, y)µ(dy)
)

dx.
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In this case the measure Pµ is absolutely continuous with respect to the
Lebesgue measure and P can be defined on L1 by

(1.4) Pf(x) =
\
X

k(x, y)f(y) dy.

The general theory of such operators is given in [4, 5].

Asymptotic behaviour of the sequences (Pnµ) has been examined by
many authors (see e.g. [1, 7, 9]). Most of the results are devoted to the
problem of existence and stability of invariant measures. For example, a
conservative Markov operator given by a stochastic kernel always has an in-
variant absolutely continuous (possibly infinite) measure (see [3, Chap. VI]).
But a lot of systems of the form (1.1) have no invariant probability mea-
sures, e.g. Xn+1 = Xn + ξn+1. In this case we can still ask if the system
is stable in the following sense: for any probability measures µ and ν the
sequence (Pnµ− Pnν) converges to zero. If P is of the form (1.3) then the
measures Pnµ and Pnν have densities. Then the strong convergence of all
sequences (Pnµ − Pnν) to zero is equivalent to the convergence of the se-
quences (Pnf −Png) to zero in L1 for all densities f and g. This condition
means that the trajectory (Pnf) is asymptotically independent of the ini-
tial density f . This property of Markov operators is also called completely

mixing [12] and some general results concerning this notion are given in [3,
14, 15].

In this paper we study some randomly perturbed dynamical system
which plays an important role in mathematical models of the cell cycle
([9, 17, 18, 19, 20]) and in a model of the electrical activity of neurons [11].
We give sufficient conditions for weak and strong stability of this system.
The plan of the paper is as follows. In Section 2 we define our system and
formulate the main results concerning its asymptotic behaviour. The proofs
of the results are given in Section 3.

2. Main results. Our main object is the following randomly perturbed
dynamical system:

(2.1) Xn+1 = λ−1{Q−1[Q(Xn) + ξn+1]}, n ≥ 0.

We assume that ξ1, ξ2, . . . are independent and identically distributed ran-
dom variables with values in [0,∞). We also assume that X0 is a random
variable with values in [0,∞) and X0 is independent of the sequence (ξn).
By H we denote the distribution function of ξn. We assume that H is ab-
solutely continuous and let h = H ′. Assume that the functions Q and λ
satisfy the following condition: Q : R+ → R+ and λ : R+ → R+ are non-
decreasing locally absolutely continuous functions, Q(0) = λ(0) = 0, and
limx→∞Q(x) = limx→∞ λ(x) = ∞.



STRONG AND WEAK STABILITY 257

As λ can be a non-invertible function we adhere to the convention that
λ−1(y) = max{x : λ(x) = y}. In a similar way we define Q−1. Let Fn(x) =
Prob(Xn < x). Then

Fn+1(x) = Prob(Xn+1 < x) = Prob(λ−1{Q−1[Q(Xn) + ξn+1]} < x)

= Prob(Q(Xn) + ξn+1 < Q(λ(x))) = SFn(x),

where the operator S is defined on the space L∞[0,∞) by

(2.2) SF (x) =

λ(x)\
0

Q′(y)h(Q(λ(x)) −Q(y))F (y) dy.

If F is an absolutely continuous function and f = F ′ then SF is also ab-
solutely continuous and (SF )′ = Pf , where P is the operator defined on
L1[0,∞) by

(2.3) Pf(x) = λ′(x)Q′(λ(x))

λ(x)\
0

h(Q(λ(x)) −Q(y))f(y) dy.

Let L1 = L1[0,∞) and denote by D the set of all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1},

where ‖ · ‖ stands for the norm in L1. From the definition of P it follows
immediately that P is a Markov operator, i.e. P : L1 → L1 is linear and
P (D) ⊂ D.

Asymptotic properties of the iterates of the operator (2.3) depend on
the function α(x) = Q(λ(x))−Q(x). In [2, 6] it was proved that if h(x) > 0
and α(x) >

T
∞

0
th(t) dt for sufficiently large x, then there exists a density f∗

such that

(2.4) lim
n→∞

‖Pnf − f∗‖ = 0 for f ∈ D.

In [13] it was shown that if h(x) = e−x and α(x) ≤ 1 for sufficiently large
x, then P is sweeping , i.e.

(2.5) lim
n→∞

c\
0

Pnf(x) dx = 0

for f ∈ L1(R+) and c > 0.

Remark 1. The property of sweeping is also known as zero type. Gener-
ally, a Markov operator P on a measure space (X,Σ, µ) is called sweeping

from a set A ∈ Σ if for every density f we have

lim
n→∞

\
A

Pnf(x)µ(dx) = 0.



258 R. RUDNICKI

Some sufficient conditions for sweeping are given in [8, 17]. It is clear that
if a Markov operator is sweeping from sets of finite measure then it has no
invariant density. But even a Markov operator given by a strictly positive
stochastic kernel and which has no invariant density can be non-sweeping
from sets of finite measure (see [17, Remark 7]). Also dissipativity does not
imply sweeping (see [8, Example 1]). It is interesting that a Markov operator
given by (2.3) can be sweeping from bounded sets but can be no sweeping
from some set of finite Lebesgue measure (see [17, Remark 3]).

In [16] it was proved that if h(x) = e−x and α(x) ≥ c for all x ≥ 0 and
some c ∈ R, then

(2.6) lim
n→∞

‖Pnf − Png‖ = 0 for f, g ∈ D.

Our aim is to prove the following theorems.

Theorem 1. Assume that the functions Q, λ and h satisfy the following

condition:

(C)
T
∞

0
xh(x) dx < ∞ and Q(λ(x)) ≥ Q(x) + c for all x ≥ 0 and some

c ∈ R.

Let F and G be the distribution functions of some probability measures on

[0,∞). If the support of h has infinite Lebesgue measure then the sequence

(SnF − SnG) is uniformly convergent to zero.

The next theorem generalizes the result from [16].

Theorem 2. Assume that condition (C) holds. Suppose that h(x) = 0
for x ≤ x and h(x) = exp(−ϕ(x)) for x > x, where x ≥ 0 and ϕ is a

twice differentiable function such that ϕ′′(x) ≥ 0. Then the operator P
satisfies (2.6).

3. Proofs. We split the proofs of Theorems 1 and 2 into six lemmas.

Lemma 1. For every a > 0 there exists a positive number δ(a) such that

(3.1)
∞
∑

n=0

Sn1[0,a](x) ≤ δ(a) for x ≥ 0.

P r o o f. From the definition of S it follows that

S1[0,∞)(x) = H(Q(λ(x))) ≤ 1[0,∞)(x)− (1−H(Q(λ(a))))1[0,a](x)

and generally

Sn1[0,∞)(x) ≤ 1[0,∞)(x)− (1−H(Q(λ(a))))

n−1
∑

k=0

Sk1[0,a](x).
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Since Sn1[0,∞)(x) ≥ 0 we have

∞
∑

k=0

Sk1[0,a](x) ≤ δ(a)

for δ(a) = (1−H(Q(λ(a))))−1.

Lemma 2. Let γ > Q(a)− c. If Q(x) ≥ γn and n ≥ 1 then

(3.2) Sn1[0,a](x) ≤ (γ −Q(a) + c)−1
∞\
0

y dH(y).

P r o o f. Let (Xn) be the sequence given by (2.1) such that X0 = a.
From (2.1) it follows that Q(λ(Xn+1)) = Q(Xn) + ξn+1 for n ≥ 0. Since
Q(λ(x)) ≥ Q(x) + c for x ≥ 0, we have

(3.3) Q(Xn+1) ≤ Q(Xn) + ξn+1 − c for n ≥ 0.

Consequently,

(3.4) Q(Xn) ≤ Q(a)− cn+ ξ1 + . . . + ξn for n ≥ 1.

Let gn(x) = Q(x)−Q(a)+ cn. As Q is a non-decreasing function from (3.4)
we obtain

Prob(Xn < x) ≥ Prob(Q(Xn) < Q(x)) ≥ Prob(ξ1 + . . .+ ξn < gn(x)).

Since 1(a,∞)(x) is the distribution function of the random variable X0, the
function Sn1(a,∞)(x) is the distribution function of Xn. This implies that

Sn1[0,a](x) = Sn1[0,∞](x)− Sn1(a,∞)(x)

≤ 1− Prob(Xn < x) ≤ Prob(ξ1 + . . .+ ξn ≥ gn(x)).

Using the Chebyshev inequality we obtain

(3.5) Sn1[0,a](x) ≤
nEξ1
gn(x)

.

If γ > Q(a)− c and Q(x) > γn from (3.5) it follows that

Sn1[0,a](x) ≤
nEξ1

Q(x)−Q(a) + cn
≤

Eξ1
γ −Q(a) + c

.

Lemma 2 immediately yields

Corollary 1. For every a > 0 and b > 0 there exists γ > 0 such that

(3.6) Sn1[0,a](x) < b if Q(x) ≥ γn and n ≥ 1.

Let m denote the Lebesgue measure on [ 0,∞).

Lemma 3. If m(supph)=∞, then for every a>0 the sequence (Sn1[0,a])
is uniformly convergent to 0.
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P r o o f. Let Fn(x) = Sn1[0,a](x) and βn = sup{Fn(x) : x ≥ 0}. Since
Fn(x) ≤ βn and

Sn+11[0,a](x) = SFn(x) ≤ βnS1[0,∞)(x) ≤ βn,

the sequence (βn) is decreasing. Let β = limn→∞ βn. We show that β = 0.
Suppose, by contradiction, that β > 0. Let

η(y) = sup
{\

A

h(x) dx : m(A) ≤ y, A measurable
}

and

An = {x ∈ [0,∞) : Fn(x) ≥ β/2}, A′

n = [0,∞) \ An.

Then

Fn+1(x) ≤ βn

λ(x)\
0

Q′(y)h(Q(λ(x)) −Q(y))1An
(y) dy

+
β

2

λ(x)\
0

Q′(y)h(Q(λ(x)) −Q(y))1A′

n
(y) dy

≤ (βn − β/2)η(m(Q(An))) + β/2.

Hence

βn+1 ≤ (βn − β/2)η(m(Q(An))) + β/2

and consequently

η(m(Q(An))) ≥
βn+1 − β/2

βn − β/2
.

Letting n→ ∞ we obtain

(3.7) lim
n→∞

η(m(Q(An))) = 1.

Since m(supph) = ∞, we have η(y) < 1 for every y > 0. From (3.7) it
follows that

(3.8) lim
n→∞

m(Q(An)) = ∞.

Now, according to Corollary 1, there exists γ > 0 such that

Fn(x) < β/2 if Q(x) ≥ γn, n ≥ 1.

Let xn be a positive constant such that Q(xn) = γn. Then

Fk(x) < β/2 if x ≥ xn and k = 1, . . . , n.

Thus Ak ⊂ [0, xn] for k = 1, . . . , n. Since 1Ak
≤ (2/β)Fk1[0,xn] for k =

1, . . . , n, from (3.1) it follows that
n
∑

k=1

\
Ak

Q′(t) dt ≤
2

β

xn\
0

Q′(t)
(

n
∑

k=1

Fk(t)
)

dt =
2δ(a)

β
Q(xn) =

2γδ(a)n

β
.
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This implies that

1

n

n
∑

k=1

m(Q(Ak)) ≤
2γδ(a)

β
,

which contradicts (3.8).

Now observe that Theorem 1 is a simple consequence of the following
lemma.

Lemma 4. Assume that m(supph) = ∞. If F : [0,∞) → R is a contin-

uous function such that limx→∞ F (x) = 0, then (SnF ) is uniformly conver-

gent to 0.

P r o o f. Fix ε > 0. Since limx→∞ F (x) = 0, there exist m > 0 and aε>0
such that |F (x)| < ε for x ≥ aε and |F (x)| ≤ m for x ≥ 0. From (2.2) it
follows that S is a positive operator such that S1[0,∞) ≤ 1[0,∞). Since

|F (x)| ≤ m1[0,aε](x) + ε1[aε,∞)(x),

we have

|SnF (x)| ≤ Sn1[0,aε](x) + ε.

Lemma 3 implies that (SnF ) is uniformly convergent on [0,∞).

Now we give the proof of Theorem 2. Let L1
0={f ∈L1 :

T
∞

0
f(x) dx=0}.

Since Pn is a linear operator, condition (2.6) is equivalent to limn→∞ ‖Pnf‖
= 0 for f ∈ L1

0. Denote by M the subset of L1
0 which contains all functions

satisfying the following condition:

• there exists x0 > 0 such that f(x) ≥ 0 for x ≤ x0 and f(x) ≤ 0 for

x > x0.

Lemma 5. The set M is linearly dense in L1
0.

P r o o f. It is sufficient to show that each f ∈ L1
0 is a difference of two

functions from M . Let f+ = max(f, 0), f− = max(−f, 0) and x0 > 0
be a constant such that

Tx0

0
|f(x)| dx = ‖f‖/2. Then the functions f1 =

f+1[ 0,x0]−f−1(x0,∞) and f2 = f−1[0,x0]−f+1(x0,∞) satisfy f1 ∈M , f2 ∈M
and f = f1 − f2.

Lemma 6. We have P (M) ⊂M .

P r o o f. Let f ∈ M . Let x0 > 0 be such that f(x) ≥ 0 for x ≤ x0 and
f(x) ≤ 0 for x > x0. Let y0 be such that λ(y0) = x0. Then Pf(x) ≥ 0 for
x ≤ y0. Let z0 > y0 be such that Pf(z0) = 0 and Pf(x) ≥ 0 for x ≤ y0. Let
a = Q−1(Q(λ(z0))− x). Since

(3.9) Pf(x) ≤ λ′(x)Q′(λ(x))

a\
0

e−ϕ(Q(λ(x))−Q(y))f(y) dy
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for x ≥ z0 it is sufficient to check that

(3.10)

a\
0

e−ϕ(Q(λ(x))−Q(y))f(y) dy ≤ 0

for x ≥ z0. Define an auxiliary function

(3.11) g(t) =

a\
0

e−ϕ(x+Q(a+t)−Q(y))f(y) dy.

Then

(3.12) g′(t) = −Q′(a+t)

a\
0

ϕ′(x+Q(a+t)−Q(y))e−ϕ(x+Q(a+t)−Q(y))f(y) dy.

Since ϕ′ is non-decreasing and f(x) ≥ 0 for x ≤ x0 and f(x) ≤ 0 for x > x0
from (3.12) it follows that
(3.13)

g′(t) ≤ −Q′(x+ a+ t)

a\
0

ϕ′(x+Q(a+ t)−Q(x0))e
−ϕ(x+Q(a+t)−Q(y))f(y) dy.

Set ψ(t) = −Q′(a + t)ϕ′(x + Q(a + t) − Q(x0)). Then g(t) satisfies the
differential inequality

g′(t) ≤ ψ(t)g(t)

and g(0) = 0. This implies that g(t) ≤ 0 for t ≥ 0. Consequently, inequality
(3.10) holds.

Proof of Theorem 2. According to Lemma 5 it is sufficient to check that
the sequence (Pnf) converges to zero in L1 for f ∈ M . Let f ∈ M . From
Lemma 6 we have Pnf ∈ M for n ≥ 1 and, consequently, there exists a
sequence (xn) such that Pnf(x) ≥ 0 for x ≤ xn and Pnf(x) ≤ 0 for x > xn.
This implies that

‖Pnf‖ = 2

xn\
0

Pnf(t) dt = SnF (xn),

where F (x) =
Tx
0
f(t) dt. From Lemma 4 it follows that the sequence SnF

converges uniformly to zero.
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