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Abstract. The purpose of this paper is to show that if o is the maximal spectral
type of Chacon’s transformation, then for any d # d’ we have o*¢ L o First, we
establish the disjointness of convolutions of the maximal spectral type for the class of
dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s
automorphism belongs to this class.

Let us consider a measure preserving invertible transformation 7' of the
Lebesgue space (X, ). We associate with T the unitary operator T : f(z) —
f(Tx) on L*(X,p). Let o be the maximal spectral type of T restricted to
the subspace H of functions with zero mean.

It is an important problem of spectral theory of dynamical systems to in-
vestigate properties of convolutions of the maximal spectral type o (see [2],
[3] and [6]-[8]). This question originates from Kolmogorov’s well-known
problem concerning the group property of the spectrum. It was discovered
that for some automorphisms the spectral type ¢ and the convolution o * o
are mutually singular (see [5]-[8]). An example is the so-called k-mizing
automorphism, i.e. a transformation 7" with the following property: there
exists a subsequence k; such that 7% converges weakly to the operator
kO + (1 — k), where © is the orthoprojection onto the subspace of con-
stants and I is the identity operator. This property is known to be generic
for measure preserving transformations (see [8]).

Another generic property of automorphisms is the existence of a subse-
quence k; such that Tk — %]I + %f This property implies ¢ L o %o as
well. (This fact was established first by Lemariczyk. Parreau extended this
observation by showing that ¢ L o*? for all d. Ryzhikov also obtained the
same result and used it for solving Rokhlin’s problem on homogeneous spec-
trum (see [2]). Ageev deduced this statement as a consequence of his results
concerning spectral multiplicity of 7' x T'.)
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It is known that Chacon’s well-known automorphism has the property
mentioned above. The following question (raised by del Junco and Leman-
czyk [3]) has remained open: are all the d-fold convolutions o*¢ of the max-
imal spectral type o pairwise singular for Chacon’s map? In this paper we
show that the answer is affirmative. Namely, we establish (Section 2) that
the closure of the powers of Chacon’s automorphism contains a sequence of
symmetric square polynomials which tends to the operator (%H + %f)2, and
we show that this condition implies the disjointness of the convolutions.

1. Disjointness of convolutions. Let C1(T") be the set of all operators
cK, where c is a positive number and K belongs to the weak closure of the
powers of the operator 7.

THEOREM 1.1. Let o be the maximal spectral type of a weakly mizing
automorphism T. Suppose that for some sequence a, of distinct positive
numbers the set CI(T) contains the polynomials

Qn(f) =1+a,T + fQ, where I is the identity operator.

d

Then all the convolutions c** are mutually singular.

Proof. Let us fix integers d’ > d > 1 and show that o*?¢ L o, Suppose
that an operator J : H®? — H®? satisfies

JT®..0T=T®...0T J,
d d’

where H is the subspace in L?(X,u) of functions with zero mean. It is
enough to prove that J = 0. Indeed, it is evident that o*? is the spectral
type of the operator T®¢ restricted to the subspace H®?. Suppose that
o*d J o*? Then there are two cyclic subspaces C; C H®? and Cy C H®?
with the same spectral measure. Let J be an operator establishing a unitary
equivalence between the restriction of T®% to C; and the restriction of Ted
to C which is zero on C-. Then, evidently, JT®% = T4 J and J # 0.

For any K € CI(T) we have JK® = ~(K)K®¥J, where y(K) is a
positive constant that depends on K. In particular, for K = @, (f),

1

JA+a, T +T?)% = ~, I+ a, T+ T2V, yp = .
( +a + ) o ( +ta + ) ) Y (2+an)d/_d

The left part of this equation can be represented in the form J Z?:o aiLWi(d),

where

W — > THM @ @ T e,

3

(rise-ma)
re€{—1,0,1}, [r1|+...+|ra|=d—i

Since the dimension of the space spaned by W,Ed) is not greater than d + 1,
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there exists a non-trivial sequence of reals ¢; such that

d+2
I enQu(D)® =0,
n=1
This implies that
d+2

D meaQu(1)®7 T = 0.
n=1

We will show that the operators Wi(d,)J are linearly independent. It will
follow that the operators Qn(T)®d/J , 1 <n <k, are linearly independent
if and only if ¥ < d’+1. (This follows directly from the representation

Qn(T)®? = Zio a;Wi(d/) and the fact that the a,, are distinct.) Thus, the
linear combination above cannot be zero because d+2=(d+1)+1<d' +1

(recall that d < d'). This contradiction completes the proof.
The only thing we must show is that the Wi(d )J are linearly indepen-
dent. Indeed, any non-trivial linear combination ), ciWi(d )J has the form

V(f, e ,f)] = 0, where V' is some non-trivial polynomial of d’ variables.
If J # 0, then there exists a function f such that Jf # 0. Let us pass to the
spectral representation of 7. Namely, set

U:L*T,0) = L*(T,0) : $(2) = 2¢(2)

and let @ : L?(X, u) — L?(T, o) be the unitary operator that conjugates T

and U: T = U®.
Then for the function F = ®% J f on T we have

0=a0%V(T,....T)(Jf) =V (z1,...,2a)F.

Thus, F is supported on the manifold N = {V(21,...,z4) = 0}. It is not
hard to prove that, since V is a polynomial, we have 0@ (N) = 0. Indeed,
suppose, for simplicity, that d’ = 2. Then there are finitely many points zgj )
such that &' N ({zy )} x T) is not finite. It is known that a transformation
is weakly mixing iff it has continuous spectrum. Hence, (o X o)(N) = 0,
because T is weakly mixing. Thus, Jf =0 and J must be zero; but J # 0,

and we have proved that the Wi(d/) are linearly independent.

2. Chacon’s automorphism. Let Ay = 1 and hj;; = 3h; + 1 be the
sequence of heights. Note that h; = (37 — 1)/2. Chacon’s automorphism T is
the rank-1 transformation that is built via a cutting-and-stacking construc-
tion described below (see [4] and [1]). At the jth stage we cut a tower of
height h; into 3 equal subtowers, add one spacer to the top of the middle
subtower and stack these towers together.
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002% 02% 2%
1] o1x 1%

="
Fig. 1. Chacon’s automorphism

Our purpose is to prove the following

THEOREM 2.1. Let o be the mazximal spectral type of Chacon’s automor-
phism. Then for any d # d' we have o*® L o*® .

This theorem is a direct corollary of Theorem 1.1 and Lemma 2.3.

We begin with a definition of Chacon’s map which will be more conve-
nient in what follows. Namely, for each 7 > 1, we may consider 7" as an in-
tegral automorphism over the 3-adic rotation, by identifying the base B; of
the jth tower with the group Zs of 3-adic integers in the following way. Zs
may be considered as the set of all sequences ajas ..., where a; € {0,1,2}.
Consider a point x € B;. When cutting the jth tower into 3 subtowers we
get a partition B; = Bjo U Bj 1 U Bj 5 such that

h; hi+1
Bjo —— Bj1 ——— Bj2 - Bjo.
Suppose that € B; ~ [0, 1]. We associate with x its ternary decomposition
ajagas ... (A more geometric way is to put a1 = a if € Bj,, and to define
asasg . .. similarly considering z — a/3 € Bjo = Bjt1 instead of z.) Then T
can be viewed as the integral automorphism over the map

RSZg‘)Zg2(110,2(13...'—>0,1(120,3+100...

with the ceiling function h; + ¢, where

0 if a=22...20%...,
a) =
9(a) {1 if @ =22...21%. ..,

where * designates an arbitrary element of {0,1,2}. (Note that the condi-
tional measure u(-|B;) coincides after identification with the Haar measure A

on Zg)
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It is convenient to redefine the function ¢ so that ¢(a) = 0 if a =
00...01%... The new system is conjugate to Chacon’s automorphism. Let
us describe precisely the sets where ¢ is constant:

o) = {0 if @€ (0)1x%.. .,

1 if ae (0)2%. ..,

where (0)1*... and (0)2x... abbreviate the following two sets:

(0)1*...: 1% (0)2*...: 2%
01% 02%*
001 002%

0001=* 0002x*

Each of these two tables should be meant as a code of a partition of some set
in Zs3. A row of a table designates an element of a partition, for example, 01
is the set of sequences ajas ... such that a; =0 and ay = 1. Here * means
an arbitrary element of {0, 1,2} (more exactly, we assume that any symbol
can appear at this position), and a * at the end of a line abbreviates **. ..
It is a simple corollary from the definition of Chacon’s transformation
that R R R
T=h 25 N(0)16)[ + A((0)2%)T = 1+ 17,

where ) is the Haar measure on Zs, and I is the identity operator. Indeed, fix
measurable sets A and C. Since Chacon’s map is a rank-1 transformation,
for any € > 0 there exists jo such that for all j > jo we have p(A A 4;) <
¢ and pu(C ACj) < e, where A; and C; are the unions of levels of the

jth tower. Then the base B; can be uniquely divided into sets Bj(-o) and
B](l) so that for any level L = TkBj except one, the set 7L has the
form L© UT-'LO), where L = L U LM and L = T*B{*). Moreover,
w(BY|B;) = AM(0)1%) = u(BYV[B;) = A((0)2%) = 1/2. Tt follows directly
from this picture that

u(ThA; N Cy) = 5u(A; N Cy) + 5u(T ™1 A; N Cy)

with precision 1/h;. Taking into account the fact that A; and C; approximate
A and C respectively we get the desired convergence

T~h = (Thy 25 14 LT = 114 1T,
It is also not hard to check using the same technique that

k
Tkhi X5 pu(T) = X 6™ (a) d\(a) = ch,tj—\vt,
Zs t=0
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where
k—1

") (a) =) p(R"a).
t=0

(Here we have used the fact that A is invariant under R.) Note that Py (T) is

~ ~

a polynomial in 7. Let Py(T) = T~"*Py(T), where r}, is the smallest power

of T in Py(T). Evidently, P,(T) € CI(T) as well. Below several polynomials

-~

Py(T) are given (1):

P(@)=31+47,  PD) =3 +3T+37°,
Py(T) = 414+ 47 + 472, Po(T) = &1+ £+ &7 + &7,
PS(T) = %H—l— %T, P6(T) = %H‘i‘ %T+ %T2.

One can notice that all the polynomials Ps» coincide with Py (Lemma 2.2).
The deeper Lemma 2.3 proves the following observation: the polynomials
P3n 1 are symmetric square polynomials that tend to P2 as n — oc.

LEMMA 2.2. Let I,, = (3" —1)/2. Then

n ln ] € x"(0)1x*,
»C" ) (a) = %fa (0) where  *™ = * .. %,
ln+1 if ae*"(0)2x, —
and Py (T) = 1Tt 4 LT+,
Proof. This lemma is proved by induction on n. The case n =0 is
trivial. We will establish the lemma for n = 1. The proof for arbitrary n is

completely analogous. Consider three translations of the function ¢:

t=0 t=1 t=2
1% 2% 0%
$(R~*a) =0 on 01x 11 21%
001% 101 201%
2% 0% 1%
#(R7ta)=1 on 02% 12% 22
002+ 102 202+

Let A! be the set on which ¢(R™'a) = v. Fixing vg,v1,v2 we calculate
A) N AL NAZ. Tt can be easily checked that it is non-empty only when
v1 + v9 + v3 is either 1 or 2. Suppose that vg = v; = 0 and v, = 1. Then
the only non-trivial intersection is 1* N 1(0)1xN 1% = 1(0)1*. Moreover,
in all similar chains sets are ordered. In the intersection considered we have
1% C 11%,101%,... So, any intersection is uniquely described by the long-
er code, e.g., 1(0)1*. All intersections in our case are represented in the

(1) See www.geocities.com/apri7 for the first 122 polynomials Pj(z).



CHACON’S AUTOMORPHISM

73

following table:

0,0,1: 1(0)1%, 1,1,0:  0(0)2x,
0,1,0:  0(0) 1%, 1,0,1:  2(0)2x,
1,0,0:  2(0)1x, 0,1,1:  1(0)2x,

U: *(0) 1%, U: *(0) 2%,

It is evident that ¢®)(a) = 1 iff a € *(0) 1.

LEMMA 2.3. f’l”PgnJrl(f) are square polynomials,

(371 — 1) + 23"+ + DT + (3! — T2

T~ Pyna(T) = 4. gntl
1 12)°
Proof. First, note that

@ () = ¢ (a) + p(R™*"a).

Since both ¢3") and ¢ o R~3" take two values, these functions are uniquely
described by the two corresponding partitions (see the discussion above). Let

us see how these partitions look (Figs. 2 and 3).

k.. k1% k.. k2%

*. .. x01% *, . x02%

*...%001% *...%002%

*...%0001% *...%0002%
Fig. 2. Partitions for d>(3n)

1% 2%

01 02x%

001% 002%

0...1% 0...2%

0...02% 0...00%

0...011% 0...012%

0...0101% 0...0102%

0...01001% 0...01002%

Fig. 3. Partitions for ¢ o R

Suppose that ¢©") — 1, and ¢ o R~3" equal v on the sets C, and A,

respectively. It can be easily seen from Figures 2 and 3 that
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and that

n—1
CoN Ag = U 0P1x" 1P (0) 1% U 0"1(0) 1%,
p=0
n—1
C1n Ay = [ 0P2%" 7177 (0)2% U 0"0(0) 2%,
p=0
11 1 3+l 1 1
)\(CoﬁAo):A(ClﬁAl): 52031)_,’_1 + 5. gntl = 1 31 — Z
=

as n — oo. To complete the proof we only have to recall that if Py(z) =
k k
Yoo Chezt, then 37 Gepy = 1.

Proof of Theorem 2.1. Tt is shown in Lemma 2.3 that 1+ (2 +&,,)T + T2

€ CI(T) with distinct &,,. Thus, Theorem 2.1 follows immediately from The-
orem 1.1.

The authors are very grateful to J. Kwiatkowski, M. Lemaczyk and

J.-P. Thouvenot for encouraging interest in this work, and to the anony-
mous reviewer for numerous remarks and an improvement of the proof of
Theorem 1.1.

REFERENCES

S. Ferenczi, Systems of finite rank, Collog. Math. 73 (1997), 35-65.

G. Goodson, A survey of recent results in the spectral theory of ergodic dy-
namical systems, J. Dynam. Control Systems 5 (1999), 173-226.

A. del Junco and M. Lematniczyk, Generic spectral properties of measure
preserving maps and applications, Proc. Amer. Math. Soc., 115 (1992), 725-736.
A. del Junco, A. M. Rahe and L. Swanson, Chacon’s automorphism has
minimal self-joinings, J. Anal. Math. 37 (1980), 276-284.

A. B. Katok, Constructions in Ergodic Theory, unpublished lecture notes.

V. 1. Oseledec, An automorphism with simple and continuous spectrum not
having the group property, Math. Notes 5 (1969), 196-198.

A. M. Stepin, On properties of spectra of ergodic dynamical systems with
locally compact time, Dokl. Akad. Nauk SSR 169 (1966), 773-776 (in Russian).
—, Spectral properties of generic dynamical systems, Math. USSR-Izv. 29 (1987),
159-192.

Department of Mathematics

Moscow State University

119899 Moscow, Russia

E-mail: apri7@geocities.com (A. A. Prikhod’ko)

vryz@mech.math.msu.su (V. V. Ryzhikov)

Received 10 May 1999; (3753)
revised 11 February 2000



