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Abstract. We exhibit a family of dynamical systems arising from rational points
on elliptic curves in an attempt to mimic the familiar toral automorphisms. At the non-
archimedean primes, a continuous map is constructed on the local elliptic curve whose
topological entropy is given by the local canonical height. Also, a precise formula for the
periodic points is given. There follows a discussion of how these local results may be glued
together to give a map on the adelic curve. We are able to give a map whose entropy is
the global canonical height and whose periodic points are counted asymptotically by the
real division polynomial (although the archimedean component of the map is artificial).
Finally, we set out a precise conjecture about the existence of elliptic dynamical systems
and discuss a possible connection with mathematical physics.

Introduction. Let F ∈ Z[x] denote a primitive polynomial with de-
gree d, which factorizes as F (x)=b

∏
i(x−αi). Then F induces a homeomor-

phism TF on a compact, d-dimensional group X = XF , via the companion
matrix of F . The group X is a solenoid whose definition is discussed in Sec-
tion 2 below. The essential properties of this dynamical system TF : X → X
are as follows.

1. The topological entropy h(TF ) is equal to

(1) m(F ) =

1\
0

log |F (e2πit)| dt = log |b|+
d∑

i=1

log+ |αi|,

the Mahler measure of F .

2. Let Pern(F ) denote the subgroup ofX consisting of elements of period
n under TF , i.e. Pern(TF )={x ∈ X : Tn

F (x) = x}. If no αi is a root of unity,
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then Pern(TF ) is finite with order

(2) |Pern(TF )| = |b|n
∏

i

|αn
i − 1|.

For background, and proofs of these statements, see [6, II] and [15]. When
F is monic with constant coefficient ±1 then X is the d-torus Td and TF is
the automorphism of the torus determined by the companion matrix to F .
The immanence of the circle is seen in both 1 and 2 above: the Mahler
measure is the logarithmic integral of |F | over the circle, and the periodic
points formula is equivalent to evaluating the nth division polynomial of the
circle on the zeros of F . That is, if we take φn(x) =

∏
ζn=1(x− ζ), we get

the formula αn − 1 = φn(α), so |Pern(TF )| = |bn ×
∏

i φn(αi)|.

Both the Mahler measure and the nth division polynomial on the
circle have natural analogues on elliptic curves, and our purpose here is
to discuss a family of dynamical systems whose immanent group is an ellip-
tic curve defined over the rationals. Assuming d = 1 for example, we hope
for such a dynamical system with the single zero of F corresponding to the
x-coordinate of a rational point on that curve. In other words, for every
elliptic curve E and every point Q ∈ E(Q) we are seeking a continuous map
T = TQ : X → X on some compact space X = X(E) whose dynamical data
should be described by well-known quantities associated with the point on
the curve. We expect the entropy of T to be the global canonical height
of the point Q (a well-known analogue of Mahler’s measure) and the ele-
ments of period n should be related to the elliptic nth division polynomial
evaluated at the point Q.

There now follows a brief description of this paper, explaining where to
look for our main conclusions. For reasons we will present in Sections 2 and 3,
it is to be expected that the underlying space X should be the adelic curve.
Section 2 recalls the classical definition of the solenoid and the action F in-
duces on it. Lind andWard [10] reworked the classical theory in adelic terms,
showing that the topological entropy can be decomposed into a sum of local
factors, each of which is the entropy of a corresponding local action. Each
of these local factors can be identified as a corresponding local component
of the Mahler measure. Section 3 recalls the basic theory of elliptic curves
needed; in particular, the decomposition of the global canonical height into
a sum of local factors. Also, we recall that the p-adic curve is isomorphic
to a simpler group, on which we may expect to define dynamical systems.
In Section 4, in particular the conclusion, we will construct a dynamical
system where the underlying space is a p-adic elliptic curve and where the
map is induced by a point on that curve. The map in question is a p-adic
analogue of the well-known β-transformation. The entropy of the map is the
local canonical height of the point, and the periodic points can be counted
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exactly. In Section 5, we consider how to glue together these local maps to
get a global dynamical system. Here we are given an elliptic curve E defined
over Q and a rational point Q ∈ E(Q). The point Q induces a dynamical
system where the underlying space is the elliptic adeles and the entropy
turns out to be the global canonical height of the point Q. The construction
of the map at the archimedean prime is artificial since it relies upon a priori

knowledge of the height of the point (although it is a curious coincidence
that the map is a classical β-transformation). We hope this will bring into
better focus the construction at the non-archimedean primes where the map
uses no such a priori knowledge of the height. The artificiality of the map
is somewhat redeemed when we go on to show that the periodic points are
counted asymptotically by the real division polynomial at the point Q. This
last result makes use of some non-trivial results: one from elliptic transcen-
dence theory and the other a result about periodic points for the classical
β-transformation. Finally, in Section 6, we make some remarks about pu-
tative elliptic dynamical systems with the precise periodic point behaviour
and discuss possible connections with mathematical physics.

2. The solenoid. Given F (x) = bx− a, with a, b ∈ Z coprime, let XF

denote the subgroup of TZ defined by

XF = {x = (xk) : bxk+1 = axk for all k ∈ Z}.

The group TZ is compact by Tikhonov’s theorem, and XF is a closed sub-
group so it too is compact, an example of a (1-dimensional) solenoid. More
generally, a solenoid is any compact, connected, abelian group with finite
topological dimension (see [8]). The automorphism TF is defined by the left
shift-action

(3) TF (x)k = xk+1.

Example 2.1. Take b = 1 and a = 2, so F (x) = x− 2. Then the group
XF is given by {x = (xk) : xk+1 = 2xk}. This is a closed subgroup of TZ,
so the topological dual group of XF is given by the quotient

T̂Z/X⊥ ∼= Z[t±1]/(t − 2)Z[t±1] ∼= Z[1/2].

The dual map to the shift TF is the automorphism x 7→ 2x. Indeed, the
construction of XF from F gives the natural invertible extension of the circle
doubling map. It is easy to see that TF has 2n − 1 points of period n (since
these points are found by solving the simultaneous equations xk+1 = 2xk
and xk+n = xk for all k on T), and has topological entropy log 2. Moreover,
there is an isomorphism R×Q2 → R×Q2 sending the discrete (diagonally
embedded) subgroup Z[1/2] to its own annihilator, so there is a natural onto
homomorphism R×Q2 → XF , which realizes the map TF as a factor of the
map (x, y) 7→ (2x, 2y).
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In general, the map TF defined at (3) has the properties 1 and 2 of
Section 1 by [15] (see also [6] for a more elementary discussion). In other
words,

h(TF ) = logmax{|a|, |b|} = m(bx− a) = m(F )

(a form of Abramov’s formula). Our assumption on the zero of F not being
a unit root amounts to a 6= ±b, and the periodic points are given by

(4) |Pern(T )| = |b|n|φn(a/b)| = |bn − an|.

At the end of this section, we will show how the periodic points formula (4)
comes about.

In order to motivate the name, and what follows, we now give a second
equivalent definition of the solenoid and the action of TF upon it. Define X
to be the topological dual of the ring Z[1/(ab)]. Then define T to be the map
dual to x 7→ (a/b)x on Z[1/(ab)]. The adelic point of view arises because X
is isomorphic to the quotient of R ×

∏
p|ab Qp by the diagonally embedded

discrete subgroup Z[1/(ab)] (this is a simple finite version of the standard
adelic construction of the dual of an A-field; see [3, Sec. 3] or [25, IV]). Each
character on R restricts to a character on Z[1/(ab)]; this induces a map from

R ∼= R̂ into X (injective since Z[1/(ab)] is dense in R). The fact that the real
line is “wrapped” densely into the compact group X accounts for the name
solenoid. The group X is a semi-direct product of T by

∏
p|ab Zp. The action

does not preserve the various local components, but a direct calculation of
the entropy formula is possible (see [24]). Lind and Ward simplified this by
working with the adeles proper, which live as a covering space to the one
above. In that context, the map on each component is simply multiplication
by a/b. Their approach involves tensoring the dual of X with Q which gives
quick access to the standard results on adeles but destroys any periodic
point behaviour (see [10, Sec. 3]). The elliptic system in Section 5 has the
elliptic adeles as the base group, and for the finite primes, the local map is
the local β-transformation by a/b. Thus it resembles the systems defined
on both the solenoid and its adelic cover.

Finally, we examine how the periodic points formula (4) comes about.
This will be instructive in Section 6, when we consider a possible elliptic
analogue. The points ofXF having period n under TF correspond to periodic
vectors y of length n. The linear equation generated by such a vector is
of the form Cy = 0, where C is the n × n circulant matrix on the row
(a,−b, . . .). The number of solutions y ∈ Tn of this equation, and hence
the number of periodic points, is easily verified (see [6, Lemma 2.3]) to
be |det(C)|. From the well-known properties of circulants, this is equal to
|an − bn| = |bnφn(a/b)|.

3. Elliptic curves. In this section we recall some basic results about
elliptic curves and fix the notation. A good account of elliptic curves can be
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found in [16] and [18]; all that follows in this section can be found in those
two volumes.

Denote by E an elliptic curve defined over a field K, and by E(K) the
group of points of E having co-ordinates in K. When K = Q, Mordell’s
theorem says that E(Q) is finitely generated and the torsion-free rank is

referred to simply as the rank . Denote by ĥ : E(Q) → R the global canon-
ical height on E(Q), a well-known analogue of Mahler’s measure (see (1)).
Denote by λp the local canonical height relative to the p-adic valuation. The
formula that follows gives an important decomposition of the global height
as a sum of local heights (see [16, Th. 18.2]):

(5) ĥ(Q) =
∑

p≤∞

λp(Q) for Q ∈ E(Q).

For finite p, whenever Q has good reduction at p,

(6) λp(Q) = 1
2 log max{|x(Q)|p, 1}.

Here and below, we refer to a rational point Q on E as having good reduc-

tion (respectively bad reduction) at a prime p if the image of the point under
reduction modulo p is a non-singular (respectively singular) point on the re-
duced curve. In general, the local height is only defined up to the addition of
a constant. The definition (6) agrees with the one in [17]. In [16], each local
height is normalized by adding a constant to make it isomorphism-invariant.
Whether normalized or not, (5) still holds.

If K = R, the curve E(R) is isomorphic to either T or C2 × T (see
[18, V, Cor. 2.3.1]). Denote by E1(R) the connected component of the
identity, which is always isomorphic to T. If K = Qp, the curve E(Qp) can
be reduced modulo p. The set of points having good reduction is denoted
by E0(Qp) and the kernel of the reduction is denoted by E1(Qp). For odd

primes p, there is an isomorphism E1(Qp)
∼
→ pZp (see [16, IV, Th. 6.4; VII,

Prop. 2.2]). This isomorphism is essentially a logarithm and it comes from
the theory of formal groups. The situation when p = 2 is similar; for details,
see [16, IV].

These isomorphisms are analogous to the one from E1(R) to T. The local
isomorphisms for all primes p play a very important role in the development
of dynamical systems because they allow actions on the additive local curves
to be transported to the local curves proper. Consider the analogous situ-
ation in Section 1, where the immanent group is the circle. There is an
isomorphism (the logarithm) from the circle to the additive group [0, 1).
The action on the circle really arises from an action on [0, 1) which is then
lifted via the logarithm to the circle itself. In the elliptic case, the local curve
is isomorphic (via the elliptic logarithm) to an additive group. Subsequently,
when we define an action on the p-adic curve, it will be one that is lifted
from the additive curve. Thus, the dynamical systems which arise when the
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immanent group is the elliptic curve are exactly analogous to the case where
the immanent group is the circle (or more generally, the solenoid).

Finally, we recall the elliptic analogue of the division polynomial xn − 1
on the circle. If E denotes an elliptic curve defined over Q then without loss
of generality it is defined by a generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with integral coefficients. There is a polynomial ψn(x) with integer coef-
ficients having degree n2 − 1 and leading coefficient n2 whose zeros are
precisely the x co-ordinates of the points of E having order dividing n; for
details see [18, Ex. 6.4, p. 477]. Later, we will consider the monic polynomial
νn(x) of degree n− 1 whose zeros are the x co-ordinates of the non-identity
points in E1(R) having order dividing n,

(7) νn(x) =
∏

nQ=O
O 6=Q∈E1(R)

(x− x(Q)).

The coefficients of νn(x) are real algebraic numbers, and for Q ∈ E(Q),
1
n log |νn(x(Q))| converges to λ∞(Q) (see [6, Th. 6.24]).

4. The β-transformation and a p-adic analogue. A comprehensive
introduction to ergodic theory can be found in [21]. Here we just recall the
definitions of ergodicity and entropy before examining in more detail the
β-transformation and introducing its p-adic analogue. Let T : X → X be a
measure-preserving transformation on the probability space (X,µ). Then T
is ergodic if the only almost-everywhere invariant sets are trivial, in other
words if µ(T−1E △ E) = 0 implies that µ(E) = 0 or 1, where △ is the
symmetric difference.

Given two open covers A,B of the compact topological space X, define
their join to be A ∨ B = {A ∩ B : A ∈ A, B ∈ B}, and define the entropy
of A to be H(A) = logN(A) where N(A) is the number of sets in a finite
subcover with minimal cardinality. The topological entropy of a continuous
map T : X → X is defined to be

h(T ) = sup
A

lim
n→∞

1

n
H
( n−1∨

j=0

T−j(A)
)
,

where the supremum is taken over all open covers of X (see [1]; the topo-
logical entropy is a measure of orbit complexity introduced as an analogue
of the measure-theoretic entropy).

The β-transformation Tβ is defined for real β > 0 on the interval [0, 1)
by Tβ(x) = {βx} = βx (mod 1). If β > 1, the β-transformation preserves
an absolutely continuous probability measure with respect to which it is
ergodic [13], the (measure-theoretic and topological) entropy is h(Tβ) =
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log β (see [11] and [12], [9]) and (see [7]) the asymptotic growth rate of
the periodic points equals the entropy. The result about the asymptotic
growth rate will be applied in Section 5 (see (13)). Strictly speaking, the
definition of topological entropy in terms of open covers does not apply to
the classical β-transformation because it has a discontinuity; the topological
entropy referred to is that of an associated shift system (see [21, Sec. 7.3]). If
β ≤ 1, the map is simply multiplication by β. If β < 1, Tβ does not preserve
an absolutely continuous measure, it has topological entropy zero and has
no periodic points apart from 0. In all cases, the entropy is h(Tβ) = log+ β.

Now we define a p-adic analogue of the β-transformation. For any q∈Qp,
define a map, denoted by Tq, sometimes referred to as the q-transformation,
as follows. Let x be a generic element of Zp and write qx =

∑∞
i=m bip

i.
Define

Tq(x) =
∞∑

i=max{0,m}

bip
i.

In other words, Tq multiplies by q and cuts away the fractional tail in order
to come back to Zp. Note that Tq could be defined over pZp in an analogous
way, and the ergodic properties would not change once the Haar measure
had been normalized again.

1. If |q|p ≥ 1, the map Tq preserves Haar measure on Zp.

2. If |q|p < 1 then Tq is multiplication by q, and it only preserves the
point mass at the identity.

3. The ring of p-adic integers Zp is homeomorphic to the space X =∏
n∈N

Y of one-sided sequences with elements in Y = {0, . . . , p − 1}, and
T1/p is conjugate to the left shift σ on X.

Theorem 4.1. The topological entropy of the p-adic q-transformation is

given by h(Tq) = log+ |q|p.

P r o o f. We follow Bowen [2] and compute the topological entropy as a
volume growth rate. It is a straightforward computation to check that Haar
measure on Zp is Tq-homogeneous, so (see [2, Prop. 7])

(8) h(Tq) = lim
m→∞

lim sup
n→∞

−
1

n
log µ

( n−1⋂

k=0

T−k
q Bm

)

where Bm = pmZp.

If |q|p ≤ 1, then T−1
q Bm ⊃ Bm so

n−1⋂

k=0

T−k
q Bm = Bm,

and (8) gives h(Tq) = 0 = log+ |q|p.
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If |q|p = pr > 1, then T−1
q Bm = Bm+r, so

n−1⋂

k=0

T−k
q Bm = Bm+rn,

so by (8) we have h(Tq) = r log p = log+ |q|p.

Theorem 4.2. Let q ∈ Qp with |q|p ≥ 1. The map Tq is ergodic with

respect to Haar measure for |q|p > 1, and is not ergodic for |q|p = 1.

P r o o f. When q is a unit, the open sets of the form pnZp for n ≥ 1 are
all invariant under Tq, so the map is not ergodic.

If |q|p > 1 then it is clear the map is ergodic, since it behaves as a group
rotation followed by a full shift.

A consequence of properties 1, 2 for the systems in Section 1 is that the
logarithmic growth rate of the periodic points, limn→∞(1/n) log Pern(TF ),
coincides with the entropy (see [6, Lemma 1.10]). That this also holds for Tq
follows from the next result.

Theorem 4.3. Given q ∈ Qp \ U , where U denotes the set of unit roots

in Qp, let Tq denote the q-transformation on Zp. Then

(9) log |Pern(Tq)| = n log+ |q|p.

P r o o f. First, consider the case |q|p < 1. Then as n → ∞ we have
Tn
q (x) → 0 for all x ∈ Zp. Thus Tq has only one periodic point (zero) and

both sides of (9) are zero.
When |q| = 1, the action of q on Zp is simply multiplication, so the

periodic points are solutions to the equation qnx = x. Since q is not a unit
root, there are no periodic points except x = 0, so (9) holds.

Finally, suppose |q|p > 1. If q = p−k with k > 0, the periodic points
are easy to determine. We have Tn

q (x) =
∑∞

i=0 ai+nkp
i and the solutions to

Tn
q x = x are given by the pkn points with ai+nk = ai for i = 0, . . . , kn − 1.

Thus, both sides of (9) are equal to nk log p. In general, suppose |q|p = pk.
We claim that for each integer a with 0 ≤ a < pnk, there is a unique y ∈ Zp

with Tn
q (a + pnky) = a + pnky. This follows because the left hand side is

b + qnpnky for some b ∈ Zp, which depends only upon a, q and n. Write
qnpnk = v for some p-adic unit v then the equation b+ vy = a+ pnky has a
unique solution for y ∈ Zp. This shows that there are at least pnk solutions
of Tn

q x = x. That there can be no more follows because we may take the a

as above as coset representatives for Zp/p
nkZp so every element x ∈ Zp is

represented by some a.

In conclusion, given any p-adic elliptic curve E and any pointQ ∈ E(Qp),
we can construct a dynamical system in the following way. The curve is
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locally isomorphic to the group pZp and therefore to Zp. Now let Q act via
the q-transformation on the additive curve, where q = x(Q). Then transport
this action to the curve proper via the logarithm. This is an exact analogue
of the toral dynamical systems in Sections 1 and 2.

5. Dynamics on the elliptic adeles. From here on, let E denote an
elliptic curve defined over Q and let Q ∈ E(Q). The explicit formula (6)
for the local height of Q does not hold if Q has bad reduction or if p is
the prime at infinity. In particular, the local height in these cases can be
negative. Since the entropy of a map is never negative, we will work with
points whose local heights are guaranteed to be non-negative.

Claim 5.1. There exists an n ≥ 1 for which λp(Q) ≥ 0 for all p < ∞
and Q ∈ nE(Q).

P r o o f. Since E1(Qp) is a subgroup of finite index in E(Qp) (simply
by noting that E1(Qp) is the kernel of the reduction mod p map, which
has finite image), for each bad prime p there exists an integer np such that
E1(Qp) has index np in E(Qp). Let n =

∏
bad p np; then nE(Qp) ≤ E1(Qp)

for all bad p. Points in E1(Qp) have λp ≥ 0 by (6) since such a point has
good reduction by construction. Recall now that if Q has good reduction
at p then the local height at p is again given by (6) and it follows that
λp(Q) ≥ 0.

Define S to be the set of bad primes together with infinity. Assume that
the point Q satisfies

(10) λp(Q) > 0 for all p ∈ S.

If Q ∈ nE(Q) then Q ∈ E1(Qp) for each bad prime p. It follows from (6)
that the local height is actually positive. If the rank of E(Q) is not zero
then nE(Q) has finite index in E(Q) so in that case, there is a large stock of
points Q which satisfy (10). At the infinite prime, this amounts to assum-
ing that Q lies in a neighbourhood of the identity by the explicit form in
[16, Sec. 18].

SupposeQ ∈ E(Q) is a point for which the assumption (10) holds. Define
X to be the space

(11) X =
∏

p≤∞

E1(Qp).

The point Q induces an action TQ : X → X in the following way: (TQ)p
is the q-transformation if p is finite (where q = a/b = x(Q)) and the β-
transformation if p is infinite, where log β = 2λ∞(Q). These are actions on
T and pZp, but for every p, the action can be transported to E1(Qp) via
the isomorphisms in Section 3. The statements in the following theorem are
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analogues of statements 1 and 2 in the introduction. There we supposed
that the zeros of F were not torsion points of T. The assumption that Q is
not a torsion point of E is built into (10): Q is a torsion point if and only if

ĥ(Q) = 0 and (10) guarantees that ĥ(Q) > 0.

Theorem 5.2. With the definitions and assumptions above, and q =
a/b = x(Q),

1. the entropy of TQ is given by h(TQ) = 2ĥ(Q), and

2. the asymptotic growth rate of the periodic points is given by the division

polynomial νn(x) in (7):

log |Pern(TQ)| ∼ log |bnνn(q)| as n→ ∞.

P r o o f. By Theorem 4.1, the entropy of each component of TQ is given
by log βp, where βp = β if p = ∞ and βp = max{|x(Q)|p, 1} if p is finite.
Since there are only finitely many primes for which the local dynamical
systems are not isometries, Theorem 4.23 in [21] applies giving

h(TQ) = h(Tβ) +
∑

p<∞

h(Tq) =
∑

p≤∞

log βp = 2
∑

p

λp(Q) = 2ĥ(Q).

For the asymptotic growth rate of the periodic points note that if dynamical
systems T̂i : Xi → Xi (i = 1, . . . , r) are given and the point xi has period m

under T̂i for i = 1, . . . , r then (xi) has period m under
∏

i T̂i. Thus we may
count the contribution to the periodic points from each prime separately.
For p <∞, from Theorem 4.3,

(12) log |Pern(Tq)| = n log+ |q|p = −n log |b|p.

Note that our assumption on Q guarantees that q is not an integer and so, in
particular, q is not a root of unity. Summing over all finite p and using the
product formula, we obtain a total contribution of n log |b| to the periodic
points. For the infinite prime, we quote a deep result from [7] which says

(13) log |Pern(Tβ)| = n log β + o(n).

From (11) and (12) we have the formula

(14) log |Pern(TQ)| = n log |b|+ n log β + o(n).

Finally, we quote from Theorem 6.24 in [6] which gives

(15) log |νn(q)| = n log β + o(n).

The formula (15) depends upon an application of the elliptic analogue
of Baker’s theorem from transcendence theory (see [4], [5, Sec. 7] and
[6, Th. 6.18]). It follows from (14) and (15) that log |bnνn(q)| is asymp-
totically equivalent to log |Pern(TQ)|.
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Set now S∗(Q) = {p : |x(Q)|p > 1} ∪ {∞}, let X∗ =
∏

p∈S∗(Q) and let
T ∗
Q be defined component-wise as above.

Theorem 5.3. 1. The entropy of T ∗
Q is given by h(T ∗

Q) = 2ĥ(Q).
2. The asymptotic growth rate of the periodic points is given by the divi-

sion polynomial (7):

log |Pern(T
∗
Q)| ∼ log |bnνn(q)|.

3. T ∗
Q is ergodic.

P r o o f. For the entropy and the periodic points, the same argument as
in Theorem 5.2 holds giving the desired result. The ergodicity is proved in
Theorem 4.2.

The pros and cons of our construction may be summarized as follows.
Firstly, we have constructed a dynamical system whose immanent group is
the adelic elliptic curve. The map is defined locally by the p-adic β-trans-
formation on the additive curve. Secondly, the construction exhibits phe-
nomena which resemble those in the solenoid case. Against these comments
we must set the following. Firstly, the maps we are using are not continuous
because of the discontinuity of the classical β-transformation. The effect
upon the map TQ is to deny continuity at infinity on the archimedean com-
ponent. Secondly, we would have preferred to see periodic point behaviour
which was counted precisely by the usual elliptic division polynomial (rather
than just asymptotically by the real division polynomial). Thirdly, the map
at the archimedean prime uses a priori knowledge of the archimedean height
of the point. Fourthly, we made special assumptions to guarantee that each
local height was non-negative. Although these assumptions were natural,
at the infinite prime and each bad prime we assumed our point was to be
found in a neighbourhood of the identity, we would have preferred not to
have needed any assumptions. In the next section, we discuss how these
deficiencies might be overcome.

6. Putative elliptic dynamics. Suppose E denotes an elliptic curve
defined by a generalized Weierstrass equation with integral coefficients. For
each n ∈ N, let ψn(x) = n2xn

2−1 + . . . denote the nth division polynomial.
Let Q denote a non-torsion rational point on E, with x(Q)=a/b. It is tempt-
ing to conjecture that there is a compact space X with a continuous action
TQ : X → X whose entropy is given by h(TQ) = 2ĥ(Q), and whose periodic

points are counted, in the sense of Section 1, by En(Q)= |bn
2−1ψn(a/b)|. It

is known (see [6, Ex. 6.12]) that En(Q) is given by the determinant of a Han-
kel matrix. This is analogous to the way that the periodic points formula for
the toral case (2) arises as the determinant of a circulant matrix. However,
there is a problem in making the obvious conjecture. When E is given by the
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equation y2+y=x3−x and Q is the point Q = (0, 0), the sequence begins
1, 1, 1, 1, 2, . . . which cannot be the sequence of periodic points for any bijec-
tion (since the first and fifth term are not congruent modulo 5, for example).
Of course, this does not preclude the possibility that there is a non-invertible
map with exactly these data. In addition, the quadratic-exponential growth
rate characteristic to elliptic curves is not usually seen in the dynamics of
iterates of single transformations. Such rates do however naturally occur for
Z2-actions, but we are not able to pursue this at the moment.

We believe that the appearance of the canonical height as an entropy
might well provide an interesting interpretation for the “shape” of the height
as a sum of local heights. We know that the local heights can be negative so
the global height is usually the difference of two positive contributions. Al-
though a negative entropy cannot exist, nonetheless, the difference between
two non-negative entropies can make sense. If one dynamical system ex-
tends another then the difference between their two entropies represents the
entropy on the fibres. This raises the possibility that a phenomenon such
as bad reduction might well have a dynamical interpretation.

Interest in our conjecture (see [6, Question 14]) is heightened because
of the connection with the following remarkable circle of ideas. On the one
hand, mathematical physicists have studied the dynamics of integrable sys-
tems (see [19], [20]). Here, inter alia, one looks for meromorphic maps on the
complex plane which commute with polynomials. It is a classical result of
Ritt (see [14]) that all non-trivial examples arise from the exponential func-
tion or the elliptic functions associated with some lattice. Coincidentally,
Morgan Ward (see [22], [23]) showed that all integer sequences satisfying
a certain natural recurrence relation arise from the exponential function or
the elliptic functions associated with some lattice, suitably evaluated. In the
exponential case, these sequences play a fundamental role in describing the
dynamics of toral systems. It is hoped that in the elliptic case also, the se-
quences |ψn(a)| play a fundamental role in describing the dynamics of some
elliptic systems. That being so, a new chapter in integrable systems could be
written, yielding further interplay between elliptic curves and mathematical
physics.
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