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ELI GLASNER (TEL AVIV) AND BENJAMIN WEI SS (JERUSALEM)

Abstract. A new class of dynamical systems is defined, the class of “locally equicon-
tinuous systems” (LE). We show that the property LE is inherited by factors as well as
subsystems, and is closed under the operations of pointed products and inverse limits. In
other words, the locally equicontinuous functions in l∞(Z) form a uniformly closed trans-
lation invariant subalgebra. We show that WAP ⊂ LE ⊂ AE, where WAP is the class
of weakly almost periodic systems and AE the class of almost equicontinuous systems.
Both of these inclusions are proper. The main result of the paper is to produce a family
of examples of LE dynamical systems which are not WAP.

0. Introduction. A dynamical system is a pair (X,T ) where X is a
compact Hausdorff space and T a self-homeomorphism. Unless otherwise
stated we assume that X is metrizable and equipped with a metric d(·, ·)
bounded by 1. We also usually assume that the system (X,T ) is topologically
transitive and has a recurrent transitive point.

The dynamical system is equicontinuous when the homeomorphisms
{Tn : n∈Z} act on X as an equicontinuous family of maps. This class of dy-
namical systems is well understood. The classical theory of equicontinuous
dynamical systems characterizes those systems completely. In particular, we
know that a topologically transitive equicontinuous system is isomorphic to
a rotation of a compact monothetic group by a generator.

Recently the theory of almost equicontinuous dynamical systems has
been treated by several authors (see [AAB1,2], [GW]). A dynamical system
(X,T ) is called almost equicontinuous (AE) if there is a point x0 ∈ X which

(i) has a dense orbit,

(ii) is a recurrent point, and

(iii) is Lyapunov stable.

The latter means that x0 is an equicontinuity point (i.e. for every ε > 0
there exists a δ > 0 such that d(x, x0) < δ implies d(Tnx, Tnx0) < ε for all
n ∈ Z).

2000 Mathematics Subject Classification: Primary 54H20.

[345]



346 E. GLASNER AND B. WEISS

It turns out that AE systems which are not equicontinuous are not at all
rare. Every AE system is uniformly rigid and every uniformly rigid system
has an AE cover (see definitions in the next section). However, the class of
AE systems in not well behaved in several ways. A subsystem as well as a
factor of an AE system may fail to be AE.

There is however a natural subclass of the AE systems which is well
behaved. It is the class of weakly almost periodic systems (WAP) (see e.g.
[EN]). Every factor as well as every subsystem of a WAP system is WAP. One
way to see that the class of WAP systems is closed under these operations,
as well as many others such as pointed products and inverse limits, is to see
that the class of weakly almost periodic functions on Z forms a uniformly
closed translation invariant subalgebra of l∞(Z).

Since every WAP system is AE, the fact that the WAP property is inher-
ited by subsystems implies that every WAP system (X,T ) has the property:

• For every x ∈ X, the orbit closure Y = OT (x) is an AE subsystem.

We take this to be the definition of a new class of dynamical systems.
A dynamical system (X,T ) is called locally equicontinuous (LE for short) if
each point x ∈ X is a point of equicontinuity of the subsystem Y = OT (x)
⊂ X. In other words, (X,T ) is LE if every transitive subsystem of X is AE.
As we will show, the class of LE functions, i.e. those functions f(n) ∈ l∞(Z)
that arise as the restriction of continuous functions F ∈ C(X) to the orbit
of a transitive point of a LE system

f(n) = F (Tnx0),

also forms a uniformly closed translation invariant subalgebra of l∞(Z). The
main result of the paper is to produce a family of examples of LE dynamical
systems which are not WAP.

In the last section we review and augment some of the results of [GW].
Specifically, we show that every uniformly rigid system has an AE cover,
and we investigate the question: when is the product of two topologically
transitive systems topologically transitive?

We would like to thank the referee for a careful reading of the paper and
for suggesting several corrections.

1. Local equicontinuity. For an AE system the (dense Gδ) subset Xtr

of transitive points coincides with the set of equicontinuity points. Moreover,
such a system is uniformly rigid , i.e. there exists a sequence {nk}

∞
k=1 with

|nk| → ∞ such that Tnk tends to the identity uniformly (see [GM] for the
theory of rigid systems). For any dynamical system (X,T ) the closure of
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the subgroup {Tn : n ∈ Z} in the group H(X), equipped with the metric

D(g, h) = sup
x∈X

d(gx, hx) + sup
x∈X

d(g−1x, h−1x) =: D+(g, h) +D−(g, h),

forms a Polish topological group G. When (X,T ) is uniformly rigid this
Polish group is non-discrete.

Lemma 1.1. In an almost equicontinuous system (X,T ), for each point

x0∈Xtr, the map g 7→gx0 from G into X is a homeomorphism. Conversely ,
if G is a non-discrete Polish monothetic group and (X,T ) a topologically

transitive system on which G acts, extending the action of Z={Tn : n ∈ Z},
in such a way that for some transitive point x0 ∈ Xtr, the map g 7→ gx0

from G to X is a homeomorphism, then (X,T ) is an AE system.

P r o o f. Fix x0 ∈ Xtr and let x1 ∈ Xtr. Then there exists a sequence
{mj} with Tmjx0 → x1. Given ε > 0 we have, by equicontinuity of the
point x1, a δ > 0 with the property: x ∈ Bδ(x1) implies d(Tnx1, T

nx) < ε
for all n ∈ Z. Let J be a positive integer such that for l, k > J , Tmlx0 and
Tmkx0 are in Bδ(x1). Then for all n, d(Tml+nx0, T

mk+nx0) < 2ε, hence
for all z ∈ X, d(Tmlz, Tmkz) < 2ε. Thus Tmj is a Cauchy sequence with
respect to the metric D+(g, h) = supx∈X d(gx, hx).

Now let η > 0 be such that x ∈ Bη(x1) implies d(Tnx, Tnx1) < δ/2 for all
n ∈ Z. Then for sufficiently large j, Tmjx0 ∈ Bη(x1) hence d(T

−mj (Tmjx0),
T−mjx1) = d(x0, T

−mjx1) < δ/2. Thus we also have T−mjx1 → x0 and as
above we conclude that Tmj is also a Cauchy sequence with respect to the
metric D−(g, h) = supx∈X d(g−1x, h−1x), whence a Cauchy sequence with
respect to D.

Since H(X) is a Polish group with respect to D, we have lim Tmj = g
for some g ∈ G and clearly gx0 = x1. Our proof also shows that the map
g 7→ gx0 is a homeomorphism of G onto Xtr.

In order to prove the other direction of the lemma, we only have to
observe that the assumption that G acts on X means that for every ε > 0
there exists a neighborhood V of the identity in G such that g ∈ V implies
d(gx, x) < ε for every x ∈ X.

Theorem 1.2. (1) WAP ⊂ LE ⊂ AE.
(2) LE is closed under factors and pointed products. Thus the collection

of functions in l∞(Z) coming from continuous functions on pointed systems

in LE forms a closed translation invariant algebra, the algebra of locally

equicontinuous functions.

P r o o f. (1) The inclusion LE ⊂ AE is clear. In [AAB2] it is shown
that a system (X,T ) is in AE iff each element of the enveloping semigroup
E = E(X) is continuous on Xtr. Since by [EN], (X,T ) is in WAP iff each
element of E is continuous on X, the inclusion WAP ⊂ LE follows.
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(2) Let π : X → Y be a homomorphism of dynamical systems where
(X,T ) is LE. Let y1 be any point of Y and set Y1 = O(y1); it suffices to show
that the system Y1 is AE. By Zorn’s lemma there exists a minimal subset
X1 of X which is closed invariant with π(X1) = Y1. If x1 ∈ X1 satisfies
π(x1) = y1 then clearly X1 = O(x1); thus X1 is transitive and by LE of X,
the system X1 is AE. With no loss of generality we therefore assume that
X = X1, Y = Y1 and we now have the property that π−1(Ytr) = Xtr. Our
goal now is to show that there is an equicontinuity point y0 ∈ Y .

The map π−1 : Y → 2X is an upper-semicontinuous map; therefore there
exists a dense Gδ invariant subset Y0 of Y where π−1 is continuous.

Clearly X0 = π−1(Y0) is a Gδ subset of X. Since Y0 ∩ Ytr 6= ∅ it follows
that X0 contains transitive points for the system X, so that the set X0 is
a dense Gδ subset of X. Let x0 ∈ Xtr ∩ X0. Given ε > 0 there exists
δ > 0 such that for every x ∈ Bδ(x0) and for every n, d(Tnx0, T

nx) ≤ ε.
Since y0 = π(x0) is a continuity point for π−1, y0 is in the interior of the
set π(Bδ(x0)). Thus there exists a θ > 0 with Bθ(y0) ⊂ intπ(Bδ(x0)). If
y ∈ Bθ(y0) then there exists x ∈ Bδ(x0) with π(x) = y whence, for every
n, d(Tnx0, T

nx) ≤ ε and finally, if we choose the metric properly, also
d(Tny0, T

ny) ≤ ε.

The fact that LE is closed under pointed products follows directly from
the definition. Finally, the conclusion that the LE functions in l∞(Z) form a
uniformly closed and invariant subalgebra is a straightforward consequence
of the fact that the collection of LE systems is closed under these opera-
tions.

In the next two sections we show that both inclusions in Theorem 1.2(1)
are proper.

Theorem 1.3. Let (X,T ) be a LE dynamical system. Then

(1) Every minimal subsystem of (X,T ) is equicontinuous, hence isomor-

phic to a group rotation.

(2) Every invariant ergodic probability measure on X is supported on a

minimal subsystem and is therefore isomorphic to Haar measure on a group

rotation. Every invariant probability measure on X is supported by the union

of the minimal subsystems of X; in particular , if X has a unique minimal

subset then (X,T ) is uniquely ergodic.

P r o o f. (1) This is a direct consequence of the definition of a LE system
and Theorem 1.3 in [GW].

(2) Let µ be an invariant ergodic probability measure on X and let x be
a generic point for µ. Then by LE the subsystem Y = O(x) is an AE system
and again Theorem 1.3 in [GW] implies that Y is a minimal equicontinuous
subsystem and therefore that µ is isomorphic to Haar measure on a group
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rotation. Finally, if µ is any invariant probability measure on X then we
obtain the last assertion of the theorem by decomposing µ into its ergodic
components.

2. Examples

Example 1. We will show that the Katznelson–Weiss example shown to
be an AE system in Theorem 4.2 of [AAB1] is a WAP system. We do this by
computing its enveloping semigroup E and showing that it is commutative.
The latter property is easily seen to be equivalent to the continuity of all
elements of E, which in turn is a necessary and sufficient condition for a
system to be WAP (see for example [D]). Using the notation of [AAB1],
Theorem 4.2, for x ∈ X we set N(x) = infn∈Z x(n). For 0 ≤ s ≤ 1 we let
Xs = {x ∈ X : N(x) ≥ s}. Clearly, Xs is a subsystem of X. Let hs be
the affine map of the unit interval I = [0, 1] into itself defined by hs(t) =
s+ t(1− s). The function hs defines a continuous map (also denoted by hs)
from X to IZ given by hs(x)(n) = hs(x(n)) and it is easy to see that for
every 0 ≤ s ≤ 1, the function αs =: hs(α) is in X, that Xs = O(αs) and that
hs : X → Xs is a homomorphism of dynamical systems (an isomorphism
for s < 1). Since hsht = ht+s(1−t) we have hsht = hths, and as we shall
soon see this commutation relation is the key to our proof. Observe that
(say by Lemma 4.3 of [AAB1]) if x ∈ X satisfies x(0) = α(0) then x = α,
and similarly, for x ∈ Xs, x(0) = αs(0) implies that x = αs.

Now we claim that for x ∈ X, N(x) = s iff there exists g ∈ G with
gαs = x. Here G is the Polish group which is the closure of {Tn : n ∈ Z}
in the group H(X) with respect to the metric D. To see this observe that
N(x) = s clearly implies the existence of a sequence {mj} with x(mj) → s,
whence (for a subsequence) Tmjx → y for some y ∈ X with y(0) = s and by
the above remark y = αs. Since αs is a transitive point of the subsystem Xs

it follows that also x is a transitive point of Xs. Now apply Lemma 1.1 to
get an element g ∈ G with gαs = x. We conclude that every element x ∈ X
has a unique representation x = ghsα with g ∈ G and s = N(x). We also
see that (Xs)tr = Gαs.

Now let limTmjα = x, for some sequence mj in Z and some x ∈ X, and
let x′ be an arbitrary point in X. Then we have x = ghsα, x

′ = g′hs′α and

limTmjx′ = lim Tmjg′hs′α = g′hs′ lim Tmjα

= g′hs′x = g′hs′ghsα = ghsg
′hs′α = ghsx

′.

Thus the sequence Tmjx′ converges for every x′ ∈ X and therefore defines an
element p ∈ E, the enveloping semigroup of X, which by the above calcula-
tion coincides with the map ghs. In this way we identified E algebraically as
the direct product G×A, where A is the “affine” (commutative) semigroup
A = {hs : 0 ≤ s ≤ 1}.
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Example 2 (LE ( AE). Start with a minimal weakly mixing uniformly
rigid system (Y, T ) (the existence of such systems is shown in [GM], Propo-
sition 6.5). In Proposition 1.5 of [GW] we show how, given a uniformly rigid
transitive system (Y, T ), one can always construct a transitive AE system
(X,T ) and a homomorphism π : X → Y . Since a minimal AE system is
equicontinuous, and a system which is both weakly mixing and equicontin-
uous is trivial, we conclude that (Y, T ) is not AE. Finally, since (X,T ) has
(Y, T ) as a factor it follows from Theorem 1.2(2) that (X,T ) is not LE; thus
LE ( AE.

3 The main example: WAP ( LE. Our purpose in this section is
to construct a LE system (X,T ) which is not WAP. Let Ω be the space
of continuous maps x : R → 2I , where I = [0, 1] and 2I is the compact
metric space of closed subsets of I equipped with the Hausdorff metric.
The topology we put on Ω is that of uniform convergence on compact sets:
xn → x if for every ε > 0 and every M > 0 there exists N > 0 such that for
all n > N , sup|t|≤M d(xn(t), x(t)) < ε. This topology makes Ω a compact
metrizable space. On Ω there is a natural R-action defined by translations:
(T tx)(s) = x(s + t). We will construct an element ω ∈ Ω and let X be the
closure of {Tnω : n ∈ Z}. Our task then will be to show that (X,T ) is LE
but not WAP.

Let α0 be the periodic function in Ω of period 1 whose graph is given in
Figure 1.

Fig. 1

Explicitly, the upper envelope of α0 is given on [0, 1] by the function

u0(t) =

{
1− t, 0 ≤ t ≤ 9/10,
9t− 8, 9/10 ≤ t ≤ 1,

and the lower envelope by

l0(t) =

{
9t, 0 ≤ t ≤ 1/10,
1− t, 1/10 ≤ t ≤ 1

(the values α0(t) are either intervals or points).
For a sequence of positive integers pn, let

αn = α0(t/pn).
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We assume p0 = 1 and pn+1 = 10knpn for a sequence of integers kn ր ∞
such that

∞∑

n=1

pn
pn+1

=

∞∑

n=1

1

10kn
< ∞.

The upper envelope of the periodic function αn (of period pn) is given
on the interval [0, pn] by the function

un(t) =

{
1− t/pn, 0 ≤ t ≤ 9pn/10,
9t/pn − 8, 9pn/10 ≤ t ≤ pn,

and the lower envelope by

ln(t) =

{
9t/pn, 0 ≤ t ≤ pn/10,
1− t/pn, pn/10 ≤ t ≤ pn.

Next construct a sequence of affine maps an+1(t, ·). Roughly speaking,
the map an+1(t, ·) “squeezes” αn into αn+1. Then we set β0 = α0 and
define inductively βn+1(t) as the image of βn(t) under an+1(t, ·). Finally,
the element ω will be the limit in Ω of the sequence βn. Here is the precise
construction.

Put β0 = α0, and assume that βn, periodic of period pn, is already
constructed. We next describe the construction of βn+1. For an integer j
with 0 ≤ jpn ≤ pn+1/10 and s ∈ [0, 1], define v = jpn and set

an+1(v, s) =

(
1−

10v

pn+1

)
s+

9v

pn+1
= λn+1(v)s + µn+1(v).

For 9pn+1/10 ≤ v = jpn = pn+1 − u ≤ pn+1, put

an+1(v, s) =

(
10v

pn+1
− 9

)
s+

(
1−

v

pn+1

)

=

(
1−

10u

pn+1

)
s+

u

pn+1
= λn+1(v)s + µn+1(v),

where u = pn+1 − v. Define an+1(t, s) for 0 ≤ t ≤ pn+1 as follows: For
t ∈ [jpn − pn/10, jpn + pn/10], set jn(t) = j and v(t) = jn(t)pn. Now let

an+1(t, s) = an+1(v(t), s) = λn+1(t)s+ µn+1(t).

These maps define an embedding of the parallelograms of αn (around
the points 0 ≤ jpn ≤ pn+1/10 and pn+1 − pn+1/10 ≤ jpn ≤ pn+1)
inside the two triangles of αn+1 defined on the intervals [0, pn+1/10] and
[pn − pn+1/10, pn+1]. Now connect these embedded parallelograms by line
segments and for values of t in the rest of [0, pn+1], let an+1(s, t) be the point
on the line segment corresponding to t (this is a constant value independent
of s).
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Finally define

βn+1(t) = an+1(t, βn(t)), t ∈ [0, pn+1],

and extend it periodically, with period pn+1, over all of R. Note that for
every n, j and t,

(1) βn(jpn) = [0, 1],
(2) |βn+1(t)| = λn+1(t)|βn(t)|,
(3) λn+1(t) = 1∓10jn(t)pn/pn+1 where v(t) = ipn+1±jn(t)pn and ipn+1

is the integer multiple of pn+1 closest to t,
(4) βn+1(t) ⊂ αn+1(t).

For t ∈ R and 1 ≤ m < n ≤ ∞, let

qk(t) =
10jk(t)pk

pk+1
,

Λn
m(t) =

n∏

k=m

λk(t) =

n∏

k=m

(1∓ qk(t)) =

n∏

k=m

(
1∓

10jk(t)pk
pk+1

)

and Λ(t) = Λ∞
1 (t). Thus, |ω(t)| = Λ(t), for all t ∈ R, with |ω(t)| > 0.

Define the affine map Am as the composition of the maps ak(t, ·):

Am(t, s) = am(t, ·) ◦ am−1(t, ·) ◦ . . . ◦ a1(t, s)

:= Λm
1 (t)s+Mm

1 (t)

= λm(t)λm−1(t) . . . λ1(t)s + λm(t)λm−1(t) . . . λ2(t)µ1(t)

+ λm(t)λm−1(t) . . . λ3(t)µ2(t) + . . .+ λm(t)µm−1(t) + µm(t).

Since µk(t) ≤ 10qk(t), it follows that

Mm
1 (t) < 10

m∑

k=1

qk(t).

Finally, it is easy to see that for t1, t2 ∈ R and n ∈ N we have jn(t2 − t1) =
|jn(t2)− jn(t1)| up to ±1.

Given 0 ≤ t ∈ R, let n0 be the least n such that t ≤ pn/10. For every
n > n0, the v corresponding to t in the definition of an is v = 0, so that
an(t, s) = an(0, s) ≡ s, s ∈ [0, 1], and a similar assertion holds for t ≤ 0.
It is now clear that for every M > 0, the restrictions of βn to the interval
[−M,M ] stabilize after a finite number of steps. Therefore the sequence βn
converges uniformly on compact sets, and the limit, ω = lim βn, is a well
defined element of Ω. As asserted above we now let X = O(ω), where our
dynamical system is translation by 1 on Ω, which we denote by T = T 1.
Given x ∈ X and t ∈ R the set x(t) ⊂ I is an interval; call such an interval
a rod. Given x ∈ X and an interval of length M > 0, there exists a t in that
interval such that the rod x(t) has maximal length.
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Lemma 3.1. Suppose ω(r) = [a, b], n ≥ 1, and that ω(r) is a rod of

maximal length in an interval of length pn:

|ω(r)| = b− a = max{|ω(t)| : t ∈ [q, q + pn]},

for some q ∈ R. Then there exists j ∈ Z with r = jpn and ω(t) ⊆ [a, b] =
ω(r) for every t ∈ [r − 0.1pn, r + 0.1pn].

P r o o f. As we have seen above, if m0 is the least integer such that
r ≤ pm0

/10, then for |t| ≤ pm0
/10 and l ≥ 1,

am0+l(t, s) = am0+l(0, s) ≡ s,

hence

ω(t) = βm0
(t).

There exists a unique j ∈ Z with |jpn − r| ≤ pn/10. If jpn 6= r then
βn(r) ( [0, 1] = βn(jpn). Since for m ≥ n the affine contractions am(t, ·) are
the same for all t ∈ [jpn − pn/10, jpn + pn/10], this also implies

ω(r) = βm0
(r) ( βm0

(jpn) = ω(jpn),

contradicting our assumption. Thus r = jpn and therefore

ω(t) = βm0
(t) ⊆ ω(r) = βm0

(r)

for every t ∈ [(j − 0.1)pn, (j + 0.1)pn].

Lemma 3.2. Let x be an element of X and η > 0. Suppose x(0) = [a, b]
and

|x(0)| = b− a > sup{|x(t)| : t ∈ R} − η.

Then

x(t) ⊆ [a− 2η, b + 2η] for every t ∈ R.

P r o o f. Suppose that for some t0 we have x(t0) * [a−2η, b+2η], we may
assume x(t0) = [c, d] and d− b− 2η = δ > 0. Choose n so that |t0| < pn/2
and choose m with

sup{d(x(t), ω(t +m)) : |t| ≤ pn} < δ/3.

Let r ∈ [m− pn/2,m+ pn/2], with ω(r) = [e, f ], satisfy

|ω(r)| = f − e = max{|ω(t)| : t ∈ [m− pn/2,m + pn/2]}.

By the previous lemma, ω(t) ⊂ [e, f ] for all t ∈ [m − pn,m + pn], and in
particular,

ω(m) ⊂ ω(r) = [e, f ] and ω(t0 +m) ⊂ ω(r) = [e, f ].

We also have

d(x(0), ω(m)) < δ/3 and d(x(t0), ω(t0 +m)) < δ/3,
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and it follows that

x(0) = [a, b]
δ/3
⊂ [e, f ] and x(t0) = [c, d]

δ/3
⊂ [e, f ].

Thus d < f + δ/3 and since x(0) = [a, b] is, up to η, a maximal rod for x,
we deduce that f < b+ δ/3 + η. We now have

d < f + δ/3 < b+ 2δ/3 + η < b+ δ + η < d

and this contradiction completes the proof.

Lemma 3.3. For every x ∈ X there is a unique interval [a, b] ⊆ [0, 1]
such that :

(1) x(t) ⊆ [a, b], for all t ∈ R,
(2) there exists a sequence tl ∈ R with lim x(tl) = [a, b].

We set N(x) = [a, b].

P r o o f. Let d = sup{|x(t)| : t ∈ R}, and choose a sequence tl ∈ R
satisfying lim |x(tl)| = d. Passing to a subsequence, we can assume that
limx(tl) = [a, b] (with b− a = d) exists. Our assertions now follow from the
previous lemma.

We will need the following standard calculus exercise:

Lemma 3.4. For a sequence qk ∈ R, k = 1, . . . , n, with 0 ≤ qk < 1/10,
defining Q =

∑n
k=1 qk, we have, for small Q,

1−Q/2 ≥ exp(−Q) ≥
n∏

k=1

(1− qk) ≥ exp(−2Q) ≥ 1− 2Q.

For a compact interval J ⊂ R and x ∈ Ω we let N(x, J) denote a rod of
maximal length of x restricted to J .

Lemma 3.5. Given ε > 0 choose n ∈ N such that

∞∑

k=n

10
pk

pk+1
<

ε

2
,

if m ∈ Z and t1, t2, r ∈ R are such that r, t1, t2 ∈ J = [m−pn,m+pn], and

(1) N(ω, J) = ω(r) = [a, b],

(2) |ω(ti)|/(b− a) > 1− ε/10, i = 1, 2.

Then for a function ε′ = ε′(ε, b− a) with limε→0 ε
′ = 0,

(3) |βn(ti)| > 1− ε′, i = 1, 2,

(4)
∑∞

k=1 10jk(s0)pk/pk+1 < 4ε′, where s0 = t2 − t1.
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P r o o f. By Lemma 3.1 there exists an integer j such that r = jpn, hence
βn(r) = [0, 1], and ω(t) ⊂ [a, b] for all t ∈ [r − pn, r + pn]. By Lemma 3.4,

∞∑

k=n

10
pk

pk+1
<

ε

2
implies 1−

∞∏

k=n

(
1− 10

pk
pk+1

)
< ε.

It follows that on an interval of radius pn around r, the numbers Λ∞
n (t)

cannot vary by more than ε. Thus, for i = 1, 2,

Λ∞
n (ti)|βn(ti)|

Λ∞
n (r)|βn(r)|

=
Λ∞
n (ti)|βn(ti)|

Λ∞
n (r)

=
Λ∞
n (ti)|βn(ti)|

b− a
=

|ω(ti)|

|ω(r)|
> 1−

ε

10
.

Hence
n∏

k=1

(1− qk(ti)) = |βn(ti)| >

(
1−

ε

10

)(
b− a

(b− a)± ε

)
> 1− ε′, i = 1, 2.

Use Lemma 3.4 again to deduce
n∑

k=1

qk(ti) < 2ε′.

Now for k ≥ n+1 we have jk(ti) = jk(r), i = 1, 2, hence for s0 = t2− t1,
∞∑

k=1

10
jk(s0)pk
pk+1

∼
∞∑

k=1

10
|jk(t2)− jk(t1)|pk

pk+1
=

n∑

k=1

10
|jk(t2)− jk(t1)|pk

pk+1

=

n∑

k=1

|qk(t2)− qk(t1)| < 4ε′.

Lemma 3.6. If s0 ∈ R satisfies

∞∑

k=1

10
jk(s0)pnk

pnk+1
< ε,

then sup{d(ω(t+ s0), ω(t)) : t ∈ R} < 3ε.

P r o o f. Fix t0 ∈ R and choose m,n ∈ N with

(1) t0, t0 + s0 ∈ J = [−pn, pn],
(2) d(βm(t), ω(t)) < ε/2 for all t ∈ J .

Now for every k and t, |βk+1(t)| = λk+1(t)|βk(t)|, hence |βm(t)| =∏m
k=1 λk(t). Thus putting t1 = t0 and t2 = t0 + s0, we have

||βm(t2)| − |βm(t1)|| =
∣∣∣

m∏

k=1

λk(t2)−
m∏

k=1

λk(t1)
∣∣∣

≤
m∑

k=1

|λk(t2)− λk(t1)| =
m∑

k=1

10
jk(s0)pnk

pnk+1
< ε.
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A similar argument shows that

|Mm(t2)−Mm(t1)| < ε,

and since

βm(ti) = Am(ti, [0, 1]) = Λm(ti)[0, 1] +Mm(ti),

we get

d(βm(t2), βm(t1)) < 2ε,

hence

d(ω(t0 + s0), ω(t0)) < 3ε.

Theorem 3.7. The dynamical system (X,T ) is LE but not WAP. It

contains 2ℵ0 minimal sets, namely the constant functions x(t) ≡ a, a ∈
[1/10, 9/10].

P r o o f. (a) It is enough to show that given x ∈ X and ε > 0, there exists
δ > 0 such that if

d(x(t0),N(x)) < δ and d(x(t0 + s0),N(x)) < δ,

then

sup
t∈R

d(x(t+ s0), x(t)) < 4ε.

Choose n ∈ N such that

(1)
∑∞

k=n 10pk/pk+1 < ε/10,

(2) for the interval J = [−pn, pn], N(x, J)
ε
= N(x) = [a, b].

Choose m ∈ Z with

max{d(x(t), ω(t +m)) : t ∈ J} < δ,

where δ is small enough so that the assumptions of Lemma 3.5 are satisfied
with t1 = t0 +m and t2 = t0 + s0 +m. We conclude that

(1) |βn(ti)| > 1− ε′, i = 1, 2,
(2)

∑∞
k=1 10jk(s0)pk/pk+1 < 4ε′.

Now Lemma 3.6 yields

sup{d(ω(t+ s0), ω(t)) : t ∈ R} < 4ε′.

This concludes the proof that x is an equicontinuity point.
(b) The claim that each constant function a for a ∈ [1/10, 9/10] is an

element of X is easy to see. Thus for each such a the singleton {a} is a
minimal subset of X. Since a WAP system has a unique minimal set, it
follows that (X,T ) is not WAP.

Remark. If (Y, T ) is any LE system with transitive point y0, then the
system Z = O(ω, y0) ⊂ X × Y is a LE system. In particular, if we take for
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(Y, T ) a Kronecker (i.e. minimal equicontinuous) system, then for each fixed
point a ∈ X the subsystem {a} × Y ⊂ Z is a minimal subsystem of Z.

Thus the minimal sets in a LE system that is not WAP can be any Kro-
necker system, and not only points as in the construction above. Moreover,
if we let (Y, T )=(T, Rα), with T=R/Z and Rαy=y + α (mod 1) for α∈R
an irrational number such that pnα → 0 fast enough, then the LE systems
X and Z have the same Polish group G(X) = G(Z).

4 Appendix. In this appendix we would like to clarify and augment
some points from our paper [GW]. We first restate Proposition 1.5 of [GW]
as Theorem 4.1 below and provide it with a modified version of the original
“constructive” proof using more precise notation:

Theorem 4.1. Any infinite topologically transitive uniformly rigid sys-

tem (X,T ) has an extension (Y, S) that is AE.

P r o o f. We assume that Tni tends uniformly to the identity map and
that x0 has a dense orbit. Define ̺(x, x′) = supn∈N d(Tnx, Tnx′) for
x, x′ ∈ X, and notice that by uniform rigidity, the sequence ̺(Tnix, x) tends
to 0 with i. Let now Ω = (X ×R)N. For ω ∈ Ω we denote by ω = (ξ, ω) the
decomposition into ξ ∈ XN and ω ∈ RN. For ω, ω′ ∈ Ω let

d̂(ω, ω′) =

∞∑

k=0

2−k{d(ξ(k), ξ′(k)) + |ω(k) − ω′(k)|}.

Let ω0 be the point of Ω whose nth coordinate is (Tnx0, ̺(T
nx0, x0))

and let Y be the orbit closure of ω0 under the shift map S of Ω.

The points ω ∈ Y have the form ω(k) = (T kx, ω(k)) for some x ∈ X,
and

(Sω)(n) = (Tn+1x, ω(n + 1)).

It turns out, as is always the case for a transitive system, that in checking
the non-sensitivity we will be dealing with only one point ω0. Given ε > 0,
let U be the neighborhood of ω0 defined by

U = {ω ∈ Y : ω(0) < ε/2}.

Since ω0 has a dense orbit, in order to verify that for all ω ∈ U and all n,

d̂(Snω0, S
nω) ≤ ε,

it suffices to do so for points ω of the form Sjω0. Suppose then that Sj0ω0 ∈
U . Since ̺(T j0x0, x0) < ε/2 we have d(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0,
hence also ̺(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0. By the triangle inequality
we find that |̺(T ix0, x0)− ̺(T i+j0x0, x0)| ≤ ε/2 for all i ≥ 0. For any n we
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therefore have

d̂(Snω0, S
n(Sj0ω0)) = d̂(Snω0, S

n+j0ω0)

=

∞∑

k=0

2−k{d(T k+nx0, T
k+n+j0x0)

+ |̺(T k+nx0, x0)− ̺(T k+n+j0x0, x0)|}

≤
∞∑

k=0

2−k{ε/2 + ε/2} = 2ε.

We observe that the only reason for requiring (X,T ) to be rigid is to make
sure that the point ω0 is not an isolated point.

A more abstract proof of Theorem 4.1 can be given using in an explicit
way the Polish group that is associated with an AE system. First we prove:

Theorem 4.2. Every infinite Polish monothetic group G admits an al-

most equicontinuous action, where each dense orbit is homeomorphic to G.

P r o o f. LetG be a Polish monothetic group generated by T . Let UCb(G)
be the Banach algebra of uniformly continuous bounded real-valued func-
tions on G with the sup norm. We choose a countable collection of elements
of UCb(G) which separate points and closed sets in G (see e.g. [HR, page
68]), and let A be the smallest closed, T -invariant (hence G-invariant) alge-
bra which contains this collection and the constant functions. If we denote
by Z the Gelfand space corresponding to A we see that G acts on Z and
that (Z,G) is a topologically transitive system. Since the natural embed-
ding of G into Z is a homeomorphism we conclude, by Lemma 1.1, that the
restricted system (Z, T ) is almost equicontinuous with G(Z, T ) = G.

The construction of the system (Z, T ) above provides us with the follow-
ing:

Alternative proof of Theorem 4.1. Let G(X,T ) = G be the non-discrete
Polish group corresponding to the uniformly rigid system (X,T ). As in
the proof of Theorem 4.2, construct an algebra A ⊂ UCb(G) and let Z
be the Gelfand space corresponding to A. We now set Y = closure of
{g(x0, z0) : g ∈ G} ⊂ X × Z, where x0 ∈ X and z0 ∈ Z are transi-
tive points. Since the natural embedding of G into Z is a homeomorphism,
a fortiori this is also true for the embedding of G into Y and we conclude
that the system (Y, T ), which is by construction an extension of (X,T ), is
almost equicontinuous (Lemma 1.1).

The second subject from [GW] that we would like to treat here is the
question: when do two topologically transitive dynamical systems have the
property that their product is also topologically transitive?
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In [F1], H. Furstenberg has shown that for a weakly mixing system (X,T )
and two nonempty open subsets U, V of X, the set

N(U, V ) = {n ∈ Z : TnU ∩ V 6= ∅}

is a thick subset of Z, i.e. it contains arbitrarily long intervals. Since for
any minimal system (Y, T ) and non-empty open subsets A,B of Y the set
N(A,B) is a syndetic subset of Z, i.e. a set with bounded gaps, it follows
that for all such (X,T ), (Y, T ), U, V,A,B, the set

N(U ×A,V ×B) = N(U, V ) ∩N(A,B),

is non-empty. In other words, the product system is topologically transitive.
We say that a dynamical system (Y, T ) is syndetically transitive if for

any two non-empty open subsets U, V of X, the set

N(A,B) = {n ∈ Z : TnA ∩B 6= ∅}

is a syndetic subset of Z. The argument above immediately implies:

Theorem 4.3. Let (X,T ) be a weakly mixing system and (Y, T ) a synde-

tically transitive one. Then the product system (X×Y, T×T ) is topologically
transitive.

In Proposition 2.2(2) of [GW] we claimed, without proof, that the prod-
uct of a weakly mixing system and an E-system, i.e. one which carries a
T -invariant probability measure which is positive on every non-empty open
set, is topologically transitive.

Theorem 4.4. Let (X,T ) be a weakly mixing system and (Y, T ) an

E-system. Then the product system (X×Y, T×T ) is topologically transitive.

P r o o f. Again we describe two proofs. The first consists of showing that
every E-system is syndetically transitive. Once we have this, Theorem 4.3
completes the proof. As was explained in [GW], in an E-system with invari-
ant measure µ with full support, the generic points for ergodic measures
are dense (take the set of generic points for the ergodic components of µ
in its ergodic decomposition). Now given two non-empty open sets U, V in
X, we choose k ∈ Z with V0 = T kU ∩ V 6= ∅. Next set U0 = T−kV0 ∩ U ,
and observe that k+N(U0, U0) ⊂ N(U, V ). Thus it is enough to show that
N(U,U) is syndetic for every non-empty open U . Let x0 be a generic point
for an ergodic measure ν with ν(U) > 0. Then the set

A = {n ∈ Z : Tnx0 ∈ U}

has positive upper density and it follows that the set A−A is syndetic (see
for example [F2], p. 75). Since clearly A−A ⊂ N(U,U), this completes the
first proof.

For a second proof let A,B ⊂ X, U, V ⊂ Y be non-empty open sets. We
have to show that for some l ∈ Z, T lA ∩ B 6= ∅ and also T lU ∩ V 6= ∅.
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Let W =
⋃

n∈Z
TnU ; then W is a non-empty T -invariant open subset of Y .

By assumption there exists a T -invariant probability measure µ on Y which
assigns positive measure to every non-empty open set, and in particular
µ(W ) = a > 0. Since Y is transitive the set O = W ∩ V is a non-empty
open subset and we have µ(O) = b > 0. We now choose a positive integer
N such that

µ
( ⋃

|n|≤N

TnU
)
> a−

b

2
.

Now the system (X,T ) is topologically weakly mixing, hence by [F1] the
set N(A,B) = {k ∈ Z : T kA ∩ B 6= ∅} contains arbitrarily long intervals.
We can therefore find some j ∈ Z with

T j+kA ∩B 6= ∅ for all |k| ≤ N.

By T -invariance of µ we have

µ
(
T j

( ⋃

|n|≤N

TnU
))

= µ
( ⋃

|n|≤N

TnU
)
> a− b/2.

This implies T j(
⋃

|n|≤N TnU) ∩ V 6= ∅, and there exists n0 with |n0| ≤ N

and T j+n0U ∩V 6= ∅ as well as T j+n0A∩B 6= ∅. This completes the second
proof.

Example. Taking (Y, S) to be the one-point compactification of the
translation on Z it is easy to see that the assumption of topological transi-
tivity of Y is not enough for this result to hold. A more interesting example
is obtained as follows. Take (X,T ) to be a weakly mixing rigid minimal sys-
tem (see [GM]), and (Y, S) the AE system constructed from it in Theorem
4.1. Although the system (Y, S) is transitive and pointwise recurrent, the
product system (X ×Y, T ×S) is not transitive. To see this, suppose on the
contrary that there exists a point (x0, y0) whose orbit is dense in X × Y .
Let x be an arbitrary point of X and choose a sequence nk with

lim Tnk(x0, y0) = (x,y0).

Then, since Y is an AE system, we deduce from lim Tnky0 = y0 that
limTnk = id in the corresponding Polish group G (Lemma 1.1). Since the T
action on X extends to a G action, we conclude that also limTnkx0=x0=x.
Thus X = {x0}, a contradiction.
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