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Abstract. We prove a generalised tightness theorem for cocycles over an ergodic
probability preserving transformation with values in Polish topological groups. We also
show that subsequence tightness of cocycles over a mixing probability preserving trans-
formation implies tightness. An example shows that this latter result may fail for cocycles
over a mildly mixing probability preserving transformation.

Let (Ω,B,m) be a probability space, let T : Ω → Ω be an ergodic
probability preserving transformation, let G be a Polish topological group
and let φ : Ω → G be measurable.

We consider Sn, the random walk or cocycle on G defined by

S0(ω) = e, Sn+1(ω) := φ(Tnω)Sn(ω).

This random walk is generated by the skew product transformation Tφ :
X × G → X × G where Tnφ (ω, y) = (Tnω, Sn(ω)y). In case G is a locally
compact topological group, Tφ preserves the measure m×mG where mG is
a left Haar measure on G.

1. Tightness theorem. We consider the situation where {m-dist.(Sn) :
n ≥ 1} is tight in the sense that for every ε > 0, there is a compact C ⊂ G
such that supn≥1m(Sn 6∈ C) < ε (equivalently, tightness is precompactness

in the space P(G) of probability measures on G). One way this can happen
is when φ is cohomologous to a compact-group-valued function, i.e. there is
a compact subgroup K ⊆ G and measurable ψ : Ω → K, g : Ω → G such
that φ(ω) = g(Tω)−1ψ(ω)g(ω); then Sn(ω) = g(Tnω)−1kn(ω)g(ω) where
kn(ω) := ψ(Tn−1ω)ψ(Tn−2ω) . . . ψ(ω) ∈ K.

Tightness Theorem. The distributions {m-dist.(Sn) : n ≥ 1} are tight

in P(G)⇔ φ is cohomologous to a compact-group-valued function.
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Remarks about ⇐. 1) The ⇐ of the tightness theorem is an easy conse-
quence of the tightness of a single probability on a Polish space (Prokhorov’s
theorem, see [Par]) and the probability preserving property of T .

2) If m is not absolutely continuous with respect to some T -invariant
probability on (Ω,B) then ⇐ may fail.

In this case, there is a set W ∈ B with m(W ) > 0 and a sequence
nk →∞ such that {T−nkW : k ≥ 1} are disjoint (such a set is called weakly

wandering). Given a noncompact Polish space G, we choose x0 ∈ G and a
sequence yk ∈ G, yk →∞ (i.e. for each compact C ⊂ G, yk 6∈ C eventually)
and define f : Ω → G by

f(x) =

{
yk, x ∈ T−nkW (k ≥ 1),
x0, x ∈ Ω \⋃∞

k=1 T
−nkW .

It follows that {m-dist.(f ◦ Tn) : n ≥ 1} cannot be tight in P(G) since
m([f ◦ Tnk = yk]) ≥ m(W ) 9 0.

If G is a noncompact Polish topological group, we set φ = f−1f ◦ T and
obtain a coboundary for which the distributions {m-dist.(Sn) : n ≥ 1} are
not tight in P(G).

In case G has no nontrivial compact subgroups, the tightness theorem
boils down to the so-called coboundary theorem:

The distributions {m-dist.(Sn) : n ≥ 1} are tight in P(G) ⇔ φ is a

coboundary.

The first version of the coboundary theorem seems to be:

L2 Coboundary Theorem [Leo]. If {Zn : n ≥ 1} is a wide sense

stationary process, then there exists a wide sense stationary process {Yn :
n ≥ 1} such that Zn = Yn − Yn+1 iff supn≥1 E(|

∑n
k=1 Zk|2) <∞.

P r o o f. If there is {Yn : n ≥ 1} wide sense stationary such that Zn =
Yn − Yn+1, then

∑n
k=1 Zk = Y1 − Yn+1 and ‖∑n

k=1 Zk‖2 ≤ 2‖Y1‖2 for all
n ≥ 1.

Conversely, if ‖∑n
k=1 Zk‖2 ≤M for all n ≥ 1, then by weak* sequential

compactness of norm bounded sets, there are Na → ∞ and a r.v. Y =
Y (Z1, Z2, . . .) such that

1

Na

Na∑

n=1

n∑

k=1

Zk ⇀ Y

where ⇀ denotes weak convergence in L2. Write Yn := Y (Zn, Zn+1, . . .).
Then {Yn : n ≥ 1} is a wide sense stationary process and

1

Na

Na∑

n=1

n∑

k=1

Zk+ν−1 ⇀ Yν ∀ν ≥ 1.
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It follows that

Yν+1 ↼
1

Na

Na∑

n=1

n+ν∑

k=ν+1

Zk =
1

Na

Na∑

n=1

( n+ν−1∑

k=ν

Zk + Zn+ν − Zν
)

=
1

Na

Na∑

n=1

n∑

k=1

Zk+ν−1 +
1

Na

Na∑

n=1

Zn+ν − Zν ⇀ Yν − Zν

because ‖∑Na

n=1 Zn+ν‖ is uniformly bounded.

Leonov’s theorem has the Lp analogues:

Lp Coboundary Theorem. Let (X,B,m, T ) be a probability preserving

transformation, let 1 ≤ p < ∞ and let f : X → R be measurable. There

exists g ∈ L1(m) such that f = g − g ◦ T iff supn≥1 ‖
∑n

k=1 f ◦ T k‖p <∞.
The proof of the Lp coboundary theorem is the same as that of Leonov

with Komlos type convergence replacing weak convergence when p = 1.
The coboundary theorem is established in [Sch1] for the case G = R,

and in [Mo-Sch] for G locally compact, second countable, Abelian without
compact subgroups.

The tightness theorem for locally compact, second countable groups was
established in [Sch2]; related partial results are given in [Co] and [Zim].

Bradley has proved ⇒ of the coboundary theorem assuming only that
T is measurable: in [Br1] for G = R, in [Br2] for G a Banach space and in
[Br3] for G a group of upper triangular matrices.

The present methods can be stretched to prove the ⇒ of the tightness
theorem assuming only that T is measurable and invertible.

Basic Lemma. If the family {P - dist.(Sn) : n ≥ 1} is tight in P(G),
then there is a measurable P : Ω → P(G) such that

PTω(A) = Pω(φ(ω)
−1A) (A ∈ B(G)).

This basic lemma is implicit in [Br1] for G = R. The general proof is
essentially as in [Br1] (see below).

The coboundary theorem for R is easily established using it ([Br1]).
Indeed if for ω ∈ Ω, µ(ω) is defined as the minimal number satisfying

Pω((−∞, µ(ω)]), Pω([µ(ω),∞)) ≥ 1/2,

then µ : Ω → R is measurable and (since PTω(A) = Pω(A− φ(ω))) we have
µ(Tω) = µ(ω)− φ(ω).

The proof of the tightness theorem given the basic lemma uses a general-
isation of the characterisation of invariant measures for group extensions in
[Key-New]. The proof is an adaptation of Lemańczyk’s proof of [Key-New]
in [Lem]. See also the proof of Theorem 8.3.2 in [A].
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Proof of the basic lemma. Choose firstKν ⊂ Kν+1 ⊂ . . . ⊂ G, a sequence
of compact sets in G with the property (ensured by tightness) that

(1) m([Sn ∈ Kc
ν ]) ≤ 1/4ν ∀n, ν ≥ 1.

Consider the random measures Wn : Ω → P(G) defined by

Wn(A) :=
1

n

n∑

j=1

1A(Sj).

Next, for ν ≥ 1 let Aν ⊂ C(Kν) be a countable family, dense in C(Kν); and
let A =

⋃∞
ν=1Aν .

We now claim that there are nk →∞ and L : A → L∞(Ω) such that

(2)
\
G

f dWnk
→ L(f) weak* in L∞(Ω) ∀f ∈ A.

This is shown using weak* precompactness of L∞(Ω)-bounded sets, and a
diagonalisation.

By possibly passing to a subsequence, we can ensure that for each f ∈ A,
there is Nf such that
∣∣∣
\
X

(( \
G

f dWnk
− L(f)

)( \
G

f dWnj
− L(f)

))
dm

∣∣∣ <
1

2k
∀k ≥ Nf , j < k,

whence ([Rev])

(3)
1

N

N∑

k=1

\
G

f dWnk
→ L(f) a.e. ∀f ∈ A

and hence (by density) for all f ∈ ⋃∞
ν=1 C(Kν).

By the Chebyshev–Markov inequality,

m(L(1Kc
ν
) > 1/2ν )← m(Wnk

(Kc
ν) > 1/2ν ) < 2ν

\
X

Wnk
(Kc

ν)dm

< 1/2ν ∀ν ≥ 1

and so by the Borel–Cantelli lemma, L(1Kc
ν
) ≤ 1/2ν a.e. for ν large.

It follows that there is a measurable P : Ω → P(G) such that L(f)(ω) =T
G
f dPω for all f ∈ A.
To see that PTω = Pω ◦Rφ(ω) (Rg(y) := yg), note that\
G

f dWn(Tω) =
1

n

n∑

j=1

f(Sj(Tω))

=
1

n

n∑

j=1

f(Sj+1(ω)φ(ω)
−1) =

1

n

n+1∑

j=2

f ◦Rφ(ω)−1(Sj(ω))
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=
\
G

f ◦Rφ(ω)−1 dWn(ω)±
2‖f‖∞
n

=
\
G

f dWn(ω) ◦Rφ(ω) ±
2‖f‖∞
n

.

Proof of ⇒ in the tightness theorem. Given probabilities ω 7→ pω on G
satisfying

pTω = pω ◦ Lφ(ω)−1 ,

define a probability µ ∈ P(Ω ×G) by
µ(A×B) :=

\
A

pω(B) dm(ω).

We first note that this probability is Tφ-invariant:\
X×G

(u⊗ v) ◦ Tφ dµ =
\
X

u(Tx)
\
G

v(φ(x)y) dpx(y) dm(x)

=
\
X

u(Tx)
\
G

v(y) dpTx(y) dm(x)

=
\
X

u(x)
\
G

v(y) dpx(y) dm(x) =
\

X×G
u⊗ v dµ.

Almost every ergodic component P of µ has a disintegration over m of the
form

P (A×B) :=
\
A

p̃ω(B) dm(ω)

where ω 7→ p̃ω ∈ P(G) is measurable, and p̃Tω = p̃ω ◦Rφ(ω). Fix one such P .
Define p ∈ P(G) by p(B) := P (Ω × B). There are compact sets C1 ⊂

C2 ⊂ . . . such that
⋃∞
n=1 Cn = G mod p. Define compact subsets {Kn :

n ≥ 0} by
K0 := {e}, Kn+1 = (Kn ∪ Cn)(Kn ∪ Cn)−1(Kn ∪Cn)(Kn ∪Cn)−1.

Evidently, G0 :=
⋃∞
n=1Kn is a subgroup of G and p(G \ G0) = 0, whence

p̃ω(G \G0) = 0 for m-a.e. ω ∈ Ω.

Next, consider the space CB(G0) of bounded, continuous, R-valued func-
tions on G0 (equipped with the supremum norm) and set

C := {f ∈ CB(G0) : sup
y∈Kc

n

|f(y)| −→
n→∞

0}.

Evidently C =
⋃∞
n=1 CB(Kn) is separable, and f ∈ C ⇒ f ◦ Rg ∈ C for all

g ∈ G0 (since if g ∈ Ki, then x 6∈ Kn+i ⇒ xg 6∈ Kn).

For each a ∈ G, P ◦ Qa (where Qa(ω, y) := (ω, ya)) is also an ergodic
Tφ-invariant probability (since Tφ ◦ Qa = Qa ◦ Tφ), and therefore either
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P ◦Qa = P or P ◦Qa ⊥ P . Define H := {a ∈ G0 : P ◦Qa = P}, a closed
subgroup of G0. For a.e. ω ∈ Ω, pω(Aa) = pω(A) (a ∈ H, A ∈ B(G)).

Consider the Banach spaceM(Ω×G0) of bounded measurable functions
Ω × G0 → R equipped with the supremum norm. We need a separable
subspace A ⊂ M(Ω ×G0) which separates the points of Ω ×G0 such that
f ∈ A ⇒ f ◦Qa ∈ A for all a ∈ G0. In particular,

a, b ∈ G0,
\

Ω×G
f dP ◦Qa =

\
Ω×G

f dP ◦Qb ∀f ∈ A ⇒ P ◦Qa = P ◦Qb.

To obtain such a subspace, fix a compact metric topology on Ω generat-
ing B; then A = C(Ω)⊗ C is as needed.

By Birkhoff’s ergodic theorem,

1

n

n−1∑

k=0

f ◦ T kφ (ω, y)→
\

Ω×G
f dP a.e. ∀f ∈ L1(P ).

Set

Y :=

{
(ω, y) ∈ Ω ×G0 :

1

n

n−1∑

k=0

f ◦ T kφ (ω, y)→
\

Ω×G
f dP ∀f ∈ A

}
.

Since A is a separable subspace ofM(Ω ×G0), the set Y is determined by
a countable subcollection of A, whence Y ∈ B(Ω × G0), and by Birkhoff’s
ergodic theorem P (Y ) = 1. For ω ∈ Ω, set Yω = {y ∈ G0 : (ω, y) ∈ Y }. We
claim that Yω is a coset of H whenever it is nonempty.

To see this, suppose that a ∈ G. Then for all f ∈ A and for a.e. (x, y)
∈ Y ,

1

n

n−1∑

k=0

f ◦ T kφ (ω, ya)→
\

Ω×G
f ◦Qa dP =

\
Ω×G

f dP ◦Q−1
a .

Thus, (ω, ya) ∈ Y iff P ◦Q−1
a = P , equivalently a ∈ H; and Yω is indeed a

coset of H whenever it is nonempty (i.e. a.e.).

By the analytic section theorem, there is a measurable h : Ω → G such
that h(ω) ∈ Yω for a.e. ω ∈ Ω, whence Yω = h(ω)H.

Now let P ′
ω ∈ P(G) be defined by P ′

ω(A) := pω(h(ω)
−1A). Clearly

P ′
ω(H) = 1 and P ′

ω(Aa) = P ′
ω(A) (a ∈ H, A ∈ B(G)). Thus by [Weil],

H is compact and P ′
ω = mH , Haar measure on H.

Defining Ψ : Ω×G→ Ω×G by Ψ(ω, y) := (ω, h(ω)y), we have P ◦Ψ−1 =
m ×mH . If V := Ψ ◦ Tφ ◦ Ψ−1 then m ×mH ◦ V = m ×mH and V = Tψ
where ψ(ω) := h(ω)φ(ω)h(ω)−1 .

Since (Ω × G,B(Ω × G),m ×mH , V ) is a probability preserving trans-
formation, we see that ψ : Ω → H.
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2. Subsequence tightness. Let (X,B,m, T ) be a mixing probability
preserving transformation and let φ : X → R be measurable. Bradley [Br4]
showed that if the stochastic process {φ◦Tn : n ≥ 1} is strongly Rosenblatt
mixing, then either

1) supr∈R
m([|Sn − r| ≤ C])→ 0 for every 0 < C <∞, or

2) there are constants an such that {m-dist.(Sn − an) : n ≥ 1} is tight
(whence φ is cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic
process driven by a mixing probability preserving transformation.

Theorem 2. Suppose that (X,B,m, T ) is a mixing probability preserving

transformation and that φ : X → R is measurable. If there are nk → ∞
and dk ∈ R such that {m-dist.(Snk

− dk) : k ≥ 1} is tight , then there are

a ∈ R and g : Ω → R measurable such that φ(ω) = a + g(Tω) − g(ω). If

supk |dk| <∞, then a = 0.

P r o o f. Consider (X ×X,B⊗B,m×m,T ×T ), and φ, φ′ : X ×X → R

defined by φ(x, y) := φ(x), φ′(x, y) := φ(y).

• We first show that {m×m-dist.(Sn − S′
n) : n ≥ 1} is tight. Let ε > 0

and choose M > 0 such that m([|Snk
− dk| > M/2]) < ε/2 for all k ≥ 1. By

mixing of T , for all n ≥ 1,

m([|Sn − Sn ◦ Tnk | > M ])→ m×m([|Sn − S′
n| > M ])

as k →∞. Now

Sn − Sn ◦ Tnk = Sn − Sn+nk
+ Snk

= Snk
− Snk

◦ Tn,
whence

m([|Sn − Sn ◦ Tnk | > M ]) = m([|Snk
− Snk

◦ Tn| > M ])

≤ 2m([|Snk
− dk| > M/2]) < ε.

• Next, as in [Br4], there are an ∈ R such that {m-dist.(Sn−an) : n ≥ 1}
is tight. To see this, given ε > 0, let M(ε) > 0 be such that

m×m([|Sn − S′
n| > M(ε)]) < ε2 ∀n ≥ 1.

It follows that

m({x ∈ X : m([|Sn − Sn(x)| > M(ε)]) > ε})

≤ 1

ε

\
X

m([|Sn − Sn(x)| > M(ε)]) dm(x)

=
1

ε
m×m([|Sn − S′

n| > M(ε)]) < ε ∀n ≥ 1,
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whence there are an(ε) ∈ R such that

m([|Sn − an(ε)| > M(ε)]) ≤ ε ∀n ≥ 1.

Set an = an(1/3). For each 0 < ε < 1/2, n ≥ 1, we have

m([|Sn − an(ε)| < M(ε)] ∩ [|Sn − an| < M(1/3)]) > 0,

whence |an − an(ε)| < M(1/3) +M(ε) and

m([|Sn − an| > 2M(ε) +M(1/3)]) < ε ∀n ≥ 1.

• We show that there is an a ∈ R such that supn≥1 |an − na| < ∞. To
this end, note that there is an M > 0 such that

(‡) |ak+l − ak − al| < M ∀k, l ≥ 1.

Indeed, if m([|Sn − an| > K]) < 1/8 for all n ≥ 1, then (since Sk+l =
Sk + Sl ◦ T k)

m([|Sk+l − ak − al| > 2K])

≤ m([|Sk − ak| > K] ∪ [|Sl ◦ T k − al| > K]) < 1/4,

whence

m([|Sk+l − ak − al| ≤ 2K] ∩ [|Sk+l − ak+l| ≤ K]) > 0

and |ak+l − ak − al| ≤ 3K for k, l ≥ 1.
By (‡), there are Nk →∞ and bν ∈ R (ν ≥ 1) such that

1

Nk

Nk∑

j=1

(aj+ν − aj)→ bν as k →∞ ∀ν ≥ 1.

It follows from (‡) that

|bν − aν | = lim
k→∞

∣∣∣∣
1

Nk

Nk∑

j=1

(aj+ν − aj − aν)
∣∣∣∣ ≤M

and that

bν+µ ←
1

Nk

Nk∑

j=1

(aj+µ+ν − aj)

=
1

Nk

Nk∑

j=1

(aj+µ − aj) +
1

Nk

Nk+µ∑

j=µ+1

(aj+ν − aj)

=
1

Nk

Nk∑

j=1

(aj+µ − aj) +
1

Nk

Nk∑

j=1

(aj+µ − aj)±
M + |aµ|

Nk

→ bµ + bν .

Thus bν = νa and |aν − νa| ≤M where a = b1 = limn→∞ an/n.
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In case supk |dk| <∞, because of the tightness of {m-dist.(Snk
) : k ≥ 1}

we have supk≥1 |ank
| <∞, whence a = 0.

• It now follows from the coboundary theorem that φ is cohomologous
to a.

3. An example. We show that there is a probability preserving trans-
formation (X,B,m, T ) which is mildly mixing in the sense that there is no
A ∈ B with 0 < m(A) < 1 such that lim infn→∞m(A △ TnA) = 0 (see §2.7
of [A]), but there is a measurable function φ : X → R such that Tφ is ergodic
and for some nk →∞, lim supk→∞ |Snk

| <∞ m-almost everywhere.

Chacon’s transformation [Cha]. This transformation (X,B,m, T ) is de-
fined inductively on X :=

⋃∞
n=1 Cn ⊂ R where m = Lebesgue measure.

Here Cn =
⋃ln−1
k=0 T kJn where

• l1 = 1, ln+1 = 3ln + 1 (⇒ ln = (3n − 1)/2);
• {T kJn : 0 ≤ k ≤ ln − 1} are disjoint intervals of length 1/3n−1 and

T : T kJn → T k+1Jn is a translation;
• Cn+1 is obtained by writing Jn =

⋃2
i=0 Jn,i where the Jn,i (i = 0, 1, 2)

are disjoint intervals of length 1/3n and setting Jn+1 := Jn,0 and

T kJn+1 :=





T kJn,0, 0 ≤ k ≤ ln − 1,
T k−lnJn,1, ln ≤ k ≤ 2ln − 1,
Sn+1, k = 2ln,
T k−2ln−1Jn,2, 2ln + 1 ≤ k ≤ 3ln = ln+1 − 1

where Sn+1 is an interval of length 1/3n, disjoint from Cn (called the spacer).
The set X has finite measure which can be normalized to equal one

but we keep the standard Lebesgue measure in order to simplify the later
formulae. We first give a proof of the ergodicity based on a careful analysis of
how the intervals T kJn approximate arbitrary measurable sets. This analysis
will also be the base for our proof of the mild mixing property.

Define

Cn :=
{
Un(K) :=

⋃

k∈K
T kJn : K ⊂ {0, 1, . . . , ln − 1}

}
.

For A ∈ B, ε > 0 and n ≥ 1 define

K
(n)
A,ε := {0 ≤ k ≤ ln − 1 : m(T kJn ∩A) < εm(Jn)} ⊂ {0, 1, . . . , ln − 1}.

Evidently, for A,B∈B disjoint and 0<ε<1/2, K
(n)
A,ε and K

(n)
B,ε are disjoint.

It is standard that for all A ∈ B and ε > 0, there is NA,ε such that

|E(n)
A | < εln ∀n ≥ NA,ε

where

E
(n)
A := {0, 1, . . . , ln − 1} \ (K(n)

A,ε ∪K
(n)
Ac,ε),
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whence (for such n)

m(Un(K
(n)
A,ε) \ A) =

∑

k∈K(n)
A,ε

m(T kJn \ A) < εm(Cn)

and

m(A \ Un(K(n)
A,ε)) = m(A ∩ Un(K(n)

Ac,ε)) +m(A ∩ Un(E(n)
A ))

≤
∑

k∈K(n)
Ac,ε

m(T kJn \ A) + εm(Cn) < 2εm(Cn)

and m(A △ Un(K
(n)
A,ε)) < 3εm(Cn). Henceforth, we let nA,ε be the minimal

N with |E(n)
A | < εln for all n ≥ N .

Conversely, suppose that A ∈ B and U = Un(K) ∈ Cn satisfym(A△U) <
εm(U). Then∑

k∈K,m(TkJn\A)≥√
εm(Jn)

m(T kJn)

≤ 1√
ε

∑

k∈K,m(TkJn\A)≥√
εm(Jn)

m(T kJn \ A)

≤ 1√
ε
m(U \A) < √ε

and ∑

k∈Kc,m(TkJn\Ac)≥√
εm(Jn)

m(T kJn)

≤ 1√
ε

∑

k∈Kc,m(TkJn\Ac)≥√
εm(Jn)

m(T kJn \ Ac)

≤ 1√
ε
m(A \ U) <

√
ε

whence
|K \K(n)

A,ε|, |Kc \K(n)
Ac,ε| ≤

√
ε ln

and n ≥ nA,2√ε.
To see (the well known fact [Fr]) that (X,B,m, T ) is an ergodic measure

preserving transformation, let A ∈ B with m(A) > 0 satisfy TA = A.

Evidently, K
(n)
A 6= ∅ ⇒ K

(n)
A = {0, 1, . . . , ln − 1}, whence Un(K(n)

A,ε) = Cn.
It follows that m(A) > m(Cn)(1−3ε) for all ε > 0 and n ≥ nA,ε, whence

A = X mod m.
In [Cha] it was shown that Chacon’s transformation (X,B,m, T ) is

weakly mixing and not strongly mixing. We next claim that it is mildly

mixing. For a related result, see [F-K].
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To see this, we first need some notation to record how sets in Cn appear
in Cn+2. Define ej (0 ≤ j ≤ 7) by

ej :=

{
0, j = 0, 2, 3, 6,
1, j = 1, 4, 5, 7,

κj = κj,n by

κ0 = 0, κj+1 := κj + ln + ej

and

Xj = Xj,n :=

ln−1⋃

i=0

T i+κj,nJn+2 (0 ≤ j ≤ 8).

Then given n ≥ 1, K ⊂ {0, 1, . . . , ln − 1} and U = Un(K) ∈ Cn, we have

T κj,n(U ∩X0) =
⋃

i∈K
T i+κj,nJn+2 = U ∩Xj (0 ≤ j ≤ 7)

and

T ln+ej (U ∩Xj) = U ∩Xj+1.

Next suppose that A ∈ B, ε > 0 and n ≥ nA,ε. Then
m(T i+κj,nJn+2 ∩A) < 9εm(Jn+2) ∀i ∈ K(n)

Ac,ε, 0 ≤ j ≤ 8

and

m(T i+κj,nJn+2 \A) < 9εm(Jn+2) ∀i ∈ K(n)
A,ε, 0 ≤ j ≤ 8;

whence

m(T κj,n(A ∩X0) △ (A ∩Xj)) < 36ε.

Now supposeA ∈ B withm(A) > 0 satisfies lim infn→∞m(A△TnA) = 0.
We claim that A = T−1A.

To see this, fix ε > 0. Then there are n ≥ nA,ε and N ∈ [ln, ln+1−1] such
that m(A△TNA) < ε, whence there is B ∈ Cn such that m(B△TNB) < 3ε.
Write N = aln+ b where a = 1, 2 and 0 ≤ b ≤ ln. For 0 ≤ j ≤ 6−a we have

TNXj = T aln+bXj = T b−ej,aXj+a

where ej,1 = ej and ej,2 = ej + ej+1. Thus, on the one hand

TN(B ∩Xj) = TNB ∩ TNXj

≈3ε B ∩ TNXj = B ∩ T b−ej,aXj+a (0 ≤ j ≤ 7)

(where C ≈η D means m(C △D) < η) and on the other hand

TN (B ∩Xj) = T b−ej,a(B ∩Xj+a) (0 ≤ j ≤ 6− a)
whence

B ∩Xj+a ≈3ε T−b+ej,aB ∩Xj+a ∀0 ≤ j ≤ 6− a,
B ≈27ε T−b+ej,aB ∀0 ≤ j ≤ 6− a,
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whence (choosing j, j′ with ej,a − ej′,a = 1)

B ≈54ε TB ⇒ A ≈56ε TA.

The cocycle. This cocycle φ : X → Z will be defined successively as a
sum of coboundaries. Define g(n) : Cn+2 → Z by

g(n)(x) =

{
1, x ∈ Sn+1,
−3, x ∈ Sn+2,
0, else.

Note that

(‡) ∀n ≥ 1, k ≥ n+ 2, TNXi,k = Xi+j,k ⇒ g
(n)
N ≡ 0 on Xi,k

(this is because g
(n)
N |Xi,k

= jg
(n)
lk
|Jk = 0); whereas for all U ∈ Cn,

U ∩ T−(2ln+1)U ∩ [g
(n)
2ln+1 = 1] ⊃ U ∩

⋃

k=0,1,3,7

Xk,n =: U ∩ Yn,

whence

m(U ∩ T−(2ln+1)U ∩ [g
(n)
2ln+1 = 1]) ≥ 4

9m(U).

Now fix a sequence nk ր∞ such that

• nk+1 > nk + 2,

• ∑
j≥k+1m(Snj

) < m(Jnk
)/(45(2lnk

+ 1))

and define φ :=
∑∞
k=1 g

(nk).

Ergodicity of Tφ. We see by (‡) that for all k ≥ 1,

φ2lnk
+1 =

∑

j≥k
g
(nj)
2lnk

+1 on Ynk
,

whence

m(Ynk
∩ [φ2lnk

+1 6= g
(nk)
2lnk

+1]) ≤
∑

j≥k+1

m([g
(nj )
2lnk

+1 6= 0])

≤ (2lnk
+ 1)

∑

j≥k+1

m(Snj
) ≤ m(Jnk

)

45

and for U ∈ Cnk
, U 6= ∅, we have

m(U ∩ T−(2lnk
+1)U ∩ [φ2lnk

+1 = 1])

≥ m(U ∩ T−(2lnk
+1)U ∩ [g

(nk)
2lnk

+1 = 1]) −m([φ2lnk
+1 6= g

(nk)
2lnk

+1])

≥ 4

9
m(U)− m(Jnk

)

45
≥ 19m(U)

45
.



TIGHTNESS OF COCYCLES 375

To show that Tφ : X × Z → X × Z is ergodic, it suffices by [Sch1] to
show that if A ∈ B, m(A) > 0 and k ≥ 1 is large enough, then

m(A ∩ T−(2lnk
+1)A ∩ [φ2lnk

+1 = 1]) > 0.

To see this, note that for k ≥ 1 large enough, there exists U ∈ Cn with
m(A △ U) < 2m(U)/45, whence

m(A ∩ T−(2lnk
+1)A ∩ [φ2lnk

+1 = 1])

≥ m(U ∩ T−(2lnk
+1)U ∩ [φ2lnk

+1 = 1])− 2m(A △ U)

≥ m(U)/3 > 0.

Tightness of {m-dist.(Slnk
) : k ≥ 1}. We first claim that

(⋄)
∣∣∣
( K∑

k=1

g(nk)
)

lN

∣∣∣ ≤ 3 ∀K ≥ 1, N ≥ nK + 2.

To see this, we consider the tower CN+2 which consists of CN -blocks, and

the spacers SN+1∪SN+2 on which
∑K
k=1 g

(nk) ≡ 0. The cocycle sum over a
CN -block is zero by construction.

An arbitrary cocycle sum of length lN in CN+2 begins in the middle of
a CN -block, either passes over a spacer interval (in SN+1 ∪ SN+2) or not,
and continues to the middle of the next CN -block. In the second case, the
cocycle sum will be as over a CN -block, and will be zero. In the first case,
it will be as over a CN -block less one interval (the one before the starting
place) and

( K∑

k=1

g(nk)
)

lN
= −

K∑

k=1

g(nk)(x0).

The claim (⋄) follows since ∑K
k=1 g

(nk) = 0, 1,−3.
To prove our tightness claim, we prove that m([|SlnK

| ≥ 4]) → 0 as
K →∞. Indeed, by (⋄),

m([|SlnK
| ≥ 4]) ≤ m

([
SlnK

6=
( K∑

k=1

g(nk)
)

lnK

])

= m
([( ∞∑

k=K+1

g(nk)
)

lnK

6= 0
])

≤ lnK
m
([ ∞∑

k=K+1

g(nk) 6= 0
])

≤ lnK

∞∑

k=K+1

m(Snk
) ≤ m(JnK

)

90
.
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