COLLOQUIUM MATHEMATICUM

VOL. 84/85

2000

PART 2

REMARKS ON THE TIGHTNESS OF COCYCLES

BY

JON AARONSON (TEL AVIV) AND BENJAMIN WEISS (JERUSALEM)

Dedicated to the memory of Anzelm Iwanik

Abstract. We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Let (Ω, \mathcal{B}, m) be a probability space, let $T : \Omega \to \Omega$ be an ergodic probability preserving transformation, let G be a Polish topological group and let $\phi : \Omega \to G$ be measurable.

We consider S_n , the random walk or cocycle on G defined by

$$S_0(\omega) = e, \quad S_{n+1}(\omega) := \phi(T^n \omega) S_n(\omega).$$

This random walk is generated by the *skew product* transformation T_{ϕ} : $X \times G \to X \times G$ where $T_{\phi}^{n}(\omega, y) = (T^{n}\omega, S_{n}(\omega)y)$. In case G is a locally compact topological group, T_{ϕ} preserves the measure $m \times m_{G}$ where m_{G} is a left Haar measure on G.

1. Tightness theorem. We consider the situation where $\{m\text{-dist.}(S_n) : n \ge 1\}$ is tight in the sense that for every $\varepsilon > 0$, there is a compact $C \subset G$ such that $\sup_{n\ge 1} m(S_n \notin C) < \varepsilon$ (equivalently, tightness is precompactness in the space $\mathcal{P}(G)$ of probability measures on G). One way this can happen is when ϕ is cohomologous to a compact-group-valued function, i.e. there is a compact subgroup $K \subseteq G$ and measurable $\psi : \Omega \to K, g : \Omega \to G$ such that $\phi(\omega) = g(T\omega)^{-1}\psi(\omega)g(\omega)$; then $S_n(\omega) = g(T^n\omega)^{-1}k_n(\omega)g(\omega)$ where $k_n(\omega) := \psi(T^{n-1}\omega)\psi(T^{n-2}\omega)\ldots\psi(\omega) \in K$.

TIGHTNESS THEOREM. The distributions $\{m\text{-dist.}(S_n) : n \ge 1\}$ are tight in $\mathcal{P}(G) \Leftrightarrow \phi$ is cohomologous to a compact-group-valued function.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28D05.

^[363]

Remarks about \leftarrow . 1) The \leftarrow of the tightness theorem is an easy consequence of the tightness of a single probability on a Polish space (Prokhorov's theorem, see [Par]) and the probability preserving property of T.

2) If m is not absolutely continuous with respect to some T-invariant probability on (Ω, \mathcal{B}) then \Leftarrow may fail.

In this case, there is a set $W \in \mathcal{B}$ with m(W) > 0 and a sequence $n_k \to \infty$ such that $\{T^{-n_k}W : k \ge 1\}$ are disjoint (such a set is called *weakly wandering*). Given a noncompact Polish space G, we choose $x_0 \in G$ and a sequence $y_k \in G$, $y_k \to \infty$ (i.e. for each compact $C \subset G$, $y_k \notin C$ eventually) and define $f : \Omega \to G$ by

$$f(x) = \begin{cases} y_k, & x \in T^{-n_k}W \ (k \ge 1), \\ x_0, & x \in \Omega \setminus \bigcup_{k=1}^{\infty} T^{-n_k}W \end{cases}$$

It follows that $\{m\text{-dist.}(f \circ T^n) : n \geq 1\}$ cannot be tight in $\mathcal{P}(G)$ since $m([f \circ T^{n_k} = y_k]) \geq m(W) \nrightarrow 0.$

If G is a noncompact Polish topological group, we set $\phi = f^{-1}f \circ T$ and obtain a coboundary for which the distributions $\{m\text{-dist.}(S_n) : n \geq 1\}$ are not tight in $\mathcal{P}(G)$.

In case G has no nontrivial compact subgroups, the tightness theorem boils down to the so-called *coboundary theorem*:

The distributions $\{m\text{-dist.}(S_n) : n \geq 1\}$ are tight in $\mathcal{P}(G) \Leftrightarrow \phi$ is a coboundary.

The first version of the coboundary theorem seems to be:

 L^2 COBOUNDARY THEOREM [Leo]. If $\{Z_n : n \ge 1\}$ is a wide sense stationary process, then there exists a wide sense stationary process $\{Y_n : n \ge 1\}$ such that $Z_n = Y_n - Y_{n+1}$ iff $\sup_{n\ge 1} \mathbb{E}(|\sum_{k=1}^n Z_k|^2) < \infty$.

Proof. If there is $\{Y_n : n \ge 1\}$ wide sense stationary such that $Z_n = Y_n - Y_{n+1}$, then $\sum_{k=1}^n Z_k = Y_1 - Y_{n+1}$ and $\|\sum_{k=1}^n Z_k\|_2 \le 2\|Y_1\|_2$ for all $n \ge 1$.

Conversely, if $\|\sum_{k=1}^{n} Z_k\|_2 \leq M$ for all $n \geq 1$, then by weak* sequential compactness of norm bounded sets, there are $N_a \to \infty$ and a r.v. $Y = Y(Z_1, Z_2, \ldots)$ such that

$$\frac{1}{N_a} \sum_{n=1}^{N_a} \sum_{k=1}^n Z_k \rightharpoonup Y$$

where \rightharpoonup denotes weak convergence in L^2 . Write $Y_n := Y(Z_n, Z_{n+1}, \ldots)$. Then $\{Y_n : n \ge 1\}$ is a wide sense stationary process and

$$\frac{1}{N_a} \sum_{n=1}^{N_a} \sum_{k=1}^n Z_{k+\nu-1} \rightharpoonup Y_\nu \quad \forall \nu \ge 1.$$

It follows that

$$Y_{\nu+1} \leftarrow \frac{1}{N_a} \sum_{n=1}^{N_a} \sum_{k=\nu+1}^{n+\nu} Z_k = \frac{1}{N_a} \sum_{n=1}^{N_a} \left(\sum_{k=\nu}^{n+\nu-1} Z_k + Z_{n+\nu} - Z_\nu \right)$$
$$= \frac{1}{N_a} \sum_{n=1}^{N_a} \sum_{k=1}^{n} Z_{k+\nu-1} + \frac{1}{N_a} \sum_{n=1}^{N_a} Z_{n+\nu} - Z_\nu \rightharpoonup Y_\nu - Z_\nu$$

because $\left\|\sum_{n=1}^{N_a} Z_{n+\nu}\right\|$ is uniformly bounded.

Leonov's theorem has the L^p analogues:

 L^p COBOUNDARY THEOREM. Let (X, \mathcal{B}, m, T) be a probability preserving transformation, let $1 \leq p < \infty$ and let $f : X \to \mathbb{R}$ be measurable. There exists $g \in L^1(m)$ such that $f = g - g \circ T$ iff $\sup_{n \geq 1} \|\sum_{k=1}^n f \circ T^k\|_p < \infty$.

The proof of the L^p coboundary theorem is the same as that of Leonov with Komlos type convergence replacing weak convergence when p = 1.

The coboundary theorem is established in [Sch1] for the case $G = \mathbb{R}$, and in [Mo-Sch] for G locally compact, second countable, Abelian without compact subgroups.

The tightness theorem for locally compact, second countable groups was established in [Sch2]; related partial results are given in [Co] and [Zim].

Bradley has proved \Rightarrow of the coboundary theorem assuming only that T is measurable: in [Br1] for $G = \mathbb{R}$, in [Br2] for G a Banach space and in [Br3] for G a group of upper triangular matrices.

The present methods can be stretched to prove the \Rightarrow of the tightness theorem assuming only that T is measurable and invertible.

BASIC LEMMA. If the family $\{P \text{-} \text{dist.}(S_n) : n \geq 1\}$ is tight in $\mathcal{P}(G)$, then there is a measurable $P : \Omega \to \mathcal{P}(G)$ such that

$$P_{T\omega}(A) = P_{\omega}(\phi(\omega)^{-1}A) \quad (A \in \mathcal{B}(G)).$$

This basic lemma is implicit in [Br1] for $G = \mathbb{R}$. The general proof is essentially as in [Br1] (see below).

The coboundary theorem for \mathbb{R} is easily established using it ([Br1]). Indeed if for $\omega \in \Omega$, $\mu(\omega)$ is defined as the minimal number satisfying

$$P_{\omega}((-\infty, \mu(\omega)]), P_{\omega}([\mu(\omega), \infty)) \ge 1/2,$$

then $\mu : \Omega \to \mathbb{R}$ is measurable and (since $P_{T\omega}(A) = P_{\omega}(A - \phi(\omega))$) we have $\mu(T\omega) = \mu(\omega) - \phi(\omega)$.

The proof of the tightness theorem given the basic lemma uses a generalisation of the characterisation of invariant measures for group extensions in [Key-New]. The proof is an adaptation of Lemańczyk's proof of [Key-New] in [Lem]. See also the proof of Theorem 8.3.2 in [A]. Proof of the basic lemma. Choose first $K_{\nu} \subset K_{\nu+1} \subset \ldots \subset G$, a sequence of compact sets in G with the property (ensured by tightness) that

(1)
$$m([S_n \in K_{\nu}^{c}]) \le 1/4^{\nu} \quad \forall n, \nu \ge 1.$$

Consider the random measures $W_n : \Omega \to \mathcal{P}(G)$ defined by

$$W_n(A) := \frac{1}{n} \sum_{j=1}^n 1_A(S_j).$$

Next, for $\nu \geq 1$ let $\mathcal{A}_{\nu} \subset C(K_{\nu})$ be a countable family, dense in $C(K_{\nu})$; and let $\mathcal{A} = \bigcup_{\nu=1}^{\infty} \mathcal{A}_{\nu}$.

We now claim that there are $n_k \to \infty$ and $L: \mathcal{A} \to L^{\infty}(\Omega)$ such that

(2)
$$\int_{G} f \, dW_{n_k} \to L(f) \quad \text{weak}^* \text{ in } L^{\infty}(\Omega) \, \forall f \in \mathcal{A}.$$

This is shown using weak^{*} precompactness of $L^{\infty}(\Omega)$ -bounded sets, and a diagonalisation.

By possibly passing to a subsequence, we can ensure that for each $f \in \mathcal{A}$, there is N_f such that

$$\left| \int_{X} \left(\left(\int_{G} f \, dW_{n_{k}} - L(f) \right) \left(\int_{G} f \, dW_{n_{j}} - L(f) \right) \right) dm \right| < \frac{1}{2^{k}} \quad \forall k \ge N_{f}, \ j < k,$$

whence ([Rev])

(3)
$$\frac{1}{N} \sum_{k=1}^{N} \int_{G} f \, dW_{n_k} \to L(f) \quad \text{a.e. } \forall f \in \mathcal{A}$$

and hence (by density) for all $f \in \bigcup_{\nu=1}^{\infty} C(K_{\nu})$.

By the Chebyshev–Markov inequality,

$$m(L(1_{K_{\nu}^{c}}) > 1/2^{\nu}) \leftarrow m(W_{n_{k}}(K_{\nu}^{c}) > 1/2^{\nu}) < 2^{\nu} \int_{X} W_{n_{k}}(K_{\nu}^{c}) dm < 1/2^{\nu} \quad \forall \nu \ge 1$$

and so by the Borel–Cantelli lemma, $L(1_{K_{\nu}^{c}}) \leq 1/2^{\nu}$ a.e. for ν large.

It follows that there is a measurable $P : \Omega \to \mathcal{P}(G)$ such that $L(f)(\omega) = \int_G f \, dP_\omega$ for all $f \in \mathcal{A}$.

To see that $P_{T\omega} = P_{\omega} \circ R_{\phi(\omega)}$ $(R_g(y) := yg)$, note that

$$\int_{G} f \, dW_n(T\omega) = \frac{1}{n} \sum_{j=1}^n f(S_j(T\omega))$$
$$= \frac{1}{n} \sum_{j=1}^n f(S_{j+1}(\omega)\phi(\omega)^{-1}) = \frac{1}{n} \sum_{j=2}^{n+1} f \circ R_{\phi(\omega)^{-1}}(S_j(\omega))$$

$$= \int_{G} f \circ R_{\phi(\omega)^{-1}} dW_n(\omega) \pm \frac{2\|f\|_{\infty}}{n}$$
$$= \int_{G} f dW_n(\omega) \circ R_{\phi(\omega)} \pm \frac{2\|f\|_{\infty}}{n}. \blacksquare$$

Proof of \Rightarrow in the tightness theorem. Given probabilities $\omega \mapsto p_{\omega}$ on G satisfying

$$p_{T\omega} = p_{\omega} \circ L_{\phi(\omega)^{-1}},$$

define a probability $\mu \in \mathcal{P}(\Omega \times G)$ by

$$\mu(A \times B) := \int_{A} p_{\omega}(B) \, dm(\omega).$$

We first note that this probability is T_{ϕ} -invariant:

$$\int_{X \times G} (u \otimes v) \circ T_{\phi} d\mu = \int_{X} u(Tx) \int_{G} v(\phi(x)y) dp_x(y) dm(x)$$
$$= \int_{X} u(Tx) \int_{G} v(y) dp_{Tx}(y) dm(x)$$
$$= \int_{X} u(x) \int_{G} v(y) dp_x(y) dm(x) = \int_{X \times G} u \otimes v d\mu.$$

Almost every ergodic component P of μ has a disintegration over m of the form

$$P(A \times B) := \int_{A} \widetilde{p}_{\omega}(B) \, dm(\omega)$$

where $\omega \mapsto \widetilde{p}_{\omega} \in \mathcal{P}(G)$ is measurable, and $\widetilde{p}_{T\omega} = \widetilde{p}_{\omega} \circ R_{\phi(\omega)}$. Fix one such P.

Define $p \in \mathcal{P}(G)$ by $p(B) := P(\Omega \times B)$. There are compact sets $C_1 \subset C_2 \subset \ldots$ such that $\bigcup_{n=1}^{\infty} C_n = G \mod p$. Define compact subsets $\{K_n : n \geq 0\}$ by

$$K_0 := \{e\}, \quad K_{n+1} = (K_n \cup C_n)(K_n \cup C_n)^{-1}(K_n \cup C_n)(K_n \cup C_n)^{-1}.$$

Evidently, $G_0 := \bigcup_{n=1}^{\infty} K_n$ is a subgroup of G and $p(G \setminus G_0) = 0$, whence $\widetilde{p}_{\omega}(G \setminus G_0) = 0$ for *m*-a.e. $\omega \in \Omega$.

Next, consider the space $C_{\mathrm{B}}(G_0)$ of bounded, continuous, \mathbb{R} -valued functions on G_0 (equipped with the supremum norm) and set

$$\mathcal{C} := \{ f \in C_{\mathcal{B}}(G_0) : \sup_{y \in K_n^c} |f(y)| \underset{n \to \infty}{\longrightarrow} 0 \}$$

Evidently $\mathcal{C} = \overline{\bigcup_{n=1}^{\infty} C_{\mathrm{B}}(K_n)}$ is separable, and $f \in \mathcal{C} \Rightarrow f \circ R_g \in \mathcal{C}$ for all $g \in G_0$ (since if $g \in K_i$, then $x \notin K_{n+i} \Rightarrow xg \notin K_n$).

For each $a \in G$, $P \circ Q_a$ (where $Q_a(\omega, y) := (\omega, ya)$) is also an ergodic T_{ϕ} -invariant probability (since $T_{\phi} \circ Q_a = Q_a \circ T_{\phi}$), and therefore either

 $P \circ Q_a = P$ or $P \circ Q_a \perp P$. Define $H := \{a \in G_0 : P \circ Q_a = P\}$, a closed subgroup of G_0 . For a.e. $\omega \in \Omega$, $p_{\omega}(Aa) = p_{\omega}(A)$ $(a \in H, A \in \mathcal{B}(G))$.

Consider the Banach space $\mathcal{M}(\Omega \times G_0)$ of bounded measurable functions $\Omega \times G_0 \to \mathbb{R}$ equipped with the supremum norm. We need a separable subspace $\mathcal{A} \subset \mathcal{M}(\Omega \times G_0)$ which separates the points of $\Omega \times G_0$ such that $f \in \mathcal{A} \Rightarrow f \circ Q_a \in \mathcal{A}$ for all $a \in G_0$. In particular,

$$a, b \in G_0, \quad \int_{\Omega \times G} f \, dP \circ Q_a = \int_{\Omega \times G} f \, dP \circ Q_b \quad \forall f \in \mathcal{A} \Rightarrow P \circ Q_a = P \circ Q_b.$$

To obtain such a subspace, fix a compact metric topology on Ω generating \mathcal{B} ; then $\mathcal{A} = C(\Omega) \otimes \mathcal{C}$ is as needed.

By Birkhoff's ergodic theorem,

$$\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k_{\phi}(\omega, y) \to \int_{\Omega \times G} f \, dP \quad \text{ a.e. } \forall f \in L^1(P).$$

Set

$$Y := \left\{ (\omega, y) \in \Omega \times G_0 : \frac{1}{n} \sum_{k=0}^{n-1} f \circ T_{\phi}^k(\omega, y) \to \int_{\Omega \times G} f \, dP \, \forall f \in \mathcal{A} \right\}.$$

Since \mathcal{A} is a separable subspace of $\mathcal{M}(\Omega \times G_0)$, the set Y is determined by a countable subcollection of \mathcal{A} , whence $Y \in \mathcal{B}(\Omega \times G_0)$, and by Birkhoff's ergodic theorem P(Y) = 1. For $\omega \in \Omega$, set $Y_{\omega} = \{y \in G_0 : (\omega, y) \in Y\}$. We claim that Y_{ω} is a coset of H whenever it is nonempty.

To see this, suppose that $a \in G$. Then for all $f \in \mathcal{A}$ and for a.e. $(x, y) \in Y$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^k_\phi(\omega,ya)\to \int_{\Omega\times G}f\circ Q_a\,dP=\int_{\Omega\times G}f\,dP\circ Q_a^{-1}.$$

Thus, $(\omega, ya) \in Y$ iff $P \circ Q_a^{-1} = P$, equivalently $a \in H$; and Y_{ω} is indeed a coset of H whenever it is nonempty (i.e. a.e.).

By the analytic section theorem, there is a measurable $h : \Omega \to G$ such that $h(\omega) \in Y_{\omega}$ for a.e. $\omega \in \Omega$, whence $Y_{\omega} = h(\omega)H$.

Now let $P'_{\omega} \in \mathcal{P}(G)$ be defined by $P'_{\omega}(A) := p_{\omega}(h(\omega)^{-1}A)$. Clearly $P'_{\omega}(H) = 1$ and $P'_{\omega}(Aa) = P'_{\omega}(A)$ $(a \in H, A \in \mathcal{B}(G))$. Thus by [Weil], H is compact and $P'_{\omega} = m_H$, Haar measure on H.

Defining $\Psi : \Omega \times G \to \Omega \times G$ by $\Psi(\omega, y) := (\omega, h(\omega)y)$, we have $P \circ \Psi^{-1} = m \times m_H$. If $V := \Psi \circ T_{\phi} \circ \Psi^{-1}$ then $m \times m_H \circ V = m \times m_H$ and $V = T_{\psi}$ where $\psi(\omega) := h(\omega)\phi(\omega)h(\omega)^{-1}$.

Since $(\Omega \times G, \mathcal{B}(\Omega \times G), m \times m_H, V)$ is a probability preserving transformation, we see that $\psi : \Omega \to H$. **2.** Subsequence tightness. Let (X, \mathcal{B}, m, T) be a mixing probability preserving transformation and let $\phi : X \to \mathbb{R}$ be measurable. Bradley [Br4] showed that if the stochastic process $\{\phi \circ T^n : n \ge 1\}$ is strongly Rosenblatt mixing, then either

1) $\sup_{r \in \mathbb{R}} m([|S_n - r| \leq C]) \to 0$ for every $0 < C < \infty$, or

2) there are constants a_n such that $\{m\text{-dist.}(S_n - a_n) : n \ge 1\}$ is tight (whence ϕ is cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic process driven by a mixing probability preserving transformation.

THEOREM 2. Suppose that (X, \mathcal{B}, m, T) is a mixing probability preserving transformation and that $\phi : X \to \mathbb{R}$ is measurable. If there are $n_k \to \infty$ and $d_k \in \mathbb{R}$ such that $\{m\text{-dist.}(S_{n_k} - d_k) : k \ge 1\}$ is tight, then there are $a \in \mathbb{R}$ and $g : \Omega \to \mathbb{R}$ measurable such that $\phi(\omega) = a + g(T\omega) - g(\omega)$. If $\sup_k |d_k| < \infty$, then a = 0.

Proof. Consider $(X \times X, \mathcal{B} \otimes \mathcal{B}, m \times m, T \times T)$, and $\phi, \phi' : X \times X \to \mathbb{R}$ defined by $\phi(x, y) := \phi(x), \ \phi'(x, y) := \phi(y)$.

• We first show that $\{m \times m\text{-dist.}(S_n - S'_n) : n \ge 1\}$ is tight. Let $\varepsilon > 0$ and choose M > 0 such that $m([|S_{n_k} - d_k| > M/2]) < \varepsilon/2$ for all $k \ge 1$. By mixing of T, for all $n \ge 1$,

$$m([|S_n - S_n \circ T^{n_k}| > M]) \to m \times m([|S_n - S'_n| > M])$$

as $k \to \infty$. Now

$$S_n - S_n \circ T^{n_k} = S_n - S_{n+n_k} + S_{n_k} = S_{n_k} - S_{n_k} \circ T^n,$$

whence

$$m([|S_n - S_n \circ T^{n_k}| > M]) = m([|S_{n_k} - S_{n_k} \circ T^n| > M])$$

$$\leq 2m([|S_{n_k} - d_k| > M/2]) < \varepsilon.$$

• Next, as in [Br4], there are $a_n \in \mathbb{R}$ such that $\{m\text{-dist.}(S_n - a_n) : n \ge 1\}$ is tight. To see this, given $\varepsilon > 0$, let $M(\varepsilon) > 0$ be such that

$$m \times m([|S_n - S'_n| > M(\varepsilon)]) < \varepsilon^2 \quad \forall n \ge 1.$$

It follows that

$$\begin{split} m(\{x \in X : m([|S_n - S_n(x)| > M(\varepsilon)]) > \varepsilon\}) \\ &\leq \frac{1}{\varepsilon} \int_X m([|S_n - S_n(x)| > M(\varepsilon)]) \, dm(x) \\ &= \frac{1}{\varepsilon} m \times m([|S_n - S'_n| > M(\varepsilon)]) < \varepsilon \quad \forall n \ge 1, \end{split}$$

whence there are $a_n(\varepsilon) \in \mathbb{R}$ such that

$$n([|S_n - a_n(\varepsilon)| > M(\varepsilon)]) \le \varepsilon \quad \forall n \ge 1$$

 $m([|S_n - a_n(\varepsilon)| > M(\varepsilon)]) \le \varepsilon \quad \forall n \ge 1$ Set $a_n = a_n(1/3)$. For each $0 < \varepsilon < 1/2, n \ge 1$, we have

$$m([|S_n - a_n(\varepsilon)| < M(\varepsilon)] \cap [|S_n - a_n| < M(1/3)]) > 0,$$

whence $|a_n - a_n(\varepsilon)| < M(1/3) + M(\varepsilon)$ and

$$m([|S_n - a_n| > 2M(\varepsilon) + M(1/3)]) < \varepsilon \quad \forall n \ge 1$$

• We show that there is an $a \in \mathbb{R}$ such that $\sup_{n \ge 1} |a_n - na| < \infty$. To this end, note that there is an M > 0 such that

$$|a_{k+l} - a_k - a_l| < M \quad \forall k, l \ge 1$$

Indeed, if $m([|S_n - a_n| > K]) < 1/8$ for all $n \ge 1$, then (since $S_{k+l} =$ $S_k + S_l \circ T^k$

$$m([|S_{k+l} - a_k - a_l| > 2K]) \le m([|S_k - a_k| > K] \cup [|S_l \circ T^k - a_l| > K]) < 1/4$$

whence

$$m([|S_{k+l} - a_k - a_l| \le 2K] \cap [|S_{k+l} - a_{k+l}| \le K]) > 0$$

and $|a_{k+l} - a_k - a_l| \le 3K$ for $k, l \ge 1$.

By (‡), there are $N_k \to \infty$ and $b_{\nu} \in \mathbb{R}$ ($\nu \ge 1$) such that

$$\frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\nu} - a_j) \to b_\nu \quad \text{ as } k \to \infty \ \forall \nu \ge 1$$

It follows from (‡) that

$$|b_{\nu} - a_{\nu}| = \lim_{k \to \infty} \left| \frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\nu} - a_j - a_{\nu}) \right| \le M$$

and that

$$b_{\nu+\mu} \leftarrow \frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\mu+\nu} - a_j)$$

= $\frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\mu} - a_j) + \frac{1}{N_k} \sum_{j=\mu+1}^{N_k+\mu} (a_{j+\nu} - a_j)$
= $\frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\mu} - a_j) + \frac{1}{N_k} \sum_{j=1}^{N_k} (a_{j+\mu} - a_j) \pm \frac{M + |a_\mu|}{N_k}$
 $\rightarrow b_\mu + b_\nu.$

Thus $b_{\nu} = \nu a$ and $|a_{\nu} - \nu a| \leq M$ where $a = b_1 = \lim_{n \to \infty} a_n/n$.

In case $\sup_k |d_k| < \infty$, because of the tightness of $\{m\text{-dist.}(S_{n_k}) : k \ge 1\}$ we have $\sup_{k>1} |a_{n_k}| < \infty$, whence a = 0.

• It now follows from the coboundary theorem that ϕ is cohomologous to a. \blacksquare

3. An example. We show that there is a probability preserving transformation (X, \mathcal{B}, m, T) which is *mildly mixing* in the sense that there is no $A \in \mathcal{B}$ with 0 < m(A) < 1 such that $\liminf_{n\to\infty} m(A \triangle T^n A) = 0$ (see §2.7 of [A]), but there is a measurable function $\phi : X \to \mathbb{R}$ such that T_{ϕ} is ergodic and for some $n_k \to \infty$, $\limsup_{k\to\infty} |S_{n_k}| < \infty$ *m*-almost everywhere.

Chacon's transformation [Cha]. This transformation (X, \mathcal{B}, m, T) is defined inductively on $X := \bigcup_{n=1}^{\infty} C_n \subset \mathbb{R}$ where m = Lebesgue measure.

Here $C_n = \bigcup_{k=0}^{l_n-1} T^k J_n$ where

• $l_1 = 1$, $l_{n+1} = 3l_n + 1 \ (\Rightarrow l_n = (3^n - 1)/2);$

• { $T^k J_n : 0 \le k \le l_n - 1$ } are disjoint intervals of length $1/3^{n-1}$ and $T: T^k J_n \to T^{k+1} J_n$ is a translation;

• C_{n+1} is obtained by writing $J_n = \bigcup_{i=0}^2 J_{n,i}$ where the $J_{n,i}$ (i = 0, 1, 2) are disjoint intervals of length $1/3^n$ and setting $J_{n+1} := J_{n,0}$ and

$$T^{k}J_{n+1} := \begin{cases} T^{k}J_{n,0}, & 0 \le k \le l_{n} - 1, \\ T^{k-l_{n}}J_{n,1}, & l_{n} \le k \le 2l_{n} - 1, \\ \mathcal{S}_{n+1}, & k = 2l_{n}, \\ T^{k-2l_{n}-1}J_{n,2}, & 2l_{n} + 1 \le k \le 3l_{n} = l_{n+1} - 1 \end{cases}$$

where S_{n+1} is an interval of length $1/3^n$, disjoint from C_n (called the *spacer*).

The set X has finite measure which can be normalized to equal one but we keep the standard Lebesgue measure in order to simplify the later formulae. We first give a proof of the ergodicity based on a careful analysis of how the intervals $T^k J_n$ approximate arbitrary measurable sets. This analysis will also be the base for our proof of the mild mixing property.

Define

$$\mathcal{C}_n := \Big\{ U_n(K) := \bigcup_{k \in K} T^k J_n : K \subset \{0, 1, \dots, l_n - 1\} \Big\}.$$

For $A \in \mathcal{B}$, $\varepsilon > 0$ and $n \ge 1$ define

$$K_{A,\varepsilon}^{(n)} := \{ 0 \le k \le l_n - 1 : m(T^k J_n \cap A) < \varepsilon m(J_n) \} \subset \{0, 1, \dots, l_n - 1\}.$$

Evidently, for $A, B \in \mathcal{B}$ disjoint and $0 < \varepsilon < 1/2$, $K_{A,\varepsilon}^{(n)}$ and $K_{B,\varepsilon}^{(n)}$ are disjoint. It is standard that for all $A \in \mathcal{B}$ and $\varepsilon > 0$, there is $N_{A,\varepsilon}$ such that

$$|E_A^{(n)}| < \varepsilon l_n \quad \forall n \ge N_{A,\varepsilon}$$

where

$$E_A^{(n)} := \{0, 1, \dots, l_n - 1\} \setminus (K_{A,\varepsilon}^{(n)} \cup K_{A^c,\varepsilon}^{(n)}),$$

whence (for such n)

$$m(U_n(K_{A,\varepsilon}^{(n)}) \setminus A) = \sum_{k \in K_{A,\varepsilon}^{(n)}} m(T^k J_n \setminus A) < \varepsilon m(C_n)$$

and

$$m(A \setminus U_n(K_{A,\varepsilon}^{(n)})) = m(A \cap U_n(K_{A^c,\varepsilon}^{(n)})) + m(A \cap U_n(E_A^{(n)}))$$
$$\leq \sum_{k \in K_{A^c,\varepsilon}^{(n)}} m(T^k J_n \setminus A) + \varepsilon m(C_n) < 2\varepsilon m(C_n)$$

and $m(A \bigtriangleup U_n(K_{A,\varepsilon}^{(n)})) < 3\varepsilon m(C_n)$. Henceforth, we let $n_{A,\varepsilon}$ be the minimal

N with $|E_A^{(n)}| < \varepsilon l_n$ for all $n \ge N$. Conversely, suppose that $A \in \mathcal{B}$ and $U = U_n(K) \in \mathcal{C}_n$ satisfy $m(A \triangle U) < \mathcal{C}_n$ $\varepsilon m(U)$. Then

$$\sum_{k \in K, m(T^k J_n \setminus A) \ge \sqrt{\varepsilon} m(J_n)} m(T^k J_n)$$

$$\leq \frac{1}{\sqrt{\varepsilon}} \sum_{k \in K, m(T^k J_n \setminus A) \ge \sqrt{\varepsilon} m(J_n)} m(T^k J_n \setminus A)$$

$$\leq \frac{1}{\sqrt{\varepsilon}} m(U \setminus A) < \sqrt{\varepsilon}$$

and

$$\sum_{k \in K^{c}, m(T^{k}J_{n} \setminus A^{c}) \ge \sqrt{\varepsilon}m(J_{n})} m(T^{k}J_{n})$$

$$\leq \frac{1}{\sqrt{\varepsilon}} \sum_{k \in K^{c}, m(T^{k}J_{n} \setminus A^{c}) \ge \sqrt{\varepsilon}m(J_{n})} m(T^{k}J_{n} \setminus A^{c})$$

$$\leq \frac{1}{\sqrt{\varepsilon}} m(A \setminus U) < \sqrt{\varepsilon}$$

whence

$$|K \setminus K_{A,\varepsilon}^{(n)}|, |K^{\mathbf{c}} \setminus K_{A^{\mathbf{c}},\varepsilon}^{(n)}| \le \sqrt{\varepsilon} \, l_n$$

and $n \geq n_{A,2\sqrt{\varepsilon}}$.

To see (the well known fact [Fr]) that (X, \mathcal{B}, m, T) is an ergodic measure preserving transformation, let $A \in \mathcal{B}$ with m(A) > 0 satisfy TA = A. Evidently, $K_A^{(n)} \neq \emptyset \Rightarrow K_A^{(n)} = \{0, 1, \dots, l_n - 1\}$, whence $U_n(K_{A,\varepsilon}^{(n)}) = C_n$. It follows that $m(A) > m(C_n)(1-3\varepsilon)$ for all $\varepsilon > 0$ and $n \ge n_{A,\varepsilon}$, whence

 $A = X \mod m$.

In [Cha] it was shown that Chacon's transformation (X, \mathcal{B}, m, T) is weakly mixing and not strongly mixing. We next claim that it is mildly mixing. For a related result, see [F-K].

To see this, we first need some notation to record how sets in C_n appear in C_{n+2} . Define e_j $(0 \le j \le 7)$ by

$$e_j := \begin{cases} 0, & j = 0, 2, 3, 6, \\ 1, & j = 1, 4, 5, 7, \end{cases}$$

 $\kappa_j = \kappa_{j,n}$ by

$$\kappa_0 = 0, \quad \kappa_{j+1} := \kappa_j + l_n + e_j$$

and

$$X_j = X_{j,n} := \bigcup_{i=0}^{l_n - 1} T^{i + \kappa_{j,n}} J_{n+2} \quad (0 \le j \le 8)$$

Then given $n \ge 1$, $K \subset \{0, 1, \dots, l_n - 1\}$ and $U = U_n(K) \in \mathcal{C}_n$, we have

$$T^{\kappa_{j,n}}(U \cap X_0) = \bigcup_{i \in K} T^{i+\kappa_{j,n}} J_{n+2} = U \cap X_j \quad (0 \le j \le 7)$$

and

$$T^{l_n+e_j}(U \cap X_j) = U \cap X_{j+1}.$$

Next suppose that $A \in \mathcal{B}$, $\varepsilon > 0$ and $n \ge n_{A,\varepsilon}$. Then

$$m(T^{i+\kappa_{j,n}}J_{n+2}\cap A) < 9\varepsilon m(J_{n+2}) \quad \forall i \in K^{(n)}_{A^c,\varepsilon}, \ 0 \le j \le 8$$

and

$$m(T^{i+\kappa_{j,n}}J_{n+2} \setminus A) < 9\varepsilon m(J_{n+2}) \quad \forall i \in K_{A,\varepsilon}^{(n)}, \ 0 \le j \le 8;$$

whence

$$m(T^{\kappa_{j,n}}(A \cap X_0) \land (A \cap X_j)) < 36\varepsilon.$$

Now suppose $A \in \mathcal{B}$ with m(A) > 0 satisfies $\liminf_{n \to \infty} m(A \triangle T^n A) = 0$. We claim that $A = T^{-1}A$.

To see this, fix $\varepsilon > 0$. Then there are $n \ge n_{A,\varepsilon}$ and $N \in [l_n, l_{n+1} - 1]$ such that $m(A \triangle T^N A) < \varepsilon$, whence there is $B \in \mathcal{C}_n$ such that $m(B \triangle T^N B) < 3\varepsilon$. Write $N = al_n + b$ where a = 1, 2 and $0 \le b \le l_n$. For $0 \le j \le 6 - a$ we have

$$T^N X_j = T^{al_n+b} X_j = T^{b-e_{j,a}} X_{j+a}$$

where $e_{j,1} = e_j$ and $e_{j,2} = e_j + e_{j+1}$. Thus, on the one hand

$$T^{N}(B \cap X_{j}) = T^{N}B \cap T^{N}X_{j}$$

$$\approx^{3\varepsilon} B \cap T^{N}X_{j} = B \cap T^{b-e_{j,a}}X_{j+a} \quad (0 \le j \le 7)$$

(where $C \approx^{\eta} D$ means $m(C \triangle D) < \eta$) and on the other hand

$$T^{N}(B \cap X_{j}) = T^{b-e_{j,a}}(B \cap X_{j+a}) \quad (0 \le j \le 6-a)$$

whence

$$B \cap X_{j+a} \approx^{3\varepsilon} T^{-b+e_{j,a}} B \cap X_{j+a} \quad \forall 0 \le j \le 6-a,$$
$$B \approx^{27\varepsilon} T^{-b+e_{j,a}} B \quad \forall 0 \le j \le 6-a,$$

whence (choosing j, j' with $e_{j,a} - e_{j',a} = 1$)

$$B \approx^{54\varepsilon} TB \Rightarrow A \approx^{56\varepsilon} TA.$$

The cocycle. This cocycle $\phi: X \to \mathbb{Z}$ will be defined successively as a sum of coboundaries. Define $g^{(n)}: C_{n+2} \to \mathbb{Z}$ by

$$g^{(n)}(x) = \begin{cases} 1, & x \in \mathcal{S}_{n+1}, \\ -3, & x \in \mathcal{S}_{n+2}, \\ 0, & \text{else.} \end{cases}$$

Note that

(‡)
$$\forall n \ge 1, k \ge n+2, \quad T^N X_{i,k} = X_{i+j,k} \Rightarrow g_N^{(n)} \equiv 0 \text{ on } X_{i,k}$$

(this is because $g_N^{(n)}|_{X_{i,k}} = jg_{l_k}^{(n)}|_{J_k} = 0$); whereas for all $U \in \mathcal{C}_n$,

$$U \cap T^{-(2l_n+1)}U \cap [g_{2l_n+1}^{(n)} = 1] \supset U \cap \bigcup_{k=0,1,3,7} X_{k,n} =: U \cap Y_n$$

whence

$$m(U \cap T^{-(2l_n+1)}U \cap [g_{2l_n+1}^{(n)} = 1]) \ge \frac{4}{9}m(U).$$

Now fix a sequence $n_k \nearrow \infty$ such that

• $n_{k+1} > n_k + 2$, • $\sum_{j \ge k+1} m(\mathcal{S}_{n_j}) < m(J_{n_k})/(45(2l_{n_k} + 1))$

and define $\phi := \sum_{k=1}^{\infty} g^{(n_k)}$.

Ergodicity of T_{ϕ} . We see by (‡) that for all $k \geq 1$,

$$\phi_{2l_{n_k}+1} = \sum_{j \ge k} g_{2l_{n_k}+1}^{(n_j)} \quad \text{on } Y_{n_k},$$

whence

$$m(Y_{n_k} \cap [\phi_{2l_{n_k}+1} \neq g_{2l_{n_k}+1}^{(n_k)}]) \le \sum_{j \ge k+1} m([g_{2l_{n_k}+1}^{(n_j)} \neq 0])$$
$$\le (2l_{n_k}+1) \sum_{j \ge k+1} m(\mathcal{S}_{n_j}) \le \frac{m(J_{n_k})}{45}$$

and for $U \in \mathcal{C}_{n_k}$, $U \neq \emptyset$, we have

$$m(U \cap T^{-(2l_{n_k}+1)}U \cap [\phi_{2l_{n_k}+1} = 1])$$

$$\geq m(U \cap T^{-(2l_{n_k}+1)}U \cap [g_{2l_{n_k}+1}^{(n_k)} = 1]) - m([\phi_{2l_{n_k}+1} \neq g_{2l_{n_k}+1}^{(n_k)}])$$

$$\geq \frac{4}{9}m(U) - \frac{m(J_{n_k})}{45} \geq \frac{19m(U)}{45}.$$

To show that $T_{\phi} : X \times \mathbb{Z} \to X \times \mathbb{Z}$ is ergodic, it suffices by [Sch1] to show that if $A \in \mathcal{B}$, m(A) > 0 and $k \ge 1$ is large enough, then

$$m(A \cap T^{-(2l_{n_k}+1)}A \cap [\phi_{2l_{n_k}+1}=1]) > 0.$$

To see this, note that for $k \geq 1$ large enough, there exists $U \in C_n$ with $m(A \Delta U) < 2m(U)/45$, whence

$$\begin{split} m(A \cap T^{-(2l_{n_k}+1)}A \cap [\phi_{2l_{n_k}+1} = 1]) \\ \geq m(U \cap T^{-(2l_{n_k}+1)}U \cap [\phi_{2l_{n_k}+1} = 1]) - 2m(A \bigtriangleup U) \\ \geq m(U)/3 > 0. \end{split}$$

Tightness of $\{m\text{-dist.}(S_{l_{n_k}}): k \geq 1\}$. We first claim that

$$(\diamond) \qquad \left| \left(\sum_{k=1}^{K} g^{(n_k)} \right)_{l_N} \right| \le 3 \quad \forall K \ge 1, \ N \ge n_K + 2.$$

To see this, we consider the tower C_{N+2} which consists of C_N -blocks, and the spacers $S_{N+1} \cup S_{N+2}$ on which $\sum_{k=1}^{K} g^{(n_k)} \equiv 0$. The cocycle sum over a C_N -block is zero by construction.

An arbitrary cocycle sum of length l_N in C_{N+2} begins in the middle of a C_N -block, either passes over a spacer interval (in $S_{N+1} \cup S_{N+2}$) or not, and continues to the middle of the next C_N -block. In the second case, the cocycle sum will be as over a C_N -block, and will be zero. In the first case, it will be as over a C_N -block less one interval (the one before the starting place) and

$$\left(\sum_{k=1}^{K} g^{(n_k)}\right)_{l_N} = -\sum_{k=1}^{K} g^{(n_k)}(x_0).$$

The claim (\diamond) follows since $\sum_{k=1}^{K} g^{(n_k)} = 0, 1, -3.$

To prove our tightness claim, we prove that $m([|S_{l_{n_K}}| \ge 4]) \to 0$ as $K \to \infty$. Indeed, by (\diamond) ,

$$m([|S_{l_{n_{K}}}| \ge 4]) \le m\left(\left[S_{l_{n_{K}}} \neq \left(\sum_{k=1}^{K} g^{(n_{k})}\right)_{l_{n_{K}}}\right]\right)$$
$$= m\left(\left[\left(\sum_{k=K+1}^{\infty} g^{(n_{k})}\right)_{l_{n_{K}}} \neq 0\right]\right)$$
$$\le l_{n_{K}} m\left(\left[\sum_{k=K+1}^{\infty} g^{(n_{k})} \neq 0\right]\right)$$
$$\le l_{n_{K}} \sum_{k=K+1}^{\infty} m(\mathcal{S}_{n_{k}}) \le \frac{m(J_{n_{K}})}{90}.$$

REFERENCES

- [A] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, RI, 1997.
- [Br1] R. C. Bradley, On a theorem of K. Schmidt, Statist. Probab. Lett. 23 (1995), 9–12.
- [Br2] —, A "coboundary" theorem for sums of random variables taking values in a Banach space, Pacific J. Math. 178 (1997), 201–224.
- [Br3] —, A "multiplicative coboundary" theorem for some sequences of random matrices, J. Theoret. Probab. 9 (1996), 659–678.
- [Br4] —, On the dissipation of the partial sums of a stationary strongly mixing sequence, Stochastic Process. Appl. 54 (1994), 281–290.
- [Cha] R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559–562.
- [Co] J.-P. Conze, Transformations cylindriques et mesures finies invariantes, Ann. Sci. Univ. Clermont Math. 17 (1979), 25–31.
- [Fr] N. Friedman, Introduction to Ergodic Theory, van Nostrand, New York, 1970.
- [F-K] N. Friedman and J. King, Rank one lightly mixing, Israel J. Math. 73 (1991), 281–288.
- [Key-New] H. Keynes and D. Newton, The structure of ergodic measures for compact group extensions, Israel J. Math. 18 (1974), 363-389.
 - [Lem] M. Lemańczyk, Ergodic compact Abelian group extensions, habilitation thesis, Nicholas Copernicus Univ., Toruń, 1990.
 - [Leo] V. P. Leonov, On the dispersion of time averages of a stationary random process, Theory Probab. Appl. 6 (1961), 93-101.
 - [Mo-Sch] C. C. Moore and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443–475.
 - [Par] K. R. Parthasarathy, Introduction to Probability and Measure, Springer, New York, 1978.
 - [Rev] P. Revesz, On a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 16 (1965), 311–318.
 - [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977.
 - [Sch2] —, Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), 223– 236.
 - [Weil] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sci. Indust. 869, Hermann, Paris, 1940.
 - [Zim] R. J. Zimmer, On the cohomology of ergodic group actions, Israel J. Math. 35 (1980), 289–300.

School of Mathematical Sciences Tel Aviv University 69978 Tel Aviv, Israel E-mail: aaro@math.tau.ac.il Mathematical Institute Hebrew University Jerusalem, Israel E-mail: weiss@math.huji.ac.il

Received 13 August 1999; revised 4 December 1999 (3816)