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Abstract. We give a sufficient condition for the construction of Markov fibred systems
using countable Markov partitions with locally bounded distortion.

0. Introduction. Let X be a compact metric space with metric d and
T : X → X be a noninvertible piecewise C0-invertible map, i.e. there exists
a finite or countable partition X =

⋃
i∈I Xi such that

⋃
i∈I intXi is dense

in X and

(1) For each i ∈ I with intXi 6= ∅, T |intXi
: intXi → T (intXi) is a

homeomorphism and (T |intXi
)−1 extends to a homeomorphism vi on

cl(T (intXi)).
(2) T (

⋃
intXi=∅Xi) ⊂

⋃
intXi=∅Xi.

(3) {Xi}i∈I generates F with respect to T , where F is the σ-algebra of
Borel subsets of X.

We set A = cl(intA) (A ⊂ X) and define α = {Xi}i∈I . Then α is a
finite or countable partition of a dense subset of X which is not necessarily
a disjoint family. We impose the Markov property on α:

(4) int(Xi ∩ TXj) 6= ∅ implies TXj ⊃ Xi.

Let A denote the set of all admissible sequences with respect to (T, α),
i.e. ∀i = (i1 . . . in) ∈ A, int(vi1◦. . .◦vin(TXin)) 6= ∅. We write vi1◦. . .◦vin =
vi1...in and vi1 ◦ . . . ◦ vin(TXin) = X i for i ∈ A. Finally we let |i| = n.

A measure m on X is called locally nonsingular if it is nonsingular with
respect to the maps v−1

i : Xi → TXi for each Xi ∈ α and if the boundary
of α has measure 0. If m is finite, the system (X,F , T,m, α) is called a
Markov map (Markov fibred system) (cf. [2] or [4]). There are some canon-
ical examples for this notion: Markov shifts and maps of the interval (e.g.
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continued fraction algorithm, Jacobi’s algorithm [8]), maps originating from
higher dimensional flows (e.g. [3]), parabolic rational functions ([4], [5]) or
real piecewise differentiable maps of R2 (see [11]–[14]). In many cases, the
measurem is Lebesgue measure. More general examples are obtained in [7]
when the partition α is Bernoulli (i.e. TXi=X for all Xi∈α). Considering
this system as an iterated function system one can show that the Hausdorff
measure is a good candidate for such a measure.

No general method seems to be known to construct Markov maps as
described above. Here we show that for piecewise C0-invertible maps there
exist such measures in quite general situations. In fact, for every Hölder con-
tinuous function φ : X → R+ satisfying some regularity condition (see §1)
we construct a measure with the property that the Jacobian d(m ◦ T )/dm
of the measure is exp[P (φ)−φ], where P (φ) denotes the topological pressure
of φ (as defined in §1). In [6] these measures were called conformal. It may
be more convenient to call them (non-invariant) Gibbs measures. In addi-
tion, we shall prove that these measures have the local bounded distortion
property (which is sometimes called the Schweiger property) in case T is con-
servative. Let v′i = d(m ◦ vi)/dm. Then (X,F , T,m, α) has the Schweiger

property if for some constant C ≥ 1 the system of sets

R = {Xi : i ∈ A, v′i(x)/v
′
i(y) ≤ C m×m a.e. x, y ∈ T |i|Xi}

has the strong playback property and generation property (see [1], pp. 143
ff., [8] or [4]).

1. Main Theorem. In this section we assume in addition to (1)–(4)
that the Markov partition α is irreducible and that

(5) {vi}i∈I is an equicontinuous family of partially defined uniformly con-
tinuous maps.

For A ∈ α with intA 6= ∅, let ψ denote the first return time to A, i.e.

ψ(x) =

{
inf{n ≥ 1 : Tn(x) ∈ A} if exists,
∞ otherwise,

x ∈ A.

Let TA = Tψ denote the induced transformation on {ψ < ∞} ⊂ A. By the
Markov property there exists a partition of the set Ak = {x ∈ A : ψ(x) = k}
for each k ≥ 1 so that T k, restricted to the interior of each element of the
partition, is a homeomorphism onto its image intA. Let IA denote the set of
all indices corresponding to such elements of the partition of

⋃
k≥1Ak. Then

{vj : j ∈ IA} is a family of extensions of local inverses of TA. We shall iden-
tify j ∈ InA with elements of A. The next condition can be easily verified for
some parabolic examples (e.g., inhomogeneous diophantine transformation
[14], Brun’s map [13], parabolic rational maps [5], and complex continued
fractions (see §3)):
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(6) there are 0 < γ < 1, 0 < Γ <∞ such that sup
j∈InA

diamXj ≤ Γγn.

For a given piecewise Hölder continuous potential φ : X → R (with
exponent θ) with respect to α, define the topological pressure for φ by

Ptop(φ) = lim
n→∞

1

n
log

∑

(i1...in)∈A

sup
x∈X

exp
[ n−1∑

k=0

φ(vik+1...in(x))
]
.

For s ∈ R, j ∈ IA, and x ∈ A define

φ
(s)
A (vj(x)) =

|j|−1∑

i=0

φ(vji+1
◦ . . . ◦ vj|j|(x))− s|j|.

Then the topological pressure for φ
(s)
A is

Ptop(φ
(s)
A ) = lim

n→∞

1

n
log

∑

(j1...jn)∈InA

sup
x∈A

exp
[ n−1∑

k=0

φ
(s)
A (vjk+1...jn(x))

]
.

The next condition gives a weak Hölder type condition on φ
(s)
A :

(7) (Local bounded distortion with respect to α) For all j = (j1 . . . j|j|) ∈

IA and all 0 ≤ i < |j| there is 0 < Lφ(j, i) <∞ satisfying

|φ(vji+1...jj (x))− φ(vji+1...jj (y))| ≤ Lφ(j, i)d(x, y)
θ (∀x, y ∈ A),

sup
j∈IA

|j|−1∑

i=0

Lφ(j, i) <∞.

Define

T̂φf(x) =
∑

i∈I

f(vi(x)) exp[φ(vi(x))], x ∈ X,

whenever the series converges for f : X → R and define

T̂
φ
(s)
A

g(x) =
∑

j∈IA

g(vj(x)) exp[φ
(s)
A (vj(x))], x ∈ A,

whenever the series converges for g : A→ R.
We shall prove the following theorem.

Theorem. Let T : X → X be a piecewise C0-invertible map on a

compact metric space satisfying (1)–(5). Suppose that the Markov parti-

tion α is irreducible. Let φ : X → R be a piecewise Hölder continuous

potential (with exponent θ) with respect to α such that Ptop(φ) < ∞. Sup-
pose that there is A ∈ α satisfying (6) and (7). Then for all s ∈ R with

T̂
φ
(s)
A

1 ∈ C(A) and Ptop(φ
(s)
A ) = 0 there exists a σ-finite measure m on X
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with the Schweiger property such that T̂ ∗
φm = (exp s)m. In particular , if m

is finite, (X,B, T,m, α) is a Markov map with the Schweiger property , and

if Ptop(φ
(Ptop(φ))
A ) = 0, then T̂ ∗

φm = (expPtop(φ))m.

Remarks. (1) If m is a probability measure and inf{m(TA) : A ∈ α}
> 0, then there exists an absolutely continuous invariant measure.

(2) m is exact (see [4]).

2. Proof of the main theorem

Lemma (cf. [13]). There exists 0 < D < ∞ such that for all x, y ∈ A
and j ∈ IA,

|φ
(s)
A (vj(x))− φ

(s)
A (vj(y))| ≤ Dd(x, y)θ.

P r o o f. A direct computation shows that it suffices to choose

D = sup
j∈IA

|j|−1∑

i=0

Lφ(j, i) <∞.

Proof of Theorem. It follows from the Lemma that there exists C ≥ 1
such that

sup
n

sup
j1...jn∈InA

sup
x,y∈A

exp[
∑n−1
k=0 φ

(s)
A (vjk+1...jn(x))]

exp[
∑n−1
k=0 φ

(s)
A (vjk+1...jn(y))]

≤ C.

Therefore {φ
(s)
A ◦ vj : j ∈ IA} forms a strong Hölder family of order − log γ

(cf. (6)) in the sense of [7]. Now T̂
φ
(s)
A

acts on all continuous functions on A

and so T̂ ∗

φ
(s)
A

acts on C(A)∗. Hence there is an eigenvalue λ and a probability

µ on {ψ <∞} satisfying

T̂ ∗

φ
(s)
A

µ = λµ

and by Lemma 2.4 of [7] we have log λ = Ptop(φ
(s)
A ). Then our assumption

gives λ = 1.
Applying [10], Lemma 9, we obtain µ(intA) = 1 (alternatively use

Lemma 2.1 of [4]). Since µ is nonsingular, it follows that the boundary
of A ∩ αn0 is a null set with respect to µ.

Let σ denote the shift, i.e., σ(i1 . . . in) = (i2 . . . in) and σk(i1 . . . in) =
(ik+1 . . . in) for k = 1, . . . , n − 1. For k = n we define σk(i1 . . . in) = ∅.
Let A∗ be the subset of A defined by A∗ = {i ∈ A : A ∩ vσki(A) = ∅
(k = 0, . . . , |i| − 1)}. For i ∈ A, we define

φ(i,s)(x) =

|i|−1∑

k=0

φ(vik+1...i|i|(x))− |i|s.



NONSINGULAR GIBBS MEASURES 381

In particular, if |i| is the empty word, we put φ(i,s) = 0.We define a measure
m (which may be infinite, but σ-finite) on X via µ as follows:\

f(x)m(dx) =
∑

i∈A∗

\
A

f(vi(x)) exp[φ
(i,s)(x)]µ(dx) +

\
A

f(x)µ(dx)

where f is a continuous function on X.

The Perron–Frobenius operator for T and m is defined by

T̂φf(x) =
∑

T (y)=x

f(y) exp(φ(y)− s) =
∑

l∈I

f(vl(x)) exp(φ(vl(x))− s)1TXl
(x).

In fact we shall show that
T
T̂φf dm =

T
f dm so that

d(m ◦ vl)

dm
(x) = exp[φ(vl(x)) − s] for a.e. x ∈ X.

We have\̂
Tφf(x) dm(x) =

∑

i∈A∗

\
A

T̂φf(vi(x)) exp[φ
(i,s)(x)]µ(dx) +

\
A

T̂φf(x)µ(dx)

=
∑

i∈A∗

\
A

∑

l∈I

f(vl(vi(x))) exp[φ(vl(vi(x))) − s]

× 1TXl
(vi(x)) exp[φ

(i,s)(x)]µ(dx)

+
\
A

∑

l∈I

f(vl(x)) exp[φ(vl(x))− s]1TXl
(x)µ(dx)

=
\
A

∑

j∈IA

f(vj(x)) exp[φ
(s)
A (vj(x))]µ(dx)

+
∑

i∈A∗

\
A

f(vi(x)) exp[φ
(i,s)(x)]µ(dx).

Since\
A

∑

j∈IA

f(vj(x)) exp[φ
(s)
A (vj(x))]µ(dx) =

\
A

T̂
φ
(s)
A

f dµ =
\
A

f dµ,

we have\̂
Tφf(x) dm(x) =

\
A

f dµ+
∑

i∈A∗

\
A

f(vi(x)) exp[φ
(i,s)(x)] dµ(x)

=
\
X

f(x)m(dx).

The Schweiger property follows from irreducibility and (6) and (7).
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3. Examples

Example 1 (A real two-dimensional map which is related to a complex
continued fraction expansion defined in [9]). Let α = 1 + i. We set X =
{z = x1α + x2α : −1/2 ≤ x1, x2 ≤ 1/2} and define T : X → X by
Tz = 1/z− [1/z]1, where [z]1 denotes [x1+1/2]α+[x2+1/2]α for a complex
number z = x1α + x2α. (Here [x] = max{n ∈ Z : n ≤ x} (x ∈ N) and
[x] = max{n ∈ Z : n < x} (x ∈ Z \ N).) The index set is I = {nα +mα :
m,n ∈ Z}\{0}. For each nα+mα ∈ I, we define

Xnα+mα = {z ∈ X : [1/z]1 = nα+mα}.

Then we have a countable partition α = {Xa}a∈I of X which is a topologi-
cally mixing Markov partition. The map T induces a continued fraction like
expansion of z ∈ X,

z =
1

a1 +
1

a2 +
1

. . .
1

an + . . .

,

where each ai is contained in I. Now T has indifferent fixed points ±i and
indifferent periodic points ±1 of periodic 2. All conditions (1)–(5) were es-
tablished in [9], [11], and [12].

Put
p−1 = α, p0 = 0, pn = anpn−1 + pn−2 (n ≥ 1)

q−1 = 0, q0 = α, qn = anqn−1 + qn−2 (n ≥ 1).
Then

va1...an(z) =
pn + zpn−1

qn + zqn−1
.

Let A be a cylinder away from the indifferent periodic points. Then (6) can
be verified by observing the following facts.

(1) |v′a1...an(z)| = |qn + zqn−1|
−2.

(2) |qn−1/qn| ≤ 1 for all n > 0.
(3) For Xa1...an such that Xan does not contain the indifferent periodic

points, |qn−1/qn| < 2/3.

Thus our theorem applies to T .

Example 2. Let T : S2 → S2 be a parabolic rational map of the Rie-
mann sphere (see e.g. [5] for a definition). We restrict the action of T to
its Julia set J . Then by [5] there is a finite Markov partition α satisfying
A ⊂ cl(intA) for every A ∈ α. Moreover, for each A ∈ α, away from the ra-
tionally indifferent periodic points, the Koebe distortion theorem applies to
balls centred in A and all analytic inverse branches (since the forward orbits
of critical points only accumulate at parabolic periodic points). It follows
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that (6) and (7) are satisfied (see [5]). The main theorem shows that one can
obtain conformal measures in more general situations that those previously
known: These known results are concerned with potentials φ satisfying

P (φ) > sup
z∈J

φ(z),

where P (φ) denotes the pressure of φ as in [10], or with the potential φ =
h log |T ′|, where h denotes the Hausdorff dimension of J .
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