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Abstract. The existence of non-Bernoullian actions with completely positive entropy
is proved for a class of countable amenable groups which includes, in particular, a class of
Abelian groups and groups with non-trivial finite subgroups. For this purpose, we apply a
reverse version of the Rudolph–Weiss theorem.

1. Introduction. The study of group actions with completely positive
entropy (c.p.e.) is an important trend in the contemporary entropy theory
of dynamical systems. The primary results were obtained by V. Rokhlin and
Ya. Sinai [7] who introduced the notion of c.p.e. for Z-actions. Later it was
transferred to Zd by J. Conze [1], and then B. Kamiński started a more
refined investigation of this phenomenon using the idea of perfect partitions
[4]. A remarkable progress was made in the recent work by D. Rudolph and
B. Weiss [8, Theorem 2.3], where it was demonstrated (surprisingly, with the
use of the orbit theory of dynamical systems) that complete positivity for an
amenable transformation group implies a rather strong mixing property (to
be called the Rudolph–Weiss property below). In this context, it is desirable
to prove the existence of non-Bernoullian c.p.e. actions of amenable groups.
This is the goal of this work.

We present a construction of c.p.e. non-Bernoullian actions for a class of
countable amenable groups. These actions are good to verify the Rudolph-
Weiss property. This should certainly imply c.p.e. via reversing the result
of [8]. Thus we need to show that the Rudolph–Weiss property is not only
necessary, but also sufficient for c.p.e. We demonstrate this in Section 2 in
the utmost generality, as advised by the referee.

The c.p.e. non-Bernoullian actions are produced for countable Abelian
groups with infinite order elements (see Section 3, Corollary 7 and Re -
mark 2). The case of nilpotent groups is considered in [3].
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2. The Rudolph–Weiss property and completely positive en-

tropy. The following definition is due to D. Rudolph and B. Weiss. Let G
be a countable amenable group and K ⊂ G a finite set. A finite set S ⊂ G
is said to be K-spread if for all γ1 6= γ2 ∈ S one has γ1γ

−1
2 6∈ K.

Recall also that the action of G is said to have a completely positive

entropy (c.p.e.) if for any finite partition ξ, the mean entropy h(ξ,G) is
positive.

Theorem 1. Let G be a countable amenable group, (X,µ) a Lebesgue

free G-space, and ξ a finite partition of X. Suppose that for any ε > 0 there

exists a finite subset K ⊆ G such that for any finite set S ⊂ G which is

K-spread ,
∣

∣

∣

∣

1

#S
H
(

∨

g∈S

gξ
)

−H(ξ)

∣

∣

∣

∣

< ε.

Then h(ξ,G) > 0.

We need the following

Lemma 2. The statement of Theorem 1 is valid in the case of a countable

Abelian G.

P r o o f. We write our Abelian group G additively, and let a be the
action symbol. Let T = {g ∈ G : ng = e for some n ∈ Z} be the torsion
group of G. Fix an increasing sequence of finitely generated subgroups Gn

with
⋃

n Gn = G. Let also π : G → G/T and πn : G → G/(Gn ∩ T )
stand for the natural projections, so πn(Gn) ∼= Zd(n) ⊂ π(G). Choose a se-
quence of rectangles Qn ⊂ πn(Gn) centered at 0 of Gn in such a way that
⋃

i π
−1
i (Qi) = G, and the following property of pavement is valid: for N > n

there exists a finite subset Sn,N ⊂ QN (⊂ π(G)) such that QN splits into a
disjoint union QN =

⋃

g∈Qn
(g + Sn,N). One can easily observe that, under

our assumptions, Qn is an increasing sequence of sets in π(G), and π−1
n (Qn)

form a Følner sequence of sets in G.

With ξ being the given finite partition, choose some positive ε < H(ξ)/2.
By our assumptions, one can find a finite set K ⊂ G such that for any finite
S ⊂ G which is K-spread,

∣

∣

∣
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< ε,
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and hence
1

#S
H
(

∨

g∈S

a(g)ξ
)

> H(ξ)/2.

Choose n so that K ⊂ π−1
n (Qn) (⊂ Gn). Let S′

n,N be a subset of

π−1
N (Sn,N ) whose intersection with each (Gn ∩ T )-coset is at most one point.

Clearly, S′
n,N is π−1

n (Qn)-spread (hence K-spread) for any N > n, and

#π−1
N (QN ) = #π−1

n (Qn) ·#S′
n,N . Now we have

1

#π−1
N (QN )

H
(

∨

g∈π−1

N
(QN )

a(g)ξ
)

>
1

#π−1
n (Qn) ·#S′

n,N

H
(

∨

g∈π−1
n (Qn)

∨

s∈S′

n,N

a(g + s)ξ
)

>
1

#π−1
n (Qn) ·#S′

n,N

H
(

∨

s∈S′

n,N

a(s)ξ
)

>
1

2#π−1
n (Qn)

H(ξ).

It remains to let N tend to infinity to obtain

h(ξ,G) ≥
1

2#π−1
n (Qn)

H(ξ) > 0.

Remark 1. One can use the same argument to obtain a relativized
version of Lemma 2, with entropy being replaced by the conditional entropy
with respect to a G-invariant measurable partition.

Proof of Theorem 1. This is essentially the argument used in [8] for
proving the converse result, so we omit some details. To begin with, we
quote from [8] the following

Definition. Fix some enumeration G = {γ1, γ2, . . .}. Suppose S(x) =
{s1(x), . . . , sk(x)} is a Borel choice of k-element subsets of G. We say S(x) is
N -quasi-spread if for all x outside a subset of measure less than 1/N , there
is a subset S′(x) ⊆ S(x) with #S′(x)/#S(x) > 1 − 1/N and for all distinct
s, s′ ∈ S′(x) we have

s−1s′ 6∈ {γ1, . . . , γN}.

Let (Y, ν) be a G-space, and form the product G-space X × Y , with the
product G-action g(x, y) = (gx, gy). Let T be an ergodic automorphism on
Y whose orbits are just the orbits of the G-action. This certainly means
the existence of Borel maps Vi : Y → G, i ∈ Z, with T iy = Vi(y)y. So,
one has a Z-action on X × Y generated by the automorphism T as follows:
T i(x, y) = (Vi(y)x, T

iy).
Let ξ be a given partition of X and ε > 0. By our assumptions, there is

a finite subset K ⊂ G such that for any finite K-spread subset S ⊂ G, one
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has
∣

∣

∣

∣
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γξ
)

−H(ξ)

∣

∣

∣

∣

<
ε

3
.

Now form a partition ξ = ξ × {the trivial partition of Y } of X × Y .
Obviously, for S ⊂ G being K-spread, one has

∣

∣

∣

∣

1

#S
H
(

∨

γ∈S

γξ
)

−H(ξ)

∣

∣

∣

∣

<
ε

3

with respect to the above action of G on X × Y .
For a subset Q = {q1, . . . , q#Q} ⊂ Z there is a Borel function V : Y →

G#Q, V (y) = (Vq1 (y), . . . , Vq#Q
(y)), such that Vqi(y)y = T qiy, so V is uni-

form [8]. Let M > 3H(ξ)/ε be an integer such that K ⊂ {γ1, . . . , γM}. By
[8, Theorem 2.11] we can choose Q to be N -spread (that is, for a, b ∈ Q,
a 6= b implies |a− b| > N) with N being so large that V is M -quasi-spread.
This implies that there is a Borel subset B ⊂ Y with ν(B) < 1 − 1/M such
that for y ∈ B there is a subset I(y) ⊂ Q with #I(y) > (1 − 1/M)#Q such
that {Vi(y) : i ∈ I(y)} is K-spread, and so

∣

∣

∣

∣

H(ξ)−
1

#I(y)
H
(

∨

i∈I(y)

Vi(y)ξ
)

∣

∣

∣

∣

<
ε

3

for y ∈ B. Let H(P |Y ) be the conditional entropy of a partition P with
respect to the σ-algebra of Y -measurable Borel subsets of X × Y . Then
∣
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Y
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This means that a relativized version of the Rudolph–Weiss property
(with respect to Y ) is valid for the partition ξ and the Z-action by powers
of T on X × Y .

So one can apply the relativized version of Lemma 2 (see Remark 1)
to conclude that h(ξ,Z |Y ) > 0. Again, going back to the orbit equivalent
G-action on X × Y , one can now apply [8, Theorem 2.6] to get

h(ξ,G |Y ) = h(ξ,Z |Y ) > 0,

and so
h(ξ,G) = h(ξ,G |Y ) > 0.

Corollary 3. A free action of a countable amenable group G on a

Lebesgue space (X,µ) has c.p.e. if and only if for any finite partition ξ and

any ε > 0 there exists a finite subset K ⊆ G such that for any finite set

S ⊂ G which is K-spread ,
∣

∣

∣

∣

1

#S
H
(

∨

g∈S

gξ
)

−H(ξ)

∣

∣

∣

∣

< ε.

P r o o f. The “only if” part is due to D. Rudolph and B. Weiss [8]. The
“if” part is an obvious consequence of Theorem 1.

3. Non-Bernoullian actions with completely positive entropy.

To produce c.p.e. non-Bernoullian actions for a class of amenable groups,
we need the following lemma on the entropy of finite index subgroups; it is
well known in some special cases (cf. [1]). Let G be a countable amenable
group and Gp be a subgroup of G of index p. Consider the space Gp\G of
left Gp-cosets. Let δp ⊂ G be a “fundamental domain” (section) for this
homogeneous space which contains the identity of G. Given a partition α,
we denote by αp the partition αδp =

∨

g∈δp
g · α.

Lemma 4. For a finite index subgroup Gp with index p,

h(αp, Gp) = ph(α,G).

P r o o f. Let Fn, n ∈ N, be a right Følner sequence of subsets in Gp

(recall that we consider right group actions). One has

h(αp, Gp) = lim
n→∞

1

#Fn
H
(

∨

h∈Fn

hδpα
)

= lim
n→∞

1

#Fn
H
(

∨

δ∈δp

∨

h∈Fn

hδα
)

= lim
n→∞

p

#(Fnδp)
H
(

∨

g∈Fnδp

gα
)

.

To prove that the latter limit is ph(α,G), it suffices to verify that the Fnδp
form a right Følner sequence in G. Note that, since Fn ⊂ Gp, Fnh for
different h ∈ δp are in different Gp-cosets, and hence disjoint. An arbitrary
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g ∈ G generates a one-to-one map of the right homogeneous space Gp\G,
and so there exist a bijection ag of δp and a map γg : δp → Gp such that
hg = γg(h)ag(h) for h ∈ δp. Hence

#(Fnδpg △ Fnδp)

#(Fnδp)
=

∑

h∈δp

#(Fnγg(ag−1(h))h△ Fnh)

#(Fnδp)
−→
n→∞

0,

which was to be proved.

The following lemma demonstrates that a non-Bernoullian c.p.e. action
of a subgroup can be used to produce an action of the entire Abelian group
with these properties via a sort of inducing procedure.

Lemma 5. Let G be a countable Abelian group, and N a subgroup of

G with the quotient group G/N being finitely generated. Suppose we are

given a c.p.e. non-Bernoullian N -space (X,µ). Then G also admits a c.p.e.

non-Bernoullian action.

P r o o f. Denote by π : G → G/N the natural projection and by s :
G/N → G a section with s(N) = 0.

Form the product space Y = XG/N with the associated product measure
ν and introduce an action of G on Y by

(gy)γ = (s(γ) + g − s(γg))yγ+π(g), y ∈ Y, γ ∈ G/N, g ∈ G,

with the given action of N on each direct factor of Y . An easy verifica-
tion shows that this action is well defined (in particular, s(γ) + g − s(γg) ∈
N). To see that this action is non-Bernoulli, we need the following simple
proposition, valid for any countable amenable group G and its subgroup N .

Proposition 6. The restriction of a Bernoullian action of G to a

subgroup N is also Bernoullian.

P r o o f. Let ζ be a measurable generating partition for the G-action such
that the family of partitions {gζ | g ∈ G} is independent. Let B ⊂ G be a set
which meets each left N -coset Ng in exactly one point. Form the measurable
partition η =

∨

g∈B gζ. Evidently, it is generating for the N -action and its
shifts by the elements of N are independent, which proves our statement.

We return to our construction. It follows from the definition of our G-
action that its restriction to N is given by

(hy)γ = gyγ , y ∈ Y, yγ ∈ X, γ ∈ G/N, h ∈ N.

Observe that this action splits into a direct product of actions on direct
factors of Y . Hence it has the original N -action as a factor, and thus is
non-Bernoullian [6]. Now an application of Proposition 6 shows that the
entire G-action is non-Bernoullian.
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To prove that the constructed action of G has c.p.e., we first observe
that G/N has the form G/N = F × Zm, with F being a finite group and m
a non-negative integer. Denote by τ : G/N → Zm the natural projection.

It was mentioned above that the restriction of the G-action on Y to
N splits into the direct product of N -actions on direct factors of Y . Since
each of those is just the given N -action on X , the N -action on Y has c.p.e.
[2]. That is, given a finite partition ξ of Y , the mean entropy h(ξ,N) is
positive. Choose a finite subset Q ⊂ G/N such that for some finite par-
tition η of XQ and the corresponding partition η on Y one has d(ξ, η) =
H(ξ | η) + H(η | ξ) < 1

2h(ξ,N). Consider a rectangle centered at 0 in Zm

which contains τ(Q), and denote by Q the direct product of F and τ(Q).
Clearly Q is a fundamental domain for a finite index subgroup D in G/N .
Note that D is Q-spread and contains F .

Now consider the finite index subgroup π−1(D) of G. Let Fn and Rn be
Følner sequences of sets in N and D, respectively. If the above sequences are
chosen properly, s(Rn)+Fn is a Følner sequence of sets in π−1(D). Assuming
this to be true, we use the independence of the partitions ηs(γ)+Fn

for distinct
γ ∈ D to get

1

#(s(Rn) + Fn)
H(ηs(Rn)+Fn

) =
1

#Rn ·#Fn

∑

γ∈Rn

H(ηs(γ)+Fn
)

=
1

#Fn
H(ηFn

) −→
n→∞

h(η,N),

that is, h(η, π−1(D)) = h(η,N). Now we apply the relation |h(ξ,G) −
h(η,G)| < d(ξ, η) to get

h(ξ, π−1(D)) ≥ h(η, π−1(D))− d(ξ, η) > h(η,N)− 1
2h(ξ,N)

≥ h(ξ,N)− d(ξ, η)− 1
2h(ξ,N)

> h(ξ,N)− 1
2h(ξ,N)− 1

2h(ξ,N) = 0,

and hence by Lemma 4,

h(ξ,G) =
1

#Q
h(ξQ, π

−1(D)) ≥
1

#Q
h(ξ, π−1(D)) > 0,

which proves c.p.e. for the G-action.

Corollary 7. Any countable Abelian group G containing an element of

infinite order has a non-Bernoullian c.p.e. action.

P r o o f. For G finitely generated, it suffices, due to Lemma 5, to prove
that some subgroup of G admits an action with the required properties. Un-
der our assumptions this subgroup is generated by an infinite order element,
and the required action of this subgroup comes from [5].

In the general case, represent G as a union of an increasing sequence of
finitely generated subgroups, G =

⋃∞
i=0 Gi, with G0 being a cyclic group



428 V. YA. GOLODETS AND S. D. SINEL’SHCHIKOV

which has a c.p.e. non-Bernoullian action (X,µ) as discussed above. Form
the G-space Y = XG/G0 exactly as in the proof of Lemma 5, and use the
same argument to demonstrate that this G-space is non-Bernoullian.

Observe that if one sets Yn = XGn/G0 , then for each n ∈ N, Y = Y
G/Gn
n

splits into the direct product of Gn-spaces. Since Gn is finitely generated
and the Gn-space Yn has the same structure as in the proof of Lemma 5,
one can demonstrate that the Gn-action has c.p.e. on Yn and hence on Y .

Suppose we are given a finite partition ξ on Y and ε > 0. Now choose n
as above so large that there is a partition η0 of Yn such that for the corre-
sponding partition η of Y one has d(ξ, η) < ε/3. By Corollary 3, one can find
a finite subset K ⊂ Gn such that for any K-spread finite subset S ⊂ Gn,

∣

∣

∣

∣

1

#S
H(ηS)−H(η)

∣

∣

∣

∣

<
ε

3
.

Now let P ⊂ G be a K-spread finite subset, which without loss of gen-
erality can be assumed to contain 0. Split P into a disjoint finite union
P =

⋃

i Pi, with each Pi lying inside a Gn-coset. It follows from the inde-
pendence of ηPi

for different i that H(ηP ) =
∑

i H(ηPi
), and so

|H(ηP )−#P ·H(η)| ≤
∑

i

|H(ηPi
)−#Pi ·H(η)|

=
∑

i

∣

∣

∣

∣

1

#Pi
·H(ηPi

)−H(η)

∣

∣

∣

∣

#Pi ≤ #P ·
ε

3
,

and hence
∣

∣

∣

∣

1

#P
·H(ηP )−H(η)

∣

∣

∣

∣

<
ε

3
.

On the other hand, note that for any two finite partitions α, β one has
H(α ∨ β) = H(α) +H(β |α) = H(β) +H(α |β), and hence H(α) −H(β) =
H(α |β)−H(β |α). Apply this observation to our case as follows:

∣

∣

∣

∣

1

#P
·H(ξP )−

1

#P
·H(ηP )

∣

∣

∣

∣

=
1

#P
|H(ξP | ηP )−H(ηP | ξP )| ≤

1

#P
(H(ξP | ηP ) +H(ηP | ξP ))

≤
1

#P

∑

g∈P

(H(gξ | gη) +H(gη | gξ)) = H(ξ | η) +H(η | ξ) <
ε

3
.

Now it follows from the above observations that
∣

∣

∣

∣

1

#P
·H(ξP )−H(ξ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

#P
·H(ξP )−

1

#P
·H(ηP )

∣

∣

∣

∣

+

∣

∣

∣

∣

1

#P
·H(ηP )−H(η)

∣

∣

∣

∣

+ |H(η)−H(ξ)| < ε.
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That is, we are in the conditions of Theorem 1, so an application of that
theorem yields h(ξ,G) > 0, which proves c.p.e. for the G-space Y .

Remark 2. The same argument as in the proof of Corollary 7 can be
used to construct a c.p.e. non-Bernoullian action for a countable group G
which has a normal Abelian subgroup A with an infinite order element and
such that the quotient group G/A is locally finite. Also, this approach was
used in [5] to produce c.p.e. non-Bernoullian actions for torsionfree nilpotent
groups and a class of solvable groups.

Remark 3. It should be noted that in the above construction, one
could choose a subgroup N generated by an automorphism Q from the
uncountable family of non-conjugate non-Bernoullian transformations with
completely positive entropy, produced in [5]. Thus, we also have an uncount-
able family of pairwise non-conjugate non-Bernoullian actions of a countable
Abelian group G with at least one element of infinite order.
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[4] B. Kami ńsk i, The theory of invariant partitions for Zd-actions, Bull. Acad.
Polon. Sci. Sér. Sci. Math. 29 (1981), 349–362.

[5] D. Ornste in and P. C. Shie lds, An uncountable family of K-automorphisms,
Adv. Math. 10 (1973), 63–88.

[6] D. Ornste in and B. Weiss, Entropy and isomorphism theorems for actions of
amenable groups, J. Anal. Math. 48 (1987), 1–141.

[7] V. A. Rokhl in and Ya. G. Sinai, Construction and properties of invariant meas-
urable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038–1041 (in Russian).

[8] D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions,

preprint.

Institute for Low Temperature Physics & Engineering
Ukrainian National Academy of Sciences
47 Lenin Ave., 61164 Kharkov, Ukraine
E-mail: golodets@ilt.kharkov.ua

sinelshchikov@ilt.kharkov.ua

Received 25 August 1999; (3823)
revised 19 February 2000


