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Abstract. The purpose of this note is to prove various versions of the ergodic de-
composition theorem for probability measures on standard Borel spaces which are quasi-
invariant under a Borel action of a locally compact second countable group or a discrete
nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decom-
position of all quasi-invariant probability measures with a prescribed Radon—Nikodym
derivative, analogous to classical results about decomposition of invariant probability mea-
sures.

1. Introduction. Throughout this note we assume that (X,8) is a
standard Borel space, i.e. a measurable space which is isomorphic to the
unit interval with its usual Borel structure. A Borel action T of a locally
compact second countable group G on X is a group homomorphism g — 719
from G into the group Aut(X,8) of Borel automorphisms of (X, 8) such that
the map (g,z) — T9z from G x X to X is Borel.

Let T be a Borel action of a locally compact second countable group G on
X, and let p be a probability measure on 8. The measure y is quasi-invariant
under 7T if u(T9B) = 0 for every g € G and every B € 8 with u(B) =0, and
w is ergodic under T if u(B) € {0,1} for every B € 8 with u(BATIB) =0
for every g € G.

The following theorem is part of the mathematical folklore about group
actions on measure spaces.

THEOREM 1.1 (Ergodic decomposition theorem). Let T be a Borel ac-
tion of a locally compact second countable group G on a standard Borel space
(X,8), and let p be a probability measure on 8§ which is quasi-invariant un-
der T'. Then there exist a standard Borel space (Y,7T), a probability measure
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v oon T and a family {p, : y € Y} of probability measures on (X,8) with the
following properties.

(1) For every B € 8, the map y — p,(B) is Borel on'Y and

n(B) = \p,(B) dv(y).

2) For every y € Y, p, s quasi-invariant and ergodic under T'.
Y
(3) If y,y' €Y and y #y' then p, and p, are mutually singular.

For G = Z or G = R there are many versions of Theorem 1.1 in the
literature (cf. e.g. [5], [9], [8], [17], [22]). More general decomposition results
can be found in [14]-[15], [16], [19]-[21] and [24]. However, none of these
general results are stated and proved in a form particularly convenient for
the purposes of general ergodic theory, and many specialists in ergodic theory
do not seem aware of Theorem 1.1.

The purpose of this note is to give two reasonably elementary and self-
contained proofs of Theorem 1.1 in the special case where the group G is
countable. In the process we provide a little more information about the
space Y and the measures p,, y € Y, appearing in the statement of the
theorem. In the last section we sketch an extension of our method to actions
of locally compact second countable groups (Theorem 5.2).

For the remainder of this section we fix a Borel action T" of a countable
group G on X and a probability measure p on 8 which is quasi-invariant
under T. There exists a Borel map po: G x X — R such that

duT?

(1.1)  e2lo®) = (x) for every g € G and p-ae. x € X,

(1.2)  o(gh,z) = o(g,T"x) + o(h,z) for every g,h € G and z € X,
(1.3)  o(g,2) =0 for every g € G and x € X with T9z = x.

DEFINITION 1.2. Let T be a Borel action of a countable group G on X.
A cocycle of T is a Borel map ¢ : G x X — R satisfying (1.2). If o satisfies
both (1.2) and (1.3) it is called an orbital cocycle (cf. [16]).

If o: Gx X — R is a cocycle we call a probability measure p on &
o-admissible if it satisfies (1.1). If the set MQT of o-admissible probability
measures on 8 is nonempty then it is obviously convex, and we write Eg C
Mg for the set of extremal points in Mg. Note that EZ; is precisely the set
of ergodic elements in Mg, and that distinct elements of Eg are mutually
singular.

REMARK 1.3. If p: G x X — R is a cocycle with MQT # () then

(1.4) w{r € X : T92 =z and o(g,z) #0}) =0

for every g € G. In particular, if G is countable, then there exists a T-
invariant Borel set N C X such that u(N) = 0 for every u € M) and
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the restriction of ¢ to G x (X . N) is orbital, and the orbital cocycle o’ :
G x X — R, defined by

/ _ Jolg,x) ifgeGandze X\ N,
Q(g’x){o if g€ Gandz e N,

satisfies M;f, = Mg. In other words, we may assume for our purposes that
o is orbital.

We denote by M;(X,8) the space of probability measures on 8 and by
BMl(X,S) the smallest o-algebra of subsets of M; (X, 8) with respect to which
the maps p + u(B) from M;(X,8) to R are measurable for every B € 8.
Then (M1 (X, 8), B, (x,s)) is standard Borel and Mg € B, (x,s)- Note that
EZ; could a priori be empty even if Mg is nonempty.

With this terminology at hand we can formulate two closely related
versions of Theorem 1.1 in the case where G is countable. The main feature
of these results is that they yield a simultaneous ergodic decomposition for
all quasi-invariant probability measures on X with a prescribed Radon-—
Nikodym derivative under 7', analogous to the classical statements about
simultaneous decomposition of all T-invariant probability measures.

THEOREM 1.4. Let T be a Borel action of a countable group G on a
standard Borel space (X,8) and 0: G x X — R a cocycle of T. Then
(1.5) E} € By (x.8),

and there exists, for every u € MQT, a unique probability measure v, on
BMl(X,S) U)’Lth

(1.6) u(B) =\ &B)dv,() for every B €S.

By

THEOREM 1.5. Let T be a Borel action of a countable group G on a
standard Borel space (X,8) and ¢ : Gx X — R a cocycle of T with M} # (.

(1) There exists a Borel map p: x — p, from X to EQT C M;(X,8) with
the following properties.

(a) pr = pros for every x € X and g € G.
(b) For every v € M;;F and every nonnegative Borel map f: X — R,

(1.7) \fdp. = BL(£187)(x)
for v-a.e. x € X, where

8T ={B €8 :T9B = B for every g € G},

and where E,(-|-) denotes conditional expectation with respect to v. In par-



498 G. GRESCHONIG AND K. SCHMIDT

ticular, by setting f = 1p,
| p=(B) dv(z) = (BN C)
C

for every B € 8 and C € 87.
. (Q)dI{b})o’ :ba? — 1;% is another Borel map from X to E" with the properties
a) an above, then

(1.8) v({fx € X ip. #p,}) =0 for everyv € M.

(3) Let T C 8T be the smallest o-algebra such that the map x + p, from
X to Eg in (1) is T-measurable. Then T is countably generated,

(1.9) T=8" (modv) foreveryve M,
and

_ 11 ifrelyls,
(1.10) Po(lvl7) = {0 otherwise,

for every x,y € X, where [y]lg =)
in J.

For a countable group G, Theorem 1.1 is an easy consequence of Theo-
rems 1.4 or 1.5.

yeceg C is the atom of a point y € X

Proof of Theorem 1.1 for countable groups using Theorem 1.4. Let u be
a probability measure on & which is quasi-invariant under 7' and choose a
Borel map ¢ : G x X — R satisfying (1.1)-(1.3). Then g € M} # ), and
Theorem 1.4 yields a probability measure v on Y = EQT with the properties
stated there. m

Proof of Theorem 1.1 for countable groups using Theorem 1.5. We choose
a Borel map ¢ : G x X — R satisfying (1.1)—(1.3) as above and obtain a
Borel map p : x — p, from X to Eg with the properties (1) in Theorem
1.5. The probability measure v = up~! again has the required properties. m

In Section 5 we prove a precise analogue of Theorem 1.5 for Borel actions
of locally compact second countable groups (Theorem 5.2), which will yield
Theorem 1.1.

We conclude this introduction with a corollary about a kind of unique
ergodicity for quasi-invariant measures (cf. [18]).

COROLLARY 1.6. Let T be a Borel action of a locally compact second
countable group G on a standard Borel space (X,8) and 0 : G x X — R
a cocycle of T. Then there exists, for every ergodic probability measure
v e ML, a Borel set B C X with v(B) = 1 and V'(B) = 0 for every
V' € B} with v # '
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Proof. If the group G is countable, then (1.7) in Theorem 1.4 implies
that v = p, for some z € X, and the set [z]5 has the required separation
property. If G is uncountable we have to use the analogous statement in
Theorem 5.2. m

This paper is organized as follows. Section 2 prepares the ground for
the proofs of Theorems 1.4-1.5. Theorem 1.4 is proved in Section 3, and
Theorem 1.5 in Section 4. In Section 5 it is shown how to generalize Theo-

rem 1.5 to locally compact second countable groups and to prove Theorem
1.1.

2. Equivalence relations and group actions. Following [4] we call
a Borel set R C X x X a discrete Borel equivalence relation on (X,8) if R
is an equivalence relation and every equivalence class

(2.1) R(z)={ye X :(z,y) € R}

is countable. If R C X x X is a discrete Borel equivalence relation on X
then R(B) € 8 for every B € §, where

(2.2) R(B) = | R(x)

zEB

is the saturation of B (cf. [4]). The group
[R] ={V € Aut(X,S8) : (Vz,z) € R for every x € X }

is called the full group of R.
If T is a Borel action of a countable group G on X then

(2.3) Rr ={(T9z,z) :z € X, g € G}

is a discrete Borel equivalence relation on X, and a probability measure u on
S is quasi-invariant (resp. ergodic) with respect to Ry if it is so with respect
to T. In [4] it was shown that every discrete Borel equivalence relation R
on X is of the form Ry for some Borel action T of a countable group G on
(X,3).

Our task in this section is to replace the action T of the countable group
G appearing in Theorems 1.4-1.5 by a Borel action of a possibly different
countable group for which it will be easier to construct the desired ergodic
decomposition.

DEFINITION 2.1. Let R be a discrete Borel equivalence relation on X. A
Borel map o : R — R is a cocycle on R if

o(x,y) +o(y,2) =o(z,z)
for all ,y,z € X with (,y), (z,2) € R.

The following lemma is obvious.
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LEMMA 2.2. Let 0 : R — R be a cocycle on a discrete Borel equivalence
relation R on X. Then o defines a map @ : [R] x X — R with

(Vi) =oc(Vx,z) forallV €[R], z € X,
(24) T(VW,z) =a(V,Wz)+o(W,z) foral V,W € [R], z € X,
(V,z) =0  for every V € [R] and x € X with Vx = z.

Ql

Ql

In other words, T is a cocycle in the sense of (1.2) for the natural action of
[R] on X.

In particular, if T is a Borel action of a countable group G on X with
Ry = R (cf. (2.3)), then the map or : G x X — R, defined by

(2.5) or(g,x) =o(17,z)

for every g € G and x € X, is an orbital cocycle of T. Conversely, if o is
an orbital cocycle of T, and if

(26) U(Tngx) = Q(g,ZL')

for every x € X and g € G, then the resulting map o : R — R is a cocycle
on R.

PROPOSITION 2.3. Let R be a discrete Borel equivalence relation on X
and o : R = R a cocycle. Then there exists a countable set I' C [R] with
the following properties.

(1) v2 = Idx for every v € I', where Idx is the identity map on X.
(2) {(ve,z):x e X, yeI'} =R.
(3) If I'* C [R] is the group generated by I, then the map

v 0(y2,3) = 7(7,2)
from X to R is bounded for every v € I'*.

Proof. This proof is a minor extension of the corresponding argument
in [4]. The space X is Borel isomorphic to a Polish space, so we can find a
sequence {Ay x By : k > 1} of measurable rectangles with

XQ\A: UAkXBk7
k>1

where A = {(z,2) : * € X} C X2 We denote by m; : X x X — X the
two coordinate projections and write | = m|g, r = m|g : R — X for the
restrictions of 71 and 7y to R. Since [7!({z}) is countable for every x € X,
Lusin’s theorem [10] yields the existence of a countable Borel partition {C,, :
m > 1} of R such that [ is injective on each C,,. Furthermore, r is injective
on 0(Cy,) for every m > 1, where 6 : R — R is the flip 0(z,y) = (y, z).

We set Dy pm.n = (Ak X Bi) N Cy, NO(C,,) and conclude that both [ and
r are injective on each Dy, . By Corollary 1.3.3 of [12], both ! and r are
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Borel isomorphisms from Dy, ., , onto their image, and the sets {(Dg m.»)
and r(Dg,m ) are disjoint.
For every k,m,n > 1 and x € X we set

r(I7Y(z)) ifz € (Dikm.n),
Vioman(2) = S 1(r~1(z)) if 2 € r(Dimon),
T otherwise,

and note that this transformation is a Borel automorphism of order 2, and
(Vie,m.nx,x) € R for every z € X.
Next we set, for every j,k,m,n > 1 and z € X,

Wi kmn® = { Vemmt i |o(Vimn, )| < Jj,
. x otherwise.

Again W i m n is a Borel automorphism of X of order 2.
The set
= {Wikmn: j,kym,n > 1} U {Idx}

has the properties (1)—(3) in the statement of the proposition. If I'* C
Aut(X,8) is the group generated by I' then equalities (2.4) and (1.2) imply
the boundedness of (v, ) for every v € I'*.

A probability measure u on 8 is quasi-invariant under a discrete Borel
equivalence relation R if u(R(B)) = 0 for every B € 8 with p(B) = 0, and
ergodic if u(R(B)) € {0,1} for every B € 8.

LEMMA 2.4. Let R be a discrete Borel equivalence relation on a standard
Borel space (X,8), 1 a probability measure on 8 and T be a Borel action of
a countable group G on X with R = Ry (cf. (2.3)). If p is quasi-invariant
under R then it is also quasi-invariant under every V € [R], and there exists
a cocycle o, : R — R with

duVv
dp

2.7 ou(Va,z) =log ()  for p-a.e. x € X, for every V € [R].

In particular, p is quasi-invariant under T'. Conversely, if p is quasi-invari-
ant under T then it is quasi-invariant under R.

Proof. Since R = Ry for some Borel action T' of a countable group G
on X there exists a countable subgroup A C [R] with R = {(Vz,z) : z € X,
V € A}. Since p is quasi-invariant under every V' € [R], we can choose, for
every V € A, a Borel map gy : X — R such that the following conditions
hold.

(2) ov = log % (mod p),
(b) ov(z) =0 for every z € X with Vo =z,
(¢) ovw(z) = ov(Wz) + ow(z) for all V,W € A and z € X.
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By setting o,(Vz,z) = ov(x) for every V € A and z € X we have de-
fined consistently a cocycle g, : R — R with the required properties. The
remaining assertions are obvious. m

Lemma 2.4 suggests the following definition.

DEFINITION 2.5. Let R be a discrete Borel equivalence relation on a
standard probability space (X,8), and let o : R — R be a cocycle. A prob-
ability measure p on 8 is g-admissible if it satisfies (2.7) with g replacing
0,- The convex set of g-admissible probability measures on 8 is denoted by
Mf € BMI(X’S), and we write Ef for the set of extreme points of Mf.

By combining Lemmas 2.2 and 2.4 we obtain a final observation in this
section.

LEMMA 2.6. Let R be a discrete Borel equivalence relation on a standard
probability space (X,8), ¢ : R — R a cocycle, and T a Borel action of a
countable group G with R = Rp. Then ME = MZT and EIf = EZT (cf.
(2.5)).

The discussion in this section, combined with Remark 1.3, shows that
the following two statements are precisely equivalent to Theorems 1.4 and
1.5.

THEOREM 2.7. Let R be a discrete Borel equivalence relation on a stan-

dard probability space (X,8) and o0: R — R a cocycle. Then
E} € B (x.s),
and there ezists, for every p € Mﬁ a probability measure v on BMl(X,S)
with
w(B) = S &(B)dv(€)  for every B € 8.
Eg

THEOREM 2.8. Let R be a discrete Borel equivalence relation on a stan-

dard probability space (X,8) and o0: R — R a cocycle with Mf £ 0.

(1) There exists a Borel map p: x — p, from X to Ef C My (X, 8) with
the following properties.

() py = pa for all (z,2') € R.
(b) For every v € Mf and every nonnegative Borel map f: X — R,

\fdp. = B,(£18%)(x)
for v-a.e. x € X in particular, by setting f = 1p,

\ p=(B) dv(z) = (BN C)
C

for every B € 8 and C € 8.
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(2) If p' : x — pl, is another Borel map from X to Ef with the properties
(1) above, then

v({fz € X 1p. #pL}) =0  for everyv € MJ.

(3) Let T C 8% be the smallest o-algebra such that the map x +— p, from
X to Ef in (1) is T-measurable. Then T is countably generated, T = 8%

(mod v) for every v e ME, and py([z]y) =1 for every z € X.

3. Proof of the equivalent Theorems 1.4 and 2.7. The proof of
Theorem 1.4 uses Choquet’s theorem.

PROPOSITION 3.1 (Choquet’s theorem). Let Y be a metrizable compact
convex subset of a locally conver space W which is a Choquet simplex. Then
the set EE C Y of all extreme points of Y is a Gs set. Furthermore there
exists, for every yo € Y, a unique probability measure v on By with v(E) = 1
and
(3.1) L(yo) = | Ly) dv(y)  for every L € W™,

E
where W* is the dual space of W.

Proof. [13], Proposition 1.3, Theorem on p. 19, and Section 9. m

The following lemma will provide the topological setting necessary for
applying Choquet’s theorem.

LEMMA 3.2. Let R be a discrete Borel equivalence relation on X, o :
R — R a cocycle, and let I'* C [R] be defined as in Proposition 2.3. Then
there exist a compact metric space Z, an injective Borel map ¢ : X — Z, an
action V' of I'* by homeomorphisms of Z, and a cocycle o' : I'* x Z — R
with the following properties.

(1) ¢o(yx) = V7¢(x) for everyy € I'* and x € X.
(2) o' (v,d(x)) = o(yx,x) for every vy € I'* and x € X.
(3) The map ¢'(v,-) from Z to R is continuous for every v € I'*.

Proof. This is an elementary application of Gelfand theory. We choose
a countable algebra A C 8 which separates the points of X. Let F be the
smallest algebra of bounded Borel functions f : X — C with the following
properties:

(a) for every A € A, the indicator function 14 € J,

(b) for every v € I'*, the map x — o(vyx,x) lies in T,

(c) forevery feF, ceCandyeTl* cf€eFand foye T,

(d) T is closed in the topology of uniform convergence.

It is clear that F is a separable complex Banach algebra under the maximum
norm. We denote by Z the maximal ideal space of F, i.e. the space of all al-
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gebra homomorphisms from F to C. The space Z is compact and metrizable
in the weak*® topology, and the map ¢ : X — Z, defined by ¢(x)(f) = f(z)
for every x € X and f € JF, is Borel and injective. For every z € Z, f € &F
and v € I'* we set

(V72)(f) = 2(f o)
Then the properties (1)—(3) are obvious from these choices. m

We define ME‘,{ C M,(Z,Bz) as in Definition 1.2, where B, denotes the
Borel field of Z.

LEMMA 3.3. The convex set M), C My(Z,Bz) is a Choquet simplex (cf.
Proposition 3.1 and Lemma 3.2). Furthermore, if u € ME C M;(X,8), then
M¢_1 S Mg/; - Ml(Z,Bz).

Proof. We denote by C(Z,C) the space of continuous complex-valued
functions on Z. The continuity of each ¢(v,-) : Z — R implies that the set

MY ={€eMi(2,B7): [fovr g = [ ragvr = | f(2)e? ) dg(2)

for every vy € I'* and f € C(Z, (C)}

is a closed convex subset of the weak*-compact metric space Mi(Z, B ).

The proof that M ;{ is a Choquet simplex is essentially identical to that
of Proposition 10.3 in [13], and the second assertion is an immediate conse-
quence of Lemmas 2.4 and 3.2. m

Proof of Theorem 1.4. We assume the notation and hypotheses of Theo-
rem 1.4, put R = Ry (cf. (2.3)) and define a cocycle o : R — R by (2.6). By
applying Lemma 3.2 we obtain a compact metric space Z, an injective Borel
map ¢ : X — Z, a group I'* C [R], an action V of I'* by homeomorphisms
of Z, and a cocycle ¢’ : I'* x Z — R for V with the properties described
there.

Lemma 3.3 and Proposition 3.1 show that M;f is a Choquet simplex,
that EL‘,/, - M;{ is a Borel set and that there exists, for every ' € M;f, a

unique probability measure v/, on By, (z5,) with VL,(EX) =1 and

Vraw = § (§7dg) avu(©)

for every B € By.
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The set Y/ = {v € M1(Z,Bz) : v(¢(X)) = 1} is Borel since ¢(X) € By
(Corollary 1.3.3 in [12]). If

/ ! __ 174 /
weM =M,NnY,

then
Ve(o(x)) v, (&) = w(9(X)) =1,

so that v/, (E") = 1 for every y’ € M', where
E'=Eyny’

According to Lemma 2.6, M] = M and E] = EF. We define the
equivalence relation Ry on Z and the cocycle ¢’ : Ry — R by (2.3) and (2.6)
with V and o replacing T and p. Then the map v — v/ = v¢~! defines a
Borel bijection between M! = ML and MLV NY’ = M’ which carries EI
to E'. Tt follows that E} C M is a Borel set, proving (1.5).

For every u € MQT we put v, = v,,¢ (this definition makes sense since
Vi ((Z)(EZ;)) = 1) and obtain

n(B) = | €B)dv, () = | €(6(B)) v, (€) = 1/ (6(B))

ET £’

for every B € 8, which proves (1.6). The uniqueness of v, follows from that
of /,. m
o

4. Proof of the equivalent Theorems 1.5 and 2.8. The proof of
Theorem 1.5 follows the approach in [17]-[18] and uses the sufficiency of the
o-algebra 87 for the family of measures M (cf. Definition 1.2 and e.g. [1]).

DEFINITION 4.1. Let (X, 8) be a standard Borel space and M C M1 (X, 8)
a set of probability measures. A o-algebra T C 8 is sufficient for M if there
exists, for every bounded Borel map f : X — R, a T-measurable Borel map
y: X — R with
by = Bu(f]T) (mod v)

for every v € M.

PROPOSITION 4.2. Let T be a Borel action of a countable group G on a
standard Borel space (X,8) and ¢: Gx X — R a cocycle of T with MQT £ 0.

Then the o-algebra 8T is sufficient for the family MQT C Mi(X,38).

For the proof of Proposition 4.2 we denote by R = Rr and o : R — R the
equivalence relation (2.3) and the cocycle (2.6), choose a countable subset
I' C [R] with the properties described in Proposition 2.3 and write I'™* C [R]
for the group generated by I'. For every o-algebra 7 C 8 we denote by
L>(X,T) the set of all bounded T-measurable maps f : X — R and set
I flloc =sup,ex |f(z)| for every f € L>(X,7T).
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LEMMA 4.3. For each v € I' we set 8" = {B € 8§ : yB = B}. Then the
mapping Py : L*(X,8) — L>(X,8") given by

_ A (foy) - e”)

(4.1) Py (f) on
satisfies
(4.2) Py(f) = E,(f]8") (mod v)

T
Jor everyv € M, .

Proof. Since 72 = Idx,

flyw) + f(z) - ”O0®)

By(f)ve) = e
_ f2) 00 4 f(a) OO
a e7(1,®) 4 7 (V) +7(7,2) = Py (f)(z)

for every z € X, by (2.4). The boundedness of 7 (v, ) implies that P, (f) €
L>(X,87).

An elementary calculation shows that | g Py (f)dv = { p fdv for every
veM!, Be8, and proves (4.2). m

We shall use the operators P,,vy € I', to construct a common conditional
expectation with respect to the o-algebra 8% = 8§ = MNyer 87. For this
purpose we need the following classical ergodic theorem from [6], [2].

THEOREM 4.4. Suppose that (X,8) is a standard Borel space, v a proba-
bility measure on 8 and Q a positive linear contraction on L*(X,8,v). For
every f € LY(X,8,v), the sequence

n—1
(43) SuA@Q =23 @, nx1
k=0

CONveErges v-a.e.

We fix an enumeration (;, i € N) of I' and define inductively for every
f e L>*(X,8) a sequence of maps

Pi(f)(xz) = limsup S, (f, Py, ),
4.4 n— oo
(4.4 P, (f)(xz) = limsup Sy (f, Py, © Po_1).

LEMMA 4.5. For every f € L®(X,8), n>1 and v € M}, |Po(f)]loo <
[flloo and

where

(4.6) 8, =[)8".
k=1
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Proof. The proof is by induction. For n = 1 the assertion is clear from
Lemma 4.3. The definition of P, implies that P,(1) =1 for all v € I', and
by induction we have P, (1) =1 for all n > 1. Since P, is positive it follows
that || Pn(f)lloe < ||f|loo for every n > 1.

Suppose that P,_1 has the required properties for some n > 2. In order
to prove (4.5) for P, we set Q = P,_1 o P, and note that

Sp(1) =1,
(4.7) 1Sk (f, Q)lloo < I flloo>
1Q 0 Sk(f, Q) — Sk(f,Q)llso < 21 fllso

for every k > 1.
We fix v € Mg. By applying the dominated convergence theorem and
Theorem 4.4 we obtain

i [[Po(f) = Sk(f, @)l = 0,

— 00

where || - || denotes the norm in L'(X,8,v), and (4.7) shows that
(4.8) P,_10P, oP,(f)=P.(f) (mod v).

According to Lemma 4.3 and our induction hypothesis, P,,—; and P, are
conditional expectations and thus projections on L?(X,8,v). From (4.8) we
conclude that P, (f) is invariant both under P,_; and P, and therefore both
8,—1- and 87 -measurable (mod v).

Finally we use induction on k to see that

\Se(r,Qdv =1\ rav
B B
for all k € N and B € §,,. The dominated convergence theorem implies that
\ Pu(fydv = tim { Su(f.Q)dv = fav,
k—oco

B B B

and hence that P,(f) = E,(f|8,) (mod v).
Since v € MQT was arbitrary this proves the lemma. =

Proof of Proposition 4.2. The sequence (8,,n > 1) of o-algebras in

Lemma 4.5 decreases to 87 = 8% = 8! and the decreasing martingale
theorem (cf. e.g. Theorem 2.3 in [11]) implies that
(4.9) Poo(f) = limsup P, (f) = B, (f|8") (mod v)

n—oo

for every f € L™(X,8) and v e M. m

In order to apply Proposition 4.2 in the proof of Theorem 1.5 we require
an elementary lemma.

LEMMA 4.6. If (X,8) is a standard Borel space then there exists a count-
able algebra A C 8 with the following properties.
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(1) o(A) =8, where o(A) is the o-algebra generated by A.
(2) Every finitely additive set function v : A — [}, 00] is o-additive and
thus defines a unique probability measure U on 8.

Proof. Since the zero-dimensional compact metric space C = {0, 1}N
is Borel isomorphic to X we may assume without loss of generality that
X = C with its usual Borel field. Denote by A C 8 the countable algebra of
closed and open subsets of C. If A € A is the union of a sequence (A;, i > 1)
of sets in A, the compactness of A and the openness of each A; imply that
only finitely many A; can be nonempty. This shows that A satisfies our
requirements. m

Proof of Theorem 1.5. Let
N={Be8":v(B)=0 for every v € M, }.

We choose a countable algebra A C 8§ according to Lemma 4.6 and define,
for every A € A, fa = Px(14) by (4.4) and (4.9). As A and G are countable
and fa = E,(14|87) for every v € Mg, there exists a set N € N with

fa(T%) = fa(x), fUZﬂ 4, (@) = Z fa,(z),
N k=1

for every z € X \ N, g € G and every choice Ay, ..., A, of disjoint sets in .A.
For every € X \. N, the finitely additive positive set function A — fa(x)
on A extends to a probability measure ¢, on 8 = o(A) (cf. Lemma 4.6).
Finally we fix an arbitrary point zp € X \ N and set ¢, = ¢, for x € V.
Then grs, = q, for every g € G and © € X. Then ¢ : © — g, is a Borel map
from X to M;(X,8) with g, = qrg, for every g € G and z € X.

Let v € M} By definition,

(4.10) {2 € X : Po(la)(z) # qu(A)} N

for every A € A. If B € 8 is arbitrary, then we can find a sequence
(A, n>1)in A with v(BA A,,) — 0 and hence with

|E,(15]8T) — E, (14, |8T)|1 — 0.

Since E,(1a, |8T) = Px(14,) (mod v) and P (14, )(z) = q.(A,) for every
n>0and z € X \ N, (4.10) holds for every B € 8. By combining this with
(4.9) we deduce (1.7) with ¢ : X — M replacing p.

We continue by showing that

N'={zxeX:q¢E]}eN.

Forevery Ac A, g€ G, C 8T and v € Mg, (1.7) shows that
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S Seg(g’y)lA(y) dg, (y) dv(z) = S 291 4 (z) dv(x)
& c
_ S e?9?) dy(z) = v(TI(ANC))
AnC

=\B,(1ron-1¢[87)dv

=V B.(raa |87y dv = | qu(T94) du ().
C C

As the map x — ¢, is 8T-measurable this shows that

{:13 eX: Seg(g’y)lA(y) dg.(y) # qx(TgA)} eN

for every A € A and g € G. The countability of A and G allows us to find
a set N € N with

(4.11) {2914 (y) dga(y) = .(T7A)

for every g € G, A € A and x € X \ N, which is easily seen to imply (4.11)
for every g € G, A € 8 and x € X ~. N. This proves that ¢, € MQT for every
z € X N N, as claimed.

We write T’ C 8T for the smallest o-algebra with respect to which the
map ¢ : X — M is measurable. Formula (1.7) implies that every 8-
measurable map f : X — R is T-measurable (modv) for every v € M],
which proves (1.9) with J” replacing T. As M is standard Borel, 7" is count-
ably generated, and we choose a countable algebra C C T’ with o(C) = T".

For every C € C, Py(l¢) = l¢, and the validity of (4.10) for every
A € § allows us to increase the set N’ € N if necessary, and to assume that
¢:(C) =1¢(z) for every C € C and z € X N\ N'.

If g, were nonergodic for some z € X\ N’ we could find a set B € 87 with
0 < ¢:(B) < 1, and (1.9) allows us to assume that B € J’. Since o(C) = T,
there exists a sequence (Cp, n > 1) in C with lim, . ¢.(C, A B) = 0.
However, as we have just checked, ¢,(C,) € {0,1} for every n > 1, which
leads to a contradiction. This shows that ¢, € Eg for every x € X \\ N'.

Finally we pick a point 1 € X ~ N’, set

{ gz fxe XN,
px = .
Gz, otherwise,

and denote by T C T’ the smallest o-algebra with respect to which p : X —
Eg is measurable. Since {z € X : p, # q.} € N, the map p again has the
properties (1) of Theorem 1.5, and T satisfies (1.9).

In order to prove (1.10) we fix x € X ~ N’ and recall that p,(C) =
¢(C) = 1¢(z) for every C € C. Then
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po(lely) = pollels) =p.( () €) =1,

zeCeC

since [z]q N\ N’ C [z]g C [z]5» UN' and N’ € N.
For z € N', [z]y = N' U [z1]3 and

pe([*]7) = @z, ([2]7) = qu, ([21]57) = 1.

Finally, if x,y € X and = ¢ [y]y, then there exists a set B € T with
y € B and x ¢ B, and hence p, # p,. It follows that p, and p, are mutually
singular, p.([z]7) = py([yl7) = 1, [z]l7N[yly = 0 and p.([yl7) = py([z]5) = 0.
This completes the proof of (1.10).

The uniqueness assertion (2) of Theorem 1.5 is clear from (1.7), applied
tof=1sforevery Ac A =

5. Theorem 1.5 for locally compact groups. One way of extending
Theorem 1.5 to Borel actions of locally compact second countable groups
is to use lacunary sections (cf. e.g. [3] and [7]). Here we sketch a somewhat
more elementary approach: if T is a Borel action of a locally compact sec-
ond countable group G on X we restrict this action to a countable dense
subgroup A C G, apply Theorem 1.5 to the action of A, and complete the
proof by showing that the resulting decomposition also works for the original
G-action T.

If T is a Borel action of a locally compact second countable group G on
X then [23] shows that there exists a G-equivariant embedding of X as a
G-invariant Borel set in a compact G-space Y. We assume for simplicity that
X itself is compact and metrizable, and that the map (g,z) — T9zx from
G x X to X is continuous. If y is a probability measure on 8 = B x which
is quasi-invariant under T then there exists a Borel map o : G x X — R
with

duT?
dp
olgh,z) = 0(g, T"x) + o(h, ) for prave. w € X,
p({z € X : T92 =z and o(g,z) # 0}) =0,

292 — () for prae. x € X,

for every g,h € G, and Theorem B.9 of [25] allows us to assume that o
satisfies (1.1)—(1.2) and (1.4). Again we call a Borel map o : G x X — R
satisfying (1.2) a cocycle of T and define the sets EX € M as in Definition
1.2.

We fix a cocycle g : G x X — R with Mg # (). Write Bg for the Borel
field, A\ for the right Haar measure, and 1g for the identity element of G,
and choose a strictly positive bounded continuous function n € L*(G, Bg, \)
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with the following properties (1):
5.1 ndA=1 and lim sup
(51) ) h=lc geG n(g)

For every g € G and x € X we set
a(z) = {n(h) - 2™ dX(h),

(5.2) b(z) = { looga(x) ftiifjv;oo
o(g,x) =b(T9%) + o(g, z) — b(x).

Then g : G x X — R is again a cocycle. For every v € Mg we denote by v
the probability measure defined by

(5.3) v(B) = S n(g) - v(T9B)d\(g) for every B € 8,
G
or, equivalently, by
(5.4) dv(z) = *@ du(x).
From (5.3)—(5.4) we conclude that
92 (T9z)  dvT9 {n(hg=') - e2®) dA(h)

55 o(g:@) _ = _
(5:5) e a(z) v {n(h) - ee(m2) dX(h)
for every v € Mg, every g € G, and v-a.e. x € X.

The properties of 7 in (5.1) imply that there exists, for every ¢ > 0, a
neighbourhood U(e) of the identity 1¢ in G with

av19
(5.6) sup el lH <e
geEU(e) dv 0
for every v € M, where || - || denotes the L°-norm w.r.t. v.

PROPOSITION 5.1. Let T be a Borel action of a locally compact second
countable group G on a standard Borel space (X,8), and let 0: G x X - R
be a cocycle of T with M;*F # 0. Let furthermore A C G be a countable
dense subgroup, and let T' and o be the restrictions of T and o to A and
A x X, respectively. Then

(1) In order to find such a function we let &/ C G be a compact symmetric neigh-
bourhood of 1 and cover the compact set US={gg’ : g,g’ € U} with k right translates
Uxy, ..., Uz of U. By induction, \(U™) < kAU 1) for all n > 2. Then H = Un>1Z/{"
is an open subgroup of G, and the space H\G of right cosets is finite or countable. Choose
elements y; € G, ¢ > 1, such that the cosets Hy;, ¢ > 1, form a partition of G, and set
h(z) = 271/(k+1)™ for every i > 1 and € U"y;\ U™ 1y;. The resulting function
h: G — R is strictly positive, and 1/(k +1) < h(z)/h(y) < k + 1 for all 2,y € G with
x -y~ ! € U. The continuous map n(z) = Su h(yz) dA\(y) < AU)(k + 1)h(x) is integrable

and meets our requirements after multiplication by a suitable constant.
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M’:Mglﬂ{y:Sadu<oo} :Mg,
E’:Eg, ﬂ{yzgadu<oo}:EQT
(cf. Definition 1.2).

Proof. It is clear that MQT C M’. In order to prove that M’ = MQT we
define, for every v € M’, a probability measure 7 by dv(z) = c,e®®dv(x),
where ¢, > 0 is the normalizing constant (cf. (5.2)—(5.3)). Then ¥ again
satisfies (5.5) for every ¢ € A and v-ae. x € X, ie. VU € Mgl, where

0’ is the restriction of g to A x X. Hence there exists, for every ¢ > 0,

a neighbourhood U(e) satisfying (5.6), and the chain rule for Radon—Niko-
dym derivatives implies that v is quasi-invariant not only under 7' ", but also
under every T9,g € G, and that dvT9/dv = ¢29°) (mod v) for every g € G.
This implies that v € Mg and completes the proof that M’ = Mg.

Every v € E’ is obviously ergodic under T' and hence lies in Eg. Con-
versely, if v € EQT, then the continuity of the unitary representation U
defined by T on L?(X,8,v) implies that v is also ergodic under the dense
subgroup A C G. n

THEOREM 5.2. Let T be a Borel action of a locally compact second count-

able group G on a standard Borel space (X,8) and ¢: G x X — R a cocycle
of T with MI # 0.

(1) There exists a Borel map p : x — p; from X to Eg C My (X,8) with
the following properties.

(a) px = prog for every x € X and g € G.
(b) For every v € MQT and every nonnegative Borel map f: X — R,

Vs dpe = E,(1187) (@)
for v-a.e. x € X, where
8T ={B €8 :T9B = B for every g € G}.

(2) If p’ : x — pl, is another Borel map from X to Eg with the properties
(1), then
v({r € X :p. #p,}) =0  for everyv € M.

(3) Let T C 8T be the smallest o-algebra such that the map x +— p, from
X to ET in (1) is T-measurable. Then T is countably generated,

T=8T (modv) for everyv e MQT,

and

0 otherwise,

pawh>—{1 i@ € by,

for every x,y € X.
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Proof. This is an almost immediate consequence of Remark 1.3, Theo-
rem 1.5 and Proposition 5.1. The only point worth mentioning is that, ac-
cording to (5.2) and (5.3)~(5.4), {adv = 1 for every v € M. In the notation
of Theorem 1.5 we conclude that, for every v € MQT C Mg:,, Sadpz(y) < 00
for v-a.e. z € X, and hence that v({z € X : p, e M'}) = 1.

After modifying the measures p, € Mgl for every = in a T-invariant
Borel set N C X with v(N) = 0 for every v € M} we may assume that
pe €M = MQT for every x € X.

In order to verify condition (1.a) we note that p, = pre, for every x € X
and g € A, which is easily seen to imply that, for every v € MQT and g € G,
Pz = Ppreg for v-a.e. x € X. A Fubini-type argument shows that there
exists a T-invariant Borel set N’ C X with v(N') = 0 for every v € M]
and pre, = pg for every x € X N\ N and g € G. A final modification of
{ps : * € N} guarantees (1.a). m

Proof of Theorem 1.1. This is completely analogous to the proof in the
case where G is countable. m
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