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Abstract. The purpose of this note is to prove various versions of the ergodic de-
composition theorem for probability measures on standard Borel spaces which are quasi-
invariant under a Borel action of a locally compact second countable group or a discrete
nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decom-
position of all quasi-invariant probability measures with a prescribed Radon–Nikodym
derivative, analogous to classical results about decomposition of invariant probability mea-
sures.

1. Introduction. Throughout this note we assume that (X,S) is a
standard Borel space, i.e. a measurable space which is isomorphic to the
unit interval with its usual Borel structure. A Borel action T of a locally
compact second countable group G on X is a group homomorphism g 7→ T g

from G into the group Aut(X,S) of Borel automorphisms of (X,S) such that
the map (g, x) 7→ T gx from G×X to X is Borel.

Let T be a Borel action of a locally compact second countable group G on
X, and let µ be a probability measure on S. The measure µ is quasi-invariant
under T if µ(T gB) = 0 for every g ∈ G and every B ∈ S with µ(B) = 0, and
µ is ergodic under T if µ(B) ∈ {0, 1} for every B ∈ S with µ(B 4 T gB) = 0
for every g ∈ G.

The following theorem is part of the mathematical folklore about group
actions on measure spaces.

Theorem 1.1 (Ergodic decomposition theorem). Let T be a Borel ac-
tion of a locally compact second countable group G on a standard Borel space
(X,S), and let µ be a probability measure on S which is quasi-invariant un-
der T . Then there exist a standard Borel space (Y,T), a probability measure
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ν on T and a family {py : y ∈ Y } of probability measures on (X,S) with the
following properties.

(1) For every B ∈ S, the map y 7→ py(B) is Borel on Y and

µ(B) =
\
py(B) dν(y).

(2) For every y ∈ Y , py is quasi-invariant and ergodic under T .
(3) If y, y′ ∈ Y and y 6= y′ then py and py′ are mutually singular.

For G = Z or G = R there are many versions of Theorem 1.1 in the
literature (cf. e.g. [5], [9], [8], [17], [22]). More general decomposition results
can be found in [14]–[15], [16], [19]–[21] and [24]. However, none of these
general results are stated and proved in a form particularly convenient for
the purposes of general ergodic theory, and many specialists in ergodic theory
do not seem aware of Theorem 1.1.

The purpose of this note is to give two reasonably elementary and self-
contained proofs of Theorem 1.1 in the special case where the group G is
countable. In the process we provide a little more information about the
space Y and the measures py, y ∈ Y , appearing in the statement of the
theorem. In the last section we sketch an extension of our method to actions
of locally compact second countable groups (Theorem 5.2).

For the remainder of this section we fix a Borel action T of a countable
group G on X and a probability measure µ on S which is quasi-invariant
under T . There exists a Borel map % : G×X → R such that

e%(g,x) =
dµT g

dµ
(x) for every g ∈ G and µ-a.e. x ∈ X,(1.1)

%(gh, x) = %(g, Thx) + %(h, x) for every g, h ∈ G and x ∈ X,(1.2)

%(g, x) = 0 for every g ∈ G and x ∈ X with T gx = x.(1.3)

Definition 1.2. Let T be a Borel action of a countable group G on X.
A cocycle of T is a Borel map % : G ×X → R satisfying (1.2). If % satisfies
both (1.2) and (1.3) it is called an orbital cocycle (cf. [16]).

If % : G × X → R is a cocycle we call a probability measure µ on S
%-admissible if it satisfies (1.1). If the set MT

% of %-admissible probability

measures on S is nonempty then it is obviously convex, and we write ET% ⊂
MT
% for the set of extremal points in MT

% . Note that ET% is precisely the set

of ergodic elements in MT
% , and that distinct elements of ET% are mutually

singular.

Remark 1.3. If % : G×X → R is a cocycle with MT
% 6= ∅ then

µ({x ∈ X : T gx = x and %(g, x) 6= 0}) = 0(1.4)

for every g ∈ G. In particular, if G is countable, then there exists a T -
invariant Borel set N ⊂ X such that µ(N) = 0 for every µ ∈ MT

% and
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the restriction of % to G × (X r N) is orbital, and the orbital cocycle %′ :
G×X → R, defined by

%′(g, x) =

{
%(g, x) if g ∈ G and x ∈ X rN,
0 if g ∈ G and x ∈ N,

satisfies MT
%′ = MT

% . In other words, we may assume for our purposes that
% is orbital.

We denote by M1(X,S) the space of probability measures on S and by
BM1(X,S) the smallest σ-algebra of subsets of M1(X,S) with respect to which
the maps µ 7→ µ(B) from M1(X,S) to R are measurable for every B ∈ S.
Then (M1(X,S),BM1(X,S)) is standard Borel and MT

% ∈ BM1(X,S). Note that

ET% could a priori be empty even if MT
% is nonempty.

With this terminology at hand we can formulate two closely related
versions of Theorem 1.1 in the case where G is countable. The main feature
of these results is that they yield a simultaneous ergodic decomposition for
all quasi-invariant probability measures on X with a prescribed Radon–
Nikodym derivative under T , analogous to the classical statements about
simultaneous decomposition of all T -invariant probability measures.

Theorem 1.4. Let T be a Borel action of a countable group G on a
standard Borel space (X,S) and % : G×X → R a cocycle of T . Then

ET% ∈ BM1(X,S),(1.5)

and there exists, for every µ ∈ MT
% , a unique probability measure νµ on

BM1(X,S) with

µ(B) =
\

ET
%

ξ(B) dνµ(ξ) for every B ∈ S.(1.6)

Theorem 1.5. Let T be a Borel action of a countable group G on a
standard Borel space (X,S) and % : G×X → R a cocycle of T with MT

% 6= ∅.

(1) There exists a Borel map p : x 7→ px from X to ET% ⊂M1(X,S) with
the following properties.

(a) px = pT gx for every x ∈ X and g ∈ G.
(b) For every ν ∈MT

% and every nonnegative Borel map f : X → R,

\
f dpx = Eν(f |ST )(x)(1.7)

for ν-a.e. x ∈ X, where

ST = {B ∈ S : T gB = B for every g ∈ G},

and where Eν(· | ·) denotes conditional expectation with respect to ν. In par -
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ticular , by setting f = 1B ,

\

C

px(B) dν(x) = ν(B ∩ C)

for every B ∈ S and C ∈ ST .
(2) If p′ : x 7→ p′x is another Borel map from X to ET% with the properties

(a) and (b) above, then

ν({x ∈ X : px 6= p′x}) = 0 for every ν ∈MT
% .(1.8)

(3) Let T ⊂ ST be the smallest σ-algebra such that the map x 7→ px from
X to ET% in (1) is T-measurable. Then T is countably generated ,

T = ST (mod ν) for every ν ∈MT
% ,(1.9)

and

px([y]T) =

{
1 if x ∈ [y]T ,
0 otherwise,

(1.10)

for every x, y ∈ X, where [y]T =
⋂
y∈C∈T C is the atom of a point y ∈ X

in T.

For a countable group G, Theorem 1.1 is an easy consequence of Theo-
rems 1.4 or 1.5.

Proof of Theorem 1.1 for countable groups using Theorem 1.4. Let µ be
a probability measure on S which is quasi-invariant under T and choose a
Borel map % : G × X → R satisfying (1.1)–(1.3). Then µ ∈ MT

% 6= ∅, and

Theorem 1.4 yields a probability measure ν on Y = ET% with the properties
stated there.

Proof of Theorem 1.1 for countable groups using Theorem 1.5. We choose
a Borel map % : G × X → R satisfying (1.1)–(1.3) as above and obtain a
Borel map p : x 7→ px from X to ET% with the properties (1) in Theorem
1.5. The probability measure ν = µp−1 again has the required properties.

In Section 5 we prove a precise analogue of Theorem 1.5 for Borel actions
of locally compact second countable groups (Theorem 5.2), which will yield
Theorem 1.1.

We conclude this introduction with a corollary about a kind of unique
ergodicity for quasi-invariant measures (cf. [18]).

Corollary 1.6. Let T be a Borel action of a locally compact second
countable group G on a standard Borel space (X,S) and % : G × X → R
a cocycle of T . Then there exists, for every ergodic probability measure
ν ∈ MT

% , a Borel set B ⊂ X with ν(B) = 1 and ν′(B) = 0 for every

ν′ ∈ ET% with ν 6= ν′.
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P r o o f. If the group G is countable, then (1.7) in Theorem 1.4 implies
that ν = px for some x ∈ X, and the set [x]T has the required separation
property. If G is uncountable we have to use the analogous statement in
Theorem 5.2.

This paper is organized as follows. Section 2 prepares the ground for
the proofs of Theorems 1.4–1.5. Theorem 1.4 is proved in Section 3, and
Theorem 1.5 in Section 4. In Section 5 it is shown how to generalize Theo-
rem 1.5 to locally compact second countable groups and to prove Theorem
1.1.

2. Equivalence relations and group actions. Following [4] we call
a Borel set R ⊂ X × X a discrete Borel equivalence relation on (X,S) if R
is an equivalence relation and every equivalence class

R(x) = {y ∈ X : (x, y) ∈ R}(2.1)

is countable. If R ⊂ X × X is a discrete Borel equivalence relation on X
then R(B) ∈ S for every B ∈ S, where

R(B) =
⋃
x∈B

R(x)(2.2)

is the saturation of B (cf. [4]). The group

[R] = {V ∈ Aut(X,S) : (V x, x) ∈ R for every x ∈ X}

is called the full group of R.
If T is a Borel action of a countable group G on X then

RT = {(T gx, x) : x ∈ X, g ∈ G}(2.3)

is a discrete Borel equivalence relation on X, and a probability measure µ on
S is quasi-invariant (resp. ergodic) with respect to RT if it is so with respect
to T . In [4] it was shown that every discrete Borel equivalence relation R
on X is of the form RT for some Borel action T of a countable group G on
(X,S).

Our task in this section is to replace the action T of the countable group
G appearing in Theorems 1.4–1.5 by a Borel action of a possibly different
countable group for which it will be easier to construct the desired ergodic
decomposition.

Definition 2.1. Let R be a discrete Borel equivalence relation on X. A
Borel map σ : R→ R is a cocycle on R if

σ(x, y) + σ(y, z) = σ(x, z)

for all x, y, z ∈ X with (x, y), (x, z) ∈ R.

The following lemma is obvious.
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Lemma 2.2. Let σ : R→ R be a cocycle on a discrete Borel equivalence
relation R on X. Then σ defines a map σ : [R]×X → R with

σ(V, x) = σ(V x, x) for all V ∈ [R], x ∈ X,
σ(VW, x) = σ(V,Wx) + σ(W,x) for all V,W ∈ [R], x ∈ X,
σ(V, x) = 0 for every V ∈ [R] and x ∈ X with V x = x.

(2.4)

In other words, σ is a cocycle in the sense of (1.2) for the natural action of
[R] on X.

In particular , if T is a Borel action of a countable group G on X with
RT = R (cf. (2.3)), then the map σT : G×X → R, defined by

σT (g, x) = σ(T g, x)(2.5)

for every g ∈ G and x ∈ X, is an orbital cocycle of T . Conversely , if % is
an orbital cocycle of T , and if

σ(T gx, x) = %(g, x)(2.6)

for every x ∈ X and g ∈ G, then the resulting map σ : R → R is a cocycle
on R.

Proposition 2.3. Let R be a discrete Borel equivalence relation on X
and σ : R → R a cocycle. Then there exists a countable set Γ ⊂ [R] with
the following properties.

(1) γ2 = IdX for every γ ∈ Γ , where IdX is the identity map on X.
(2) {(γx, x) : x ∈ X, γ ∈ Γ} = R.
(3) If Γ ∗ ⊂ [R] is the group generated by Γ , then the map

x 7→ σ(γx, x) = σ(γ, x)

from X to R is bounded for every γ ∈ Γ ∗.
P r o o f. This proof is a minor extension of the corresponding argument

in [4]. The space X is Borel isomorphic to a Polish space, so we can find a
sequence {Ak ×Bk : k ≥ 1} of measurable rectangles with

X2 r ∆ =
⋃
k≥1

Ak ×Bk,

where ∆ = {(x, x) : x ∈ X} ⊂ X2. We denote by πi : X × X → X the
two coordinate projections and write l = π1|R, r = π2|R : R → X for the
restrictions of π1 and π2 to R. Since l−1({x}) is countable for every x ∈ X,
Lusin’s theorem [10] yields the existence of a countable Borel partition {Cm :
m ≥ 1} of R such that l is injective on each Cm. Furthermore, r is injective
on θ(Cm) for every m ≥ 1, where θ : R→ R is the flip θ(x, y) = (y, x).

We set Dk,m,n = (Ak × Bk) ∩ Cm ∩ θ(Cn) and conclude that both l and
r are injective on each Dk,m,n. By Corollary I.3.3 of [12], both l and r are
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Borel isomorphisms from Dk,m,n onto their image, and the sets l(Dk,m,n)
and r(Dk,m,n) are disjoint.

For every k,m, n ≥ 1 and x ∈ X we set

Vk,m,n(x) =

 r(l−1(x)) if x ∈ l(Dk,m,n),
l(r−1(x)) if x ∈ r(Dk,m,n),
x otherwise,

and note that this transformation is a Borel automorphism of order 2, and
(Vk,m,nx, x) ∈ R for every x ∈ X.

Next we set, for every j, k,m, n ≥ 1 and x ∈ X,

Wj,k,m,nx =
{
Vk,m,nx if |σ(Vk,m,nx, x)| ≤ j,
x otherwise.

Again Wj,k,m,n is a Borel automorphism of X of order 2.
The set

Γ = {Wj,k,m,n : j, k,m, n ≥ 1} ∪ {IdX}

has the properties (1)–(3) in the statement of the proposition. If Γ ∗ ⊂
Aut(X,S) is the group generated by Γ then equalities (2.4) and (1.2) imply
the boundedness of σ(γ, ·) for every γ ∈ Γ ∗.

A probability measure µ on S is quasi-invariant under a discrete Borel
equivalence relation R if µ(R(B)) = 0 for every B ∈ S with µ(B) = 0, and
ergodic if µ(R(B)) ∈ {0, 1} for every B ∈ S.

Lemma 2.4. Let R be a discrete Borel equivalence relation on a standard
Borel space (X,S), µ a probability measure on S and T be a Borel action of
a countable group G on X with R = RT (cf. (2.3)). If µ is quasi-invariant
under R then it is also quasi-invariant under every V ∈ [R], and there exists
a cocycle %µ : R→ R with

%µ(V x, x) = log
dµV

dµ
(x) for µ-a.e. x ∈ X, for every V ∈ [R].(2.7)

In particular , µ is quasi-invariant under T . Conversely , if µ is quasi-invari-
ant under T then it is quasi-invariant under R.

P r o o f. Since R = RT for some Borel action T of a countable group G
on X there exists a countable subgroup ∆ ⊂ [R] with R = {(V x, x) : x ∈ X,
V ∈ ∆}. Since µ is quasi-invariant under every V ∈ [R], we can choose, for
every V ∈ ∆, a Borel map %V : X → R such that the following conditions
hold.

(a) %V = log dµV
dµ (mod µ),

(b) %V (x) = 0 for every x ∈ X with V x = x,
(c) %VW (x) = %V (Wx) + %W (x) for all V,W ∈ ∆ and x ∈ X.
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By setting %µ(V x, x) = %V (x) for every V ∈ ∆ and x ∈ X we have de-
fined consistently a cocycle %µ : R → R with the required properties. The
remaining assertions are obvious.

Lemma 2.4 suggests the following definition.

Definition 2.5. Let R be a discrete Borel equivalence relation on a
standard probability space (X,S), and let % : R → R be a cocycle. A prob-
ability measure µ on S is %-admissible if it satisfies (2.7) with % replacing
%µ. The convex set of %-admissible probability measures on S is denoted by
MR
% ∈ BM1(X,S), and we write ER% for the set of extreme points of MR

% .

By combining Lemmas 2.2 and 2.4 we obtain a final observation in this
section.

Lemma 2.6. Let R be a discrete Borel equivalence relation on a standard
probability space (X,S), σ : R → R a cocycle, and T a Borel action of a
countable group G with R = RT . Then MR

σ = MT
σT

and ERσ = ETσT
(cf.

(2.5)).

The discussion in this section, combined with Remark 1.3, shows that
the following two statements are precisely equivalent to Theorems 1.4 and
1.5.

Theorem 2.7. Let R be a discrete Borel equivalence relation on a stan-
dard probability space (X,S) and % : R→ R a cocycle. Then

ER% ∈ BM1(X,S),

and there exists, for every µ ∈ MR
% , a probability measure ν on BM1(X,S)

with
µ(B) =

\

ER
%

ξ(B) dν(ξ) for every B ∈ S.

Theorem 2.8. Let R be a discrete Borel equivalence relation on a stan-
dard probability space (X,S) and % : R→ R a cocycle with MR

% 6= ∅.

(1) There exists a Borel map p : x 7→ px from X to ER% ⊂M1(X,S) with
the following properties.

(a) px = px′ for all (x, x′) ∈ R.
(b) For every ν ∈MR

% and every nonnegative Borel map f : X → R,

\
f dpx = Eν(f |SR)(x)

for ν-a.e. x ∈ X; in particular , by setting f = 1B ,
\

C

px(B) dν(x) = ν(B ∩ C)

for every B ∈ S and C ∈ SR.
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(2) If p′ : x 7→ p′x is another Borel map from X to ER% with the properties
(1) above, then

ν({x ∈ X : px 6= p′x}) = 0 for every ν ∈MR
% .

(3) Let T ⊂ SR be the smallest σ-algebra such that the map x 7→ px from
X to ER% in (1) is T-measurable. Then T is countably generated , T = SR

(mod ν) for every ν ∈MR
% , and px([x]T) = 1 for every x ∈ X.

3. Proof of the equivalent Theorems 1.4 and 2.7. The proof of
Theorem 1.4 uses Choquet’s theorem.

Proposition 3.1 (Choquet’s theorem). Let Y be a metrizable compact
convex subset of a locally convex space W which is a Choquet simplex. Then
the set E ⊂ Y of all extreme points of Y is a Gδ set. Furthermore there
exists, for every y0 ∈ Y , a unique probability measure ν on BY with ν(E) = 1
and

L(y0) =
\

E

L(y) dν(y) for every L ∈W ∗,(3.1)

where W ∗ is the dual space of W .

P r o o f. [13], Proposition 1.3, Theorem on p. 19, and Section 9.

The following lemma will provide the topological setting necessary for
applying Choquet’s theorem.

Lemma 3.2. Let R be a discrete Borel equivalence relation on X, σ :
R → R a cocycle, and let Γ ∗ ⊂ [R] be defined as in Proposition 2.3. Then
there exist a compact metric space Z, an injective Borel map φ : X → Z, an
action V of Γ ∗ by homeomorphisms of Z, and a cocycle %′ : Γ ∗ × Z → R
with the following properties.

(1) φ(γx) = V γφ(x) for every γ ∈ Γ ∗ and x ∈ X.
(2) %′(γ, φ(x)) = σ(γx, x) for every γ ∈ Γ ∗ and x ∈ X.
(3) The map %′(γ, ·) from Z to R is continuous for every γ ∈ Γ ∗.
P r o o f. This is an elementary application of Gelfand theory. We choose

a countable algebra A ⊂ S which separates the points of X. Let F be the
smallest algebra of bounded Borel functions f : X → C with the following
properties:

(a) for every A ∈ A, the indicator function 1A ∈ F,
(b) for every γ ∈ Γ ∗, the map x 7→ σ(γx, x) lies in F,
(c) for every f ∈ F, c ∈ C and γ ∈ Γ ∗, cf ∈ F and f ◦ γ ∈ F,
(d) F is closed in the topology of uniform convergence.

It is clear that F is a separable complex Banach algebra under the maximum
norm. We denote by Z the maximal ideal space of F, i.e. the space of all al -
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gebra homomorphisms from F to C. The space Z is compact and metrizable
in the weak∗ topology, and the map φ : X → Z, defined by φ(x)(f) = f(x)
for every x ∈ X and f ∈ F, is Borel and injective. For every z ∈ Z, f ∈ F
and γ ∈ Γ ∗ we set

(V γz)(f) = z(f ◦ γ).

Then the properties (1)–(3) are obvious from these choices.

We define MV
%′ ⊂ M1(Z,BZ) as in Definition 1.2, where BZ denotes the

Borel field of Z.

Lemma 3.3. The convex set MV
%′ ⊂M1(Z,BZ) is a Choquet simplex (cf.

Proposition 3.1 and Lemma 3.2). Furthermore, if µ ∈MR
σ ⊂M1(X,S), then

µφ−1 ∈MV
%′ ⊂M1(Z,BZ).

P r o o f. We denote by C(Z,C) the space of continuous complex-valued
functions on Z. The continuity of each %′(γ, ·) : Z → R implies that the set

MV
%′ =

{
ξ ∈M1(Z,BZ) :

\
f ◦ V γ

−1

dξ =
\
f dξ V γ =

\
f(z)e%

′(γ,z) dξ(z)

for every γ ∈ Γ ∗ and f ∈ C(Z,C)
}

is a closed convex subset of the weak∗-compact metric space M1(Z,BZ).
The proof that MV

%′ is a Choquet simplex is essentially identical to that
of Proposition 10.3 in [13], and the second assertion is an immediate conse-
quence of Lemmas 2.4 and 3.2.

Proof of Theorem 1.4. We assume the notation and hypotheses of Theo-
rem 1.4, put R = RT (cf. (2.3)) and define a cocycle σ : R→ R by (2.6). By
applying Lemma 3.2 we obtain a compact metric space Z, an injective Borel
map φ : X → Z, a group Γ ∗ ⊂ [R], an action V of Γ ∗ by homeomorphisms
of Z, and a cocycle %′ : Γ ∗ × Z → R for V with the properties described
there.

Lemma 3.3 and Proposition 3.1 show that MV
%′ is a Choquet simplex,

that EV%′ ⊂ MV
%′ is a Borel set and that there exists, for every µ′ ∈ MV

%′ , a

unique probability measure ν′µ′ on BM1(Z,BZ) with ν′µ′(E
V
%′) = 1 and

\
f dµ′ =

\

EV
%′

( \
f dξ

)
dν′µ′(ξ)

for every f ∈ C(Z,C), and hence with

µ′(B) =
\

EV
%′

ξ(B) dν′µ′(ξ)

for every B ∈ BZ .
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The set Y ′ = {ν ∈ M1(Z,BZ) : ν(φ(X)) = 1} is Borel since φ(X) ∈ BZ

(Corollary I.3.3 in [12]). If

µ′ ∈M ′ = MV
%′ ∩ Y ′,

then \
ξ(φ(X)) dν′µ′(ξ) = µ′(φ(X)) = 1,

so that ν′µ′(E
′) = 1 for every µ′ ∈M ′, where

E′ = EV%′ ∩ Y ′.

According to Lemma 2.6, MT
% = MR

σ and ET% = ERσ . We define the
equivalence relation RV on Z and the cocycle σ′ : RV → R by (2.3) and (2.6)
with V and %′ replacing T and %. Then the map ν 7→ ν′ = νφ−1 defines a
Borel bijection between MT

% = MR
σ and MRV

σ′ ∩ Y ′ = M ′ which carries ET%
to E′. It follows that ET% ⊂MT

% is a Borel set, proving (1.5).

For every µ ∈ MT
% we put νµ = ν′µ′φ (this definition makes sense since

ν′µ′(φ(ET% )) = 1) and obtain

µ(B) =
\

ET
%

ξ(B) dνµ(ξ) =
\

E′

ξ′(φ(B)) dν′µ′(ξ
′) = µ′(φ(B))

for every B ∈ S, which proves (1.6). The uniqueness of νµ follows from that
of ν′µ′ .

4. Proof of the equivalent Theorems 1.5 and 2.8. The proof of
Theorem 1.5 follows the approach in [17]–[18] and uses the sufficiency of the
σ-algebra ST for the family of measures MT

% (cf. Definition 1.2 and e.g. [1]).

Definition 4.1. Let (X,S) be a standard Borel space and M⊂M1(X,S)
a set of probability measures. A σ-algebra T ⊂ S is sufficient for M if there
exists, for every bounded Borel map f : X → R, a T-measurable Borel map
ψf : X → R with

ψf = Eν(f |T) (mod ν)

for every ν ∈M .

Proposition 4.2. Let T be a Borel action of a countable group G on a
standard Borel space (X,S) and % : G×X → R a cocycle of T with MT

% 6= ∅.
Then the σ-algebra ST is sufficient for the family MT

% ⊂M1(X,S).

For the proof of Proposition 4.2 we denote by R = RT and σ : R→ R the
equivalence relation (2.3) and the cocycle (2.6), choose a countable subset
Γ ⊂ [R] with the properties described in Proposition 2.3 and write Γ ∗ ⊂ [R]
for the group generated by Γ . For every σ-algebra T ⊂ S we denote by
L∞(X,T) the set of all bounded T-measurable maps f : X → R and set
‖f‖∞ = supx∈X |f(x)| for every f ∈ L∞(X,T).
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Lemma 4.3. For each γ ∈ Γ we set Sγ = {B ∈ S : γB = B}. Then the
mapping Pγ : L∞(X,S)→ L∞(X,Sγ) given by

Pγ(f) =
f + (f ◦ γ) · eσ(γ,·)

1 + eσ(γ,·)
(4.1)

satisfies
Pγ(f) = Eν(f |Sγ) (mod ν)(4.2)

for every ν ∈MT
% .

P r o o f. Since γ2 = IdX ,

Pγ(f)(γx) =
f(γx) + f(x) · eσ(γ,γx)

1 + eσ(γ,γx)

=
f(γx) · eσ(γ,x) + f(x) · eσ(γ,γx)+σ(γ,x)

eσ(γ,x) + eσ(γ,γx)+σ(γ,x)
= Pγ(f)(x)

for every x ∈ X, by (2.4). The boundedness of σ(γ, ·) implies that Pγ(f) ∈
L∞(X,Sγ).

An elementary calculation shows that
T
B
Pγ(f) dν =

T
B
f dν for every

ν ∈MT
% , B ∈ Sγ , and proves (4.2).

We shall use the operators Pγ , γ ∈ Γ , to construct a common conditional
expectation with respect to the σ-algebra SR = SΓ =

⋂
γ∈Γ S

γ . For this
purpose we need the following classical ergodic theorem from [6], [2].

Theorem 4.4. Suppose that (X,S) is a standard Borel space, ν a proba-
bility measure on S and Q a positive linear contraction on L1(X,S, ν). For
every f ∈ L1(X,S, ν), the sequence

Sn(f,Q) =
1

n

n−1∑
k=0

Qkf, n ≥ 1,(4.3)

converges ν-a.e.

We fix an enumeration (γi, i ∈ N) of Γ and define inductively for every
f ∈ L∞(X,S) a sequence of maps

P1(f)(x) = lim sup
n→∞

Sn(f, Pγ1),

Pn(f)(x) = lim sup
n→∞

Sn(f, Pγn ◦ Pn−1).
(4.4)

Lemma 4.5. For every f ∈ L∞(X,S), n ≥ 1 and ν ∈ MT
% , ‖Pn(f)‖∞ ≤

‖f‖∞ and
Pn(f) = Eν(f |Sn) (mod ν),(4.5)

where

Sn =

n⋂
k=1

Sγk .(4.6)
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P r o o f. The proof is by induction. For n = 1 the assertion is clear from
Lemma 4.3. The definition of Pγ implies that Pγ(1) = 1 for all γ ∈ Γ , and
by induction we have Pn(1) = 1 for all n ≥ 1. Since Pn is positive it follows
that ‖Pn(f)‖∞ ≤ ‖f‖∞ for every n ≥ 1.

Suppose that Pn−1 has the required properties for some n ≥ 2. In order
to prove (4.5) for Pn we set Q = Pn−1 ◦ Pγn and note that

Sk(1) = 1,

‖Sk(f,Q)‖∞ ≤ ‖f‖∞,
‖Q ◦ Sk(f,Q)− Sk(f,Q)‖∞ ≤ 2

k‖f‖∞
(4.7)

for every k ≥ 1.
We fix ν ∈ MT

% . By applying the dominated convergence theorem and
Theorem 4.4 we obtain

lim
k→∞

‖Pn(f)− Sk(f,Q)‖1 = 0,

where ‖ · ‖1 denotes the norm in L1(X,S, ν), and (4.7) shows that

Pn−1 ◦ Pγn ◦ Pn(f) = Pn(f) (mod ν).(4.8)

According to Lemma 4.3 and our induction hypothesis, Pn−1 and Pγn are
conditional expectations and thus projections on L2(X,S, ν). From (4.8) we
conclude that Pn(f) is invariant both under Pn−1 and Pγn and therefore both
Sn−1- and Sγn -measurable (mod ν).

Finally we use induction on k to see that
\

B

Sk(f,Q) dν =
\

B

f dν

for all k ∈ N and B ∈ Sn. The dominated convergence theorem implies that
\

B

Pn(f) dν = lim
k→∞

\

B

Sk(f,Q) dν =
\

B

f dν,

and hence that Pn(f) = Eν(f |Sn) (mod ν).
Since ν ∈MT

% was arbitrary this proves the lemma.

Proof of Proposition 4.2. The sequence (Sn, n ≥ 1) of σ-algebras in
Lemma 4.5 decreases to ST = SR = SΓ , and the decreasing martingale
theorem (cf. e.g. Theorem 2.3 in [11]) implies that

P∞(f) = lim sup
n→∞

Pn(f) = Eν(f |ST ) (mod ν)(4.9)

for every f ∈ L∞(X,S) and ν ∈MT
% .

In order to apply Proposition 4.2 in the proof of Theorem 1.5 we require
an elementary lemma.

Lemma 4.6. If (X,S) is a standard Borel space then there exists a count-
able algebra A ⊂ S with the following properties.
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(1) σ(A) = S, where σ(A) is the σ-algebra generated by A.
(2) Every finitely additive set function ν : A → [′,∞] is σ-additive and

thus defines a unique probability measure ν on S.

P r o o f. Since the zero-dimensional compact metric space C = {0, 1}N
is Borel isomorphic to X we may assume without loss of generality that
X = C with its usual Borel field. Denote by A ⊂ S the countable algebra of
closed and open subsets of C. If A ∈ A is the union of a sequence (Ai, i ≥ 1)
of sets in A, the compactness of A and the openness of each Ai imply that
only finitely many Ai can be nonempty. This shows that A satisfies our
requirements.

Proof of Theorem 1.5. Let

N = {B ∈ ST : ν(B) = 0 for every ν ∈MT
% }.

We choose a countable algebra A ⊂ S according to Lemma 4.6 and define,
for every A ∈ A, fA = P∞(1A) by (4.4) and (4.9). As A and G are countable
and fA = Eν(1A |ST ) for every ν ∈MT

% , there exists a set N ∈ N with

fA(T gx) = fA(x), f⋃n

k=1
Ak

(x) =

n∑
k=1

fAk
(x),

for every x ∈ XrN , g ∈ G and every choice A1, . . . , An of disjoint sets in A.
For every x ∈ X r N , the finitely additive positive set function A 7→ fA(x)
on A extends to a probability measure qx on S = σ(A) (cf. Lemma 4.6).
Finally we fix an arbitrary point x0 ∈ X r N and set qx = qx0

for x ∈ N .
Then qT gx = qx for every g ∈ G and x ∈ X. Then q : x 7→ qx is a Borel map
from X to M1(X,S) with qx = qT gx for every g ∈ G and x ∈ X.

Let ν ∈MT
% . By definition,

{x ∈ X : P∞(1A)(x) 6= qx(A)} ∈ N(4.10)

for every A ∈ A. If B ∈ S is arbitrary, then we can find a sequence
(An, n ≥ 1) in A with ν(B4An)→ 0 and hence with

‖Eν(1B |ST )− Eν(1An
|ST )‖1 → 0.

Since Eν(1An
|ST ) = P∞(1An

) (mod ν) and P∞(1An
)(x) = qx(An) for every

n ≥ 0 and x ∈ X rN , (4.10) holds for every B ∈ S. By combining this with
(4.9) we deduce (1.7) with q : X →MT

% replacing p.
We continue by showing that

N ′ = {x ∈ X : qx 6∈ ET% } ∈ N.

For every A ∈ A, g ∈ G, C ∈ ST and ν ∈MT
% , (1.7) shows that
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\

C

\
e%(g,y)1A(y) dqx(y) dν(x) =

\

C

e%(g,x)1A(x) dν(x)

=
\

A∩C

e%(g,x) dν(x) = ν(T g(A ∩ C))

=
\
Eν(1T gA · 1C |ST ) dν

=
\

C

Eν(1T gA |ST ) dν =
\

C

qx(T gA) dν(x).

As the map x 7→ qx is ST -measurable this shows that{
x ∈ X :

\
e%(g,y)1A(y) dqx(y) 6= qx(T gA)

}
∈ N

for every A ∈ A and g ∈ G. The countability of A and G allows us to find
a set N ′ ∈ N with

\
e%(g,y)1A(y) dqx(y) = qx(T gA)(4.11)

for every g ∈ G, A ∈ A and x ∈ X rN , which is easily seen to imply (4.11)
for every g ∈ G, A ∈ S and x ∈ X rN . This proves that qx ∈MT

% for every
x ∈ X rN ′, as claimed.

We write T′ ⊂ ST for the smallest σ-algebra with respect to which the
map q : X → MT

% is measurable. Formula (1.7) implies that every ST -

measurable map f : X → R is T-measurable (mod ν) for every ν ∈ MT
% ,

which proves (1.9) with T′ replacing T. As MT
% is standard Borel, T′ is count-

ably generated, and we choose a countable algebra C ⊂ T′ with σ(C) = T′.
For every C ∈ C, P∞(1C) = 1C , and the validity of (4.10) for every

A ∈ S allows us to increase the set N ′ ∈ N if necessary, and to assume that
qx(C) = 1C(x) for every C ∈ C and x ∈ X rN ′.

If qx were nonergodic for some x ∈ XrN ′ we could find a set B ∈ ST with
0 < qx(B) < 1, and (1.9) allows us to assume that B ∈ T′. Since σ(C) = T′,
there exists a sequence (Cn, n ≥ 1) in C with limn→∞ qx(Cn4B) = 0.
However, as we have just checked, qx(Cn) ∈ {0, 1} for every n ≥ 1, which
leads to a contradiction. This shows that qx ∈ ET% for every x ∈ X rN ′.

Finally we pick a point x1 ∈ X rN ′, set

px =

{
qx if x ∈ X rN ′,
qx1

otherwise,

and denote by T ⊂ T′ the smallest σ-algebra with respect to which p : X →
ET% is measurable. Since {x ∈ X : px 6= qx} ∈ N, the map p again has the
properties (1) of Theorem 1.5, and T satisfies (1.9).

In order to prove (1.10) we fix x ∈ X r N ′ and recall that px(C) =
qx(C) = 1C(x) for every C ∈ C. Then
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px([x]T) = px([x]T′) = px

( ⋂
x∈C∈C

C
)

= 1,

since [x]T′ rN ′ ⊂ [x]T ⊂ [x]T′ ∪N ′ and N ′ ∈ N.

For x ∈ N ′, [x]T = N ′ ∪ [x1]T′ and

px([x]T) = qx1
([x]T) = qx1

([x1]T′) = 1.

Finally, if x, y ∈ X and x 6∈ [y]T , then there exists a set B ∈ T with
y ∈ B and x 6∈ B, and hence px 6= py. It follows that px and py are mutually
singular, px([x]T) = py([y]T) = 1, [x]T∩[y]T = ∅ and px([y]T) = py([x]T) = 0.
This completes the proof of (1.10).

The uniqueness assertion (2) of Theorem 1.5 is clear from (1.7), applied
to f = 1A for every A ∈ A.

5. Theorem 1.5 for locally compact groups. One way of extending
Theorem 1.5 to Borel actions of locally compact second countable groups
is to use lacunary sections (cf. e.g. [3] and [7]). Here we sketch a somewhat
more elementary approach: if T is a Borel action of a locally compact sec-
ond countable group G on X we restrict this action to a countable dense
subgroup ∆ ⊂ G, apply Theorem 1.5 to the action of ∆, and complete the
proof by showing that the resulting decomposition also works for the original
G-action T .

If T is a Borel action of a locally compact second countable group G on
X then [23] shows that there exists a G-equivariant embedding of X as a
G-invariant Borel set in a compact G-space Y . We assume for simplicity that
X itself is compact and metrizable, and that the map (g, x) 7→ T gx from
G ×X to X is continuous. If µ is a probability measure on S = BX which
is quasi-invariant under T then there exists a Borel map % : G × X → R
with

e%(g,x) =
dµT g

dµ
(x) for µ-a.e. x ∈ X,

%(gh, x) = %(g, Thx) + %(h, x) for µ-a.e. x ∈ X,
µ({x ∈ X : T gx = x and %(g, x) 6= 0}) = 0,

for every g, h ∈ G, and Theorem B.9 of [25] allows us to assume that %
satisfies (1.1)–(1.2) and (1.4). Again we call a Borel map % : G × X → R
satisfying (1.2) a cocycle of T and define the sets ET% ⊂ MT

% as in Definition
1.2.

We fix a cocycle % : G ×X → R with MT
% 6= ∅. Write BG for the Borel

field, λ for the right Haar measure, and 1G for the identity element of G,
and choose a strictly positive bounded continuous function η ∈ L1(G,BG, λ)
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with the following properties (1):
\
η dλ = 1 and lim

h→1G
sup
g∈G

|η(g)− η(gh)|
η(g)

= 0.(5.1)

For every g ∈ G and x ∈ X we set

a(x) =
T
η(h) · e%(h,x) dλ(h),

b(x) =

{
log a(x) if a(x) <∞,
0 otherwise,

%̃(g, x) = b(T gx) + %(g, x)− b(x).

(5.2)

Then %̃ : G ×X → R is again a cocycle. For every ν ∈ MT
% we denote by ν̃

the probability measure defined by

ν̃(B) =
\

G

η(g) · ν(T gB) dλ(g) for every B ∈ S,(5.3)

or, equivalently, by
dν̃(x) = eb(x)dν(x).(5.4)

From (5.3)–(5.4) we conclude that

e%̃(g,x) =
e%(g,x)a(T gx)

a(x)
=
dν̃T g

dν̃
(x) =

T
η(hg−1) · e%(h,x) dλ(h)T
η(h) · e%(h,x) dλ(h)

(5.5)

for every ν ∈MT
% , every g ∈ G, and ν-a.e. x ∈ X.

The properties of η in (5.1) imply that there exists, for every ε > 0, a
neighbourhood U(ε) of the identity 1G in G with

sup
g∈U(ε)

∥∥∥∥dν̃T gdν̃
− 1

∥∥∥∥
∞
< ε(5.6)

for every ν ∈MT
% , where ‖ · ‖∞ denotes the L∞-norm w.r.t. ν.

Proposition 5.1. Let T be a Borel action of a locally compact second
countable group G on a standard Borel space (X,S), and let % : G×X → R
be a cocycle of T with MT

% 6= ∅. Let furthermore ∆ ⊂ G be a countable
dense subgroup, and let T ′ and %′ be the restrictions of T and % to ∆ and
∆×X, respectively. Then

(1) In order to find such a function we let U ⊂ G be a compact symmetric neigh-
bourhood of 1G and cover the compact set U∈={gg′ : g, g′ ∈ U} with k right translates
Ux1, . . . , Uxk of U . By induction, λ(Un) ≤ kλ(Un−1) for all n ≥ 2. Then H =

⋃
n≥1
Un

is an open subgroup of G, and the space H\G of right cosets is finite or countable. Choose
elements yi ∈ G, i ≥ 1, such that the cosets Hyi, i ≥ 1, form a partition of G, and set
h(x) = 2−i/(k + 1)n for every i ≥ 1 and x ∈ Unyir Un−1yi. The resulting function

h : G → R is strictly positive, and 1/(k + 1) ≤ h(x)/h(y) ≤ k + 1 for all x, y ∈ G with

x · y−1 ∈ U . The continuous map η(x) =
T
U
h(yx) dλ(y) ≤ λ(U)(k + 1)h(x) is integrable

and meets our requirements after multiplication by a suitable constant.
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M ′ = MT ′

%′ ∩
{
ν :

\
a dν <∞

}
= MT

% ,

E′ = ET
′

%′ ∩
{
ν :

\
a dν <∞

}
= ET%

(5.7)

(cf. Definition 1.2).

P r o o f. It is clear that MT
% ⊂ M ′. In order to prove that M ′ = MT

% we

define, for every ν ∈ M ′, a probability measure ν̃ by dν̃(x) = cνe
b(x)dν(x),

where cν > 0 is the normalizing constant (cf. (5.2)–(5.3)). Then ν̃ again
satisfies (5.5) for every g ∈ ∆ and ν-a.e. x ∈ X, i.e. ν̃ ∈ MT ′

%̃′
, where

%̃ ′ is the restriction of %̃ to ∆ × X. Hence there exists, for every ε > 0,
a neighbourhood U(ε) satisfying (5.6), and the chain rule for Radon–Niko-
dym derivatives implies that ν̃ is quasi-invariant not only under T ′, but also

under every T g, g ∈ G, and that dν̃T g/dν̃ = e%̃(g,·) (mod ν) for every g ∈ G.
This implies that ν̃ ∈MT

%̃
and completes the proof that M ′ = MT

% .

Every ν ∈ E′ is obviously ergodic under T and hence lies in ET% . Con-

versely, if ν ∈ ET% , then the continuity of the unitary representation U
defined by T on L2(X,S, ν) implies that ν is also ergodic under the dense
subgroup ∆ ⊂ G.

Theorem 5.2. Let T be a Borel action of a locally compact second count-
able group G on a standard Borel space (X,S) and % : G×X → R a cocycle
of T with MT

% 6= ∅.

(1) There exists a Borel map p : x 7→ px from X to ET% ⊂ M1(X,S) with
the following properties.

(a) px = pT gx for every x ∈ X and g ∈ G.
(b) For every ν ∈MT

% and every nonnegative Borel map f : X → R,
\
f dpx = Eν(f |ST )(x)

for ν-a.e. x ∈ X, where

ST = {B ∈ S : T gB = B for every g ∈ G}.

(2) If p′ : x 7→ p′x is another Borel map from X to ET% with the properties
(1), then

ν({x ∈ X : px 6= p′x}) = 0 for every ν ∈MT
% .

(3) Let T ⊂ ST be the smallest σ-algebra such that the map x 7→ px from
X to ET% in (1) is T-measurable. Then T is countably generated ,

T = ST (mod ν) for every ν ∈MT
% ,

and

px([y]T) =

{
1 if x ∈ [y]T ,
0 otherwise,

for every x, y ∈ X.
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P r o o f. This is an almost immediate consequence of Remark 1.3, Theo-
rem 1.5 and Proposition 5.1. The only point worth mentioning is that, ac-
cording to (5.2) and (5.3)–(5.4),

T
a dν = 1 for every ν ∈MT

% . In the notation

of Theorem 1.5 we conclude that, for every ν ∈ MT
% ⊂ MT ′

%′ ,
T
a dpx(y) < ∞

for ν-a.e. x ∈ X, and hence that ν({x ∈ X : px ∈M ′}) = 1.

After modifying the measures µx ∈ MT ′

%′ for every x in a T -invariant

Borel set N ⊂ X with ν(N) = 0 for every ν ∈ MT
% we may assume that

px ∈M ′ = MT
% for every x ∈ X.

In order to verify condition (1.a) we note that px = pT gx for every x ∈ X
and g ∈ ∆, which is easily seen to imply that, for every ν ∈ MT

% and g ∈ G,
px = pT gx for ν-a.e. x ∈ X. A Fubini-type argument shows that there
exists a T -invariant Borel set N ′ ⊂ X with ν(N ′) = 0 for every ν ∈ MT

%

and pT gx = px for every x ∈ X r N and g ∈ G. A final modification of
{px : x ∈ N} guarantees (1.a).

Proof of Theorem 1.1. This is completely analogous to the proof in the
case where G is countable.
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