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Abstract. In the sense of the Baire Category Theorem we show that the generic
transformation T has roots of all orders (RAO theorem). The argument appears novel in
that it proceeds by establishing that the set of such T is not meager—and then appeals
to a Zero-One Law (Lemma 2).

On the group Ω of (invertible measure-preserving) transformations, §D shows that
the squaring map ℘ : S 7→ S2 is topologically complex in that both the locally-dense and
locally-lacunary points of ℘ are dense (Theorem 23).

The last section, §E, discusses the relation between RAO and a recent example of
Blair Madore. Answering a question of the author’s, Madore constructs a transformation
with a square-root chain of each finite length, yet possessing no infinite square-root chain.

§A. HISTORY

A transformation T might have a cartesian square root, T = S×2 :=
S ×S, or a composition square root, T = R2 := R ◦R; I will henceforth call
composition roots just roots. In a paper which had a significant impact on
Ergodic theory in the 1970’s and 1980’s, On the root problem in ergodic the-

ory , [14], Don Ornstein constructed a remarkable transformation T with no
roots. Then Dan Rudolph showed, in [15], that the parameters of Ornstein’s
construction could be tuned to insure that T was prime –no factors– and
therefore had no cartesian roots. (This was shown independently by Ken
Berg in [2].) Indeed, Rudolph constructed a T with the stronger property
of minimal self-joinings, and showed that MSJ implies primeness and triv-
ial commutant. Later work, [11], showed that MSJ followed automatically
from T being both mixing and rank-1. The MSJ property, and the more
general property of simplicity , have been fruitful for the study of classes of
zero-entropy maps, [16, 7].
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Ornstein’s map has no roots “because” it commutes only with its powers.
An entirely different type of rootless T was constructed in [3] via an algebraic
automorphism-extension; the commutant of this T is uncountable.

The following overview uses topological terms almost-open, meager , res-
idual (= generic), coarse topology and BaireCat space. These will be defined
further below.

Genericity. What happens generically for transformations on a Lebes-
gue probability space (I, µ)? We ask this question with respect to the stan-
dard coarse topology on Ω, where Ω is the group –under composition– of
(invertible measure-preserving) transformations on I.

It follows from the Weak-Closure theorem of [10] that no rank-1 map
has a cartesian square root. Since Rank-1 is generic (1), only a meager set
of transformations in Ω can have a cartesian square root.

In contrast, the goal of this article is to show that possessing composition

roots is generic. To this end, let ℘e:Ω→Ω denote the e-th-power map
S 7→ Se.

(1) RAO Theorem (Roots of All Orders). The set of transformations with

roots of all orders,

Rao :=
∞⋂

e=2

℘e(Ω),

is Ω-residual.

It suffices to show that ℘e(Ω) is residual, for each exponent e. Most of
the ideas appear in the e = 2 case, so we henceforth let ℘ be the squaring
map ℘2, and endeavor to show that

(ζ1) Squares := ℘(Ω) is residual.

The sequel will reduce this (ζ1), in a series of steps, to an assertion (ζ4).
Here is a roadmap.
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A tool that we need is the following special case of the Zero-One Law
for genericity. In the terminology of [4], a subset P ⊂ Ω is dynamical if



524 J. L. F. KING

(i) It is isomorphism-invariant : Whenever a transformation T ′ is iso-
morphic to a T ∈ P, then T ′ itself is in P.

(ii) It is sufficiently measurable: P is an almost-open subset of Ω.

(2) Zero-One Lemma ([4, p. 232]). Each dynamical property P ⊂ Ω is

either meager or residual.

Miscellany. Use “x := foo” or “foo =: x” to mean that foo is the defi-
nition of symbol x. When defining a term, we use a boldface italic font ,
whereas just italics indicates emphasis. We use the small-caps font to indi-
cate the set of objects satisfying a property, e.g., Rao, Rank-1, Squares—
and, later, WeakMixing and LocDen.

Use Ar B for the difference of two sets. Use A△ B for the symmetric
difference [ArB]∪ [BrA]. For real numbers a and b, let [a .. b) denote the
“interval of integers” [a, b) ∩ Z.

Employ K ⊳| L for “K divides L”, and use L |⊲ K for “L is a multiple
of K”.

To indicate a map from a set to itself , we may write f :X � instead of
f :X→X.

Topological preliminaries. On a set X, a family {Wn}∞n=1 of topologies
engenders the coarsest (fewest open sets) topology, X, such that each Wn

⊂ X. This X is generated by finite intersections Un1
∩ . . .∩UnK

, where each
Un ∈ Wn.

Suppose further, for each X-open set X ′ and point z ∈ X ′, that the
following holds.

(3) For all sufficiently large n, there is a Wn-open set Un for which z ∈
Un ⊂ X ′.

If so, say that “sequence (Wn)
∞
n=1 tends to X” and write Wn ր X.

For a pseudo-metric d (a symmetric mapping d:X×X→[0,∞) satisfying
the triangle inequality, but allowing d(x, z) = 0) and point z ∈ X, use
d-Ballε(z) to mean the set of x for which d(x, z) < ε.

Now suppose that dn is a pseudo-metric on X, with Wn its topology
comprising all unions of dn-balls. If each dn is bounded by 1, then topology
X is realized by pseudo-metric

(4) m :=

∞∑

n=1

1

2n
dn.

The next two headings will develop the requisite topological notions to
prove (ζ1).
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The coarse topology, C, on Ω. Since any two non-atomic Lebesgue
probability spaces are isomorphic, henceforth take I to be the half-open
interval [0, 1) with Lebesgue measure µ. The coarse topology on Ω, call
it C, is the topology in which transformations τj approach T iff for each
measurable set E ⊂ I:

µ
(
τ 1
j (E)△ T 1(E)

)
→ 0, as j → ∞.

Said differently, the coarse topology on Ω is simply the strong operator
topology with each transformation T ∈ Ω regarded as a unitary operator
on L2(µ).

A metric m realizing C. In the sequel, let interval mean a non-void
half-open set [a, b) ⊂ I. A partition Q decomposes I into equal-length
subintervals,

Q = Qk :=
{[

0, 1
k

)
,
[
1
k
, 2
k

)
, . . . ,

[
k−1
k
, 1
)}
,

called the atoms of Q. A partition P refines Q if each Q-atom A ∈ Q is
some union of P -atoms. The formula

(5) dQ(S, T ) :=
∑

A∈Q

1
2
µ
(
S 1(A)△ T 1(A)

)

shows that a partition Q gives rise to a bounded-by-1 pseudo-metric on Ω.
Let WQ denote the dQ-topology on Ω.

A given finite list E1, . . . , EL ⊂ I of (measurable) sets can be ε-approxim-
ated, taking any k sufficiently large, by various unions of Qk-atoms. Conse-
quently:

(5′) Sequence (WQn
)
∞

n=1 tends to C .

Letting dn denote dQn
in (4), the resulting pseudo-metric m is a metric

which realizes the coarse topology on Ω.

(6) Lemma. Our space (Ω,C) is a Polish (homeomorphic to a complete
separable metric space) topological group. In particular , each power map ℘e

is continuous.

P r o o f (sketch). It is not difficult to show that Ω is complete with
respect to the metric

T, S 7→ m(T, S) +m(T 1, S 1).

And this metric still realizes C, since the mapping S 7→ S 1 is continuous,
as now shown: It suffices to take transformations σj → S and fix a set E,
then establish that σj(E) tends to S(E). But letting A := S(E), note that

µ
(
σj(E)△ S(E)

)
= µ

(
E △ σ 1

j S(E)
)
= µ

(
S 1(A)△ σ 1

j (A)
)
,

which certainly goes to zero as j → ∞.
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To show that the group-multiplication is continuous, we need only
measure convergence on a fixed set A. To this end, let [[τ, σ]] abbreviate
µ(τ 1(A) △ σ 1(A)). Fix maps T and S, let E := T 1(A), and consider
transformations τj → T and σj → S. Evidently

[[τjσj , TS]] ≤ [[τjσj , Tσj ]] + [[Tσj , TS]]

= [[τj , T ]] + µ
(
σ 1
j (E)△ S 1(E)

)
.

And these two terms go to zero, as j → ∞.
Finally, as detailed in Proposition 10 below, those transformations which

permute the atoms of some partition form a set which is Ω-dense and count-
able. Hence Ω is separable. (For further discussion, see [5, pp. 62–68].)

The Baire necessities. Recall that a subset B ⊂ X of a topological
space is nowhere-dense if its closure has no interior. Less stringent, B is
meager if it equals some countable union of nowhere-dense sets. Finally, a
subset E ⊂ X is residual if its complement X r E is meager.

Say that X is a BaireCat space if the conclusion of the Baire Category
Theorem holds in this form:

Each residual subset of X is dense.

Since Ω is completely metrizable, it is BaireCat (2).
For the Zero-One Law to apply to Squares, we need to know that

Squares fulfills the stated measurability condition. Say that a subsetB⊂X
is almost-open if it is “almost” equal to some open set U—in the sense
that the symmetric difference B△U is meager. It is straightforward to show
that the almost-open sets form a sigma-algebra. A fortiori the open sets are
almost-open, so AlmostOpen includes (3) the Borel sigma-algebra. Here
is the non-trivial fact that we need.

(7) Theorem. Each analytic set (the forward image of a Borel set, under
a continuous map between Polish spaces) is almost-open.

P r o o f. See [12, pp. 482, 92].

This result comes into play as follows. Since ℘ is continuous, the set of
pairs (R,T ) with R2 = T is a closed subset of Polish space Ω × Ω. And
Squares is its continuous image under

Ω×Ω → Ω: (S, T ) 7→ T,

(2) A standard term is Baire, rather than BaireCat; alas, the modifier “Baire” is
used inconsistently. It has three distinct meanings in these usages: “a Baire space”, “a
Baire set”, “a set with the property of Baire”. Unfortunately a Baire set is not –with the
standard terminology– a Baire space in the induced topology.

(3) This inclusion is proper: Computing cardinalities shows that #AlmostOpen =

#Meager = 2|R|, whereas #Borel only equals |R|.
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the projection map. Thus Squares is analytic, hence almost-open. So by
Zero-One, we need but establish that

(ζ2) Squares is non-meager.

Our next step is to develop a condition which guarantees non-meagerness
of a continuous image.

Local density. Suppose that f :X→Λ is a map between topological
spaces. A point z ∈ X is locally-dense (with respect to f) if:

Each neighborhood of z has f -image which is dense in some neigh-

borhood of f(z).

Let LocDen(f) denote the set of locally-dense points. The following neat
observation is due to Randall Dougherty.

(8) Dougherty’s Lemma. Consider f :X→Λ, a continuous map from a

BaireCat space to a topological space. If LocDen(f) is X-dense, then f(X)
is not Λ-meager.

P r o o f. Were f(X) meager, then we could cover it by a union
⋃∞

n=1 Γn

of closed sets, each without interior. Thus each Cn := f 1(Γn) is closed, and⋃∞

n=1Cn covers X.

The interior, U , of a Cn has its f -image inside the closed interiorless
set Γn, so no point of U is locally-dense. Thus Cn has no interior, hence is
meager. Consequently X is not BaireCat.

Remark. The same argument shows that the f -image of each X-residual
set is not Λ-meager.

Setting up property α(z,K). Topologically, the last tool we need is the
lemma below. The baroqueness of its formulation is adapted to its use in §B.

Consider a map between topological spaces,

f :(X,X)→(Λ,L),

as well as topologies Wn ր X and topologies Kn ⊂ L. For a point z ∈ X
and positive integer K, define this property:

Property α(z,K): Given a WK -open set U ∋ z there exists

an L-dense set ∆ ⊂ Λ and a KK-open set Υ ∋ f(z) so that :

(α′) f(U) ⊃ Υ ∩∆.

(9) Baroque Lemma. With notation from immediately above, suppose that

α(z, n) holds for infinitely many n. Then z is locally-dense for f .
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P r o o f. Fix an arbitrary X-open set Z ∋ z. Among those n fulfilling
α(z, n), take n large enough to produce a Wn-open set U for which z ∈ U ⊂
Z. Then take subsets ∆,Υ ⊂ Λ as α(z, n) provides. A fortiori Υ is L-open,
so Υ ∩∆ is L-dense in Υ. Take L-closures; then

f(Z) ⊃ f(U) ⊃ Υ ∩∆ ⊃ Υ ∋ f(z),

as was desired.

§B. COMBINATORICS

The foregoing discussion will allow us to make “local-density” a purely
combinatorial matter. Henceforth, dk denotes pseudo-metric dQk

from (5).

Permutations. A permutation of [0 ..K) will be called a K-perm .
If a K-perm π:[0 ..K) � happens to comprise a single cycle –necessarily of
length K– then we call π a K-cycle . Each K-perm π has an associated
interval-exchange map Gπ ∈ Ω which rigidly permutes the atoms of parti-
tion QK according to π. Specifically, letting Aℓ be the atom

[
ℓ
K
, ℓ+1

K

)
we set

Gπ(x) :=
π(ℓ)

K
+

[
x− ℓ

K

]
, for x ∈ Aℓ.

Call transformation Gπ a K-shuffle , or just a shuffle . Evidently if T is a
K-shuffle and K divides L, then T is also an L-shuffle.

As an example, take K = 5 and T := Gπ, where π maps 2 to 0 to 4 to
2, and π exchanges 1 and 3. Then

(∗) (2 0 4) (1 3)

is the cycle structure of π. Call (∗) also “the 5-structure of T”. In contrast,
the 10-structure of T splits each cycle into two copies:

(4 0 8)(5 1 9) (2 6)(3 7).

If the K-structure of T is a single cycle then we call T a K-solo. The
Rokhlin lemma or [5, p. 65] implies the following.

(10) Proposition. The set of K-solos, with K ranging over an infinite set

of positive integers, is C-dense in Ω.

Creating combinatorial roots. Given an L-perm λ, say that an L′-perm
ρ is a “combinatorial n-th root of λ” if L′ |⊲ L and, for the corresponding
transformations, [Gρ]

n equals Gλ.
We now construct combinatorial square roots. Consider an L-sequence

c = c0 . . . cL−1 of numbers. Let ↿c⇂3 be the sequence rotated by 3 positions.
Thus

↿c⇂3 := c3c4c5 . . . cL−1c0c1c2.

For r ∈ Z, define the rotation ↿c⇂r analogously; so ↿c⇂0 = c.
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A linear expression such as “2c+5” shall mean the L-sequence d, where
each dℓ := 2cℓ + 5.

Given two L-sequences a and c, let

a : c := a0c0a1c1a2c2 . . . aL−1cL−1

denote their alternation .

The Weave operation. From an L-cycle λ, we can produce a square root
of the corresponding L-solo Gλ by cutting its Rokhlin stack into left/right
halves, rotating one half (perhaps), and then zig-zagging. We now describe
this operation directly on λ.

Arbitrarily cut cycle λ to produce

(11) an L-sequence c0c1c2 . . . cL−1, with each cℓ ∈ [0 .. L); here λ(cℓ) =
cℓ⊕1, where ⊕ denotes addition mod L.

For a “rotation number” r ∈ Z, define this cycle:

Weaveλ(r) := (2c : ↿2c+ 1⇂r).

The resulting cycle has length 2L, and does not depend on where λ was cut.

(12) Example. Suppose that L = 7 and sequence c is 0246135. Zig-zagging
gives this 14-cycle:

Weaveλ(0) = (0 0̇ 2 2̇ 4 4̇ 6 6̇ 1 1̇ 3 3̇ 5 5̇),

where c denotes 2c, and ċ means 2c + 1. Rotating the dotted numbers by
4 places produces

Weaveλ(4) = (0 1̇ 2 3̇ 4 5̇ 6 0̇ 1 2̇ 3 4̇ 5 6̇)

= (0 3 4 7 8 11 12 1 2 5 6 9 10 13).

For ρ := Weaveλ(r), observe that the cycle structure of ρ
2 is (2c)(2c+1),

regardless of what r equals. And since the ℓ-th atom of partition QL is the
union of atoms 2ℓ and 2ℓ + 1 of Q2L, we see that transformation [Gρ]

2

equals Gλ.

(13) Root Lemma. For an L-cycle λ and rotation number r ∈ Z, the

2L-cycle Weaveλ(r) is a combinatorial square root of λ.

Computing dK-distance. We now convert distance between shuffles to
a computation directly with permutations. The notation for the following
lemma appears anon.

(14) Frequency Lemma. Suppose that π is an K-perm and ρ is an L-perm,
where L |⊲ K. Then

dK(Gπ, Gρ) = Dπ(ρ).
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Atoms of partitions. Enumerate the atoms of QK as A0, . . . , AK−1 and
the atoms of QL as C0, . . . , CL−1. For the nonce letting V denote the ratio
L
K
, remark that each atom Ak is the disjoint union

(∗) Ak =

V k+[V−1]⊔

ℓ=V k

Cℓ,

of V consecutive QL-atoms. For an index ℓ, let ℓ̂ be the corresponding value
of k in (∗). That is,

ℓ̂ :=
⌊
ℓ · K

L

⌋
,

where ⌊·⌋ is the floor (greatest integer) function.

Measuring disagreement. Use Dπ(ρ) to measure the frequency of dis-
cord between π and ρ, as measured on the partition, QK , that π permutes:

(14′) Dπ(ρ) :=
1

L
·#

{
ℓ ∈ [0 .. L)

∣∣ ρ̂(ℓ) 6= π(ℓ̂ )
}
.

Example 12 (revisited). Let permutation π be the 7-cycle (0123456). Its
square is λ = (0246135) of Example 12. The 14-structure of Gπ is

π = (0 2 4 6 8 10 12)(1 3 5 7 9 11 13).

The cycle ρ := Weaveλ(4) of Example 12 is

ρ = (0 3 4 7 8 11 12 1 2 5 6 9 10 13).

Evidently, Gρ 6= Gπ. Although d14(Gρ, Gπ) is positive, the d7-distance is

zero. To see this, apply the reduction ℓ 7→ ℓ̂ =
⌊
ℓ · 7

14

⌋
to the preceding two

displays. This results in:

π : (0 1 2 3 4 5 6)(0 1 2 3 4 5 6),

ρ : (0 1 2 3 4 5 6 0 1 2 3 4 5 6).

Thus Dπ(ρ) = 0.

When we apply this observation, in (ζ4), our cycle λ will not be π2, but
rather will be a perturbation of π2.

Proof of (14), the Frequency Lemma. For specificity, take K = 21.
Define transformations

T := Gπ and R := Gρ,

and have P denote partition Q21.

Given two P -atoms, say, A8 and A17, let F be the set of ℓ ∈ [0 .. L) with

ℓ̂ = 8. Enumerate the QL-atoms as C0, . . . , CL−1; then A8 is the disjoint
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union
⊔

ℓ∈F
Cℓ. Thus

µ
(
R(A8) ∩A17

)
=

∑

ℓ∈F

µ
(
R(Cℓ) ∩A17

)
= 1

L
·#

{
ℓ ∈ F

∣∣ ρ̂(ℓ) = 17
}
.

Replacing “17” by π(8) and “A17” by T (A8) gives this:

µ
(
R(A8) ∩ T (A8)

)
= 1

L
·#

{
ℓ ∈ F

∣∣ ρ̂(ℓ) = π(ℓ̂ )
}
.

Substituting k for “8”, then summing over all k in [0 .. 21) yields that

(∗)
∑

A∈P

µ
(
R(A) ∩ T (A)

)
= 1

L
·#

{
ℓ ∈ [0 .. L)

∣∣ ρ̂(ℓ) = π(ℓ̂ )
}
.

With B denoting T (A), subtract each side of ∗ from 1 to arrive at this:

Dπ(ρ) = 1−
∑

B∈P

µ
(
R(A) ∩B

)
=

∑

B

[
µ(B)− µ(R(A) ∩B)

]

=
∑

B

1
2
µ
(
R(A)△B

)
;

this last, since R(A) and B have the same µ-mass. The denouement, by
applying R 1, is that

Dπ(ρ) =
∑

B∈P

1
2µ

(
T 1(B)△R 1(B)

)
,

which is indeed the definition of dK(T,R).

Reduction to combinatorics. Here is the standing condition which
is in force for the remainder of §B.
(15) We have integers K |⊲ J , with J odd , and have a J-solo T . Neces-

sarily , T equals some shuffle Gπ, where π:[0 ..K) � is a permutation

comprising K
J

many J-cycles. Define

σ := π2 = π ◦ π and S := T 2 note=== Gσ,

the corresponding squares.

Since J is odd, note that permutation σ, like π, is made up of K
J

many
cycles, each of length J .

Courtesy of (10), the collection of odd-solos is Ω-dense. Consequently:

(ζ3) If each odd-solo is locally-dense for ℘, then Squares is Ω-residual.

This follows from (8) and (ζ2).

Describing property β(π,K). Let (×K)-cycles be the infinite family of
cyclic permutations λ:[0 .. L) � taken over all lengths L = K, 2K, 3K, . . .
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Here is a combinatorial property that the π,K pair might have.

Property β(π,K): Given ε there is a δ > 0 so that for each

(×K)-cycle λ:

(β′) There is a combinatorial square-root ρ, of λ, for which

Dσ(λ) < δ =⇒ Dπ(ρ) < ε.

Roughly: “Each perturbation λ of the square of π has a combinatorial

square root close to π.”

(16) LocDen Combinatorial Lemma. If each pair π and K has property

β(π,K), then Squares is residual in Ω.

P r o o f. Letting T denote Gπ, we will first show that

(16′) β(π,K) =⇒ α(T,K),

by letting d mean dK , and then applying Property α to the squaring map
via the correspondence below.

General: f :X→Λ Squaring: ℘:Ω→Ω

Wn ր X dn-topologies ր C

Kn ⊂ L dn-topology ⊂ C

U, Υ d-Ballε(T ), d-Ballδ(S)

Establishing (16′). A d-open set U ∋ T may freely be shrunk to some
d-Ballε(T ), for a sufficiently Lilliputian ε. Property β(π,K) produces a num-
ber δ for which (β′) holds. Happily,

∆ :=
{
Gλ

∣∣ λ is a (×K)-cycle
}

is C-dense, thanks to (10). By definition,

Υ := d-Ballδ(S)

is a d-open neighborhood of ℘(T ).

If we use the Frequency Lemma twice, (β′) says that for each (×K)-cycle λ,

Gλ ∈ Υ =⇒ Gρ ∈ d-Ballε(T ).
Thus ∆ ∩Υ ⊂ ℘(U), as required by (α′).

Second step. Given that each β(π,K) holds, we now know that each
α(T,K) holds. If we fix T and vary K over the multiples of J , the Baroque
Lemma guarantees that T is locally-dense for ℘. Courtesy of (ζ3) then,
Squares is Ω-residual.
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The upshot, (ζ4). We have navigated from ζ1 to this becoming our
goal:

(ζ4) Given ε there is a δ so that for each L |⊲ K and each L-cycle λ:

Dσ(λ) < δ =⇒ Dπ(ρ) < 2ε

where ρ is the 2L-cycle Weaveλ
(
J+1
2

)
.

The above assertion is a specification of property β(π,K), since for an ar-
bitrary integer r, the cycle ρ := Weaveλ(r) is a combinatorial square root
of λ.

Establishing (ζ4). Given a K-perm σ and an L-cycle λ, with L |⊲ K,
we ask: How does frequency-of-disagreement behave relative to the Weave

operation?

The results that we need, (18) and (12), arise from substrings of λ which
look like pieces of σ.

The σ-blocking of a cycle λ. Cut λ to produce a sequence b, with each
number bℓ ∈ [0 .. L) and with λ(bℓ) = bℓ⊕1; here, ⊕ means addition mod L.
Note that from its definition, (14′), computing Dσ(λ) does not require all
the information in b. Indeed

Dσ(λ)
note
=== 1

L
·#

{
ℓ ∈ [0 .. L)

∣∣ cℓ⊕1 6= σ(cℓ)
}

where c is the QK-name of b; that is,

(17) cℓ := b̂ℓ
note
===

⌊
cℓ · K

L

⌋
.

At this juncture, let A ⊂ [0 .. L) denote the positions of agreement—
the set of indices ℓ such that cℓ⊕1 = σ(cℓ); thus #A/L equals 1 −Dσ(λ).
Decompose A into a disjoint union,

A =
N⊔

n=1

[
ℓn .. rn

)
,

of half-open intervals (of integers), satisfying 0 ≤ ℓ1 < r1 < ℓ2 < r2 < . . . <
rN ≤ L. Each interval [ℓ .. r) is called a σ-block of λ. This decomposition is
unique (4).

(4) There is an exceptional case: When Dσ(λ) is zero, A is the entire cycle [0 .. L)
and so A does not break into intervals. Since this exceptional case makes the subsequent
estimate even better, we can safely ignore it.
With Dσ(λ) positive, we can have chosen to cut λ so that no σ-block “wraps around”

the end of c; that is, so that c0 6= σ(cL−1). Once c has been so chosen, the decomposition
is unique.
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Given a positive integer M , call a σ-block [ℓ .. r) a σ-M-block if its
length dominates M ; that is, if r − ℓ ≥ M . Thus the “σ-M -blocking of λ”
comprises all the σ-M -blocks. Let

µ(σ-M -blocks on λ)

denote the probability that an index in [0 .. L) is in some σ-M -block. Evi-
dently M = 0 yields the full σ-blocking, and so

µ(σ-0-blocks on λ) = 1−Dσ(λ),

by definition.

(18) Blocking Lemma. With σ, λ, L and M as above,

(a) 1−Dσ(λ) ≥ µ(σ-M -blocks on λ).
(b) µ(σ-M -blocks on λ) ≥ 1−MDσ(λ).

P r o o f o f (b). A miracle occurs: Suppose that every position r∈ [0 .. L)
of disagreement, cr⊕1 6= σ(cr), happens to be the end of a σ-block [ℓ .. r)
whose length, r − ℓ, is exactly M − 1. In this one case, the quantity 1 −
µ(σ-M -blocks) is just large enough to equal M times the probability of a
disagreement. So

1− µ(σ-M -blocks on λ) ≤ M ·Dσ(λ)

is the general non-miraculous assertion.

Upper-bounding disagreement. To establish (ζ4), there is no loss of gen-
erality in taking particular values for the parameters of our standing condi-
tion (15) and so we fix

J = 7 and K = 21.

In consequence, π comprises three 7-cycles.
For specificity, take one of the 7-cycles to be

0 → 1 → 2 → 3 → 4 → 5 → 6

(and 6 → 0). The corresponding 7-cycle of σ is

(19) 0 → 2 → 4 → 6 → 1 → 3 → 5.

Given an L-cycle λ with Dσ(λ) small, define its QK-name c as we did in
the (17) paragraph.

σ-M -blocking λ. Having frozen a value for M , there are three “types”
of σ-M -block on λ; one for each of the three 7-cycles of σ. Suppose that
[ℓ .. ℓ+M) is a σ-M -block of type (19). That means, letting s denote the
sequence 0246135, that

c[ℓ .. ℓ+M) = sssssss · · · sss︸ ︷︷ ︸
M positions

,
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where this s · · · s represents a concatenation of copies of s, possibly ending
(starting) with an initial (terminal) segment of s. Such segments have no
effect on the observation below and so, for simplicity, the notation below
presumes that “s · · · s” is exactly a concatenation of copies of s.

Thanks to this presumption, the last position of s · · · s is occupied by “5”.
This is a “position of agreement”, so “5” must be followed by “0”. We will
write this trailing zero in slanted and enlarged font. Thus, along the name c,
we witness occurrences of

?sssssss · · · sss0︸ ︷︷ ︸
M+2 positions

where “?” indicates an unknown symbol in [0 .. 21).

π-M ′-blocking ρ. Since J+1
2

= 7+1
2

= 4, we consider ρ := Weaveλ(4).
How does the M -block s · · · s appear on the ρ cycle?

? 0 2 4 6 1 · · · 4 6 1 3 50
ր ↓ ր ↓ ր ↓ ր ↓ ր ↓ ր ↓ · · · ↓ ր ↓ ր

? 0 2 4 6 1 3 5 0 2 · · · 5 0

Figure 20. Part of the Q21-name of ρ: The upper line shows the M + 2 string ?s · · · s0
which, in the lower line, is shifted left by 4 positions. The arrows show how ρ weaves
between the two lines.

Figure 20 shows part of the Weaveλ(4) cycle. The σ-M -block upstairs
zips together with the σ-M -block downstairs to form a π-block of length at
least 2M − J .

The upshot is that for M an arbitrary positive integer,

(21) µ(π-M ′-blocks on ρ) ≥ M ′

2M · µ(σ-M -blocks on λ),

where M ′ is 2M − J .

Completing the proof of (ζ4): Picking δ. Since J , K and ε are known
in advance, we can take M sufficiently Brobdingnagian that

(22)
J

2M
< ε ; then let δ :=

ε

M
.

Consider now an L-cycle λ, with L |⊲ K and with Dσ(λ) < δ. Courtesy
of (22, 21) above,

µ(π-blocks on ρ) ≥ [1− ε] · µ(σ-M -blocks on λ).

Furthermore,

µ(σ-M -blocks on λ) ≥ 1−MDσ(λ) ≥ 1− ε,
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by (18b) and (22). Together, the two preceding displayed inequalities yield
that

1−Dπ(ρ) ≥ [1− ε][1 − ε] ≥ 1− 2ε.

Consequently 2ε ≥ Dπ(ρ), which establishes (ζ4) and completes the proof
that Squares is residual in Ω.

§C. HANDLING A GENERAL EXPONENT e

We sketch, for a general exponent 2 ≤ e <∞, the argument that ℘e(Ω)
is residual. For simplicity of notation, however, we will take e = 17; so each
“16”, below, represents “e− 1”.

Say that a positive integer J is good if J ≡ −1, modulo 17. Here, the
good cycles will play the role that the odd cycles played in §B.

Creating combinatorial roots [bis]. Handed 17 sequences, a,b, . . . , c,
each of length L, define their alternation a : b : . . . : c to be the sequence

a0b0...c0a1b1...c1a2b2...c2 · · · aL−1bL−1...cL−1,

whose length is 17L.

Given an L-cycle λ, cut it to produce an L-sequence c, as in (11). As
before, a linear expression such as “17c + 5” means the L-sequence whose
ℓ-th number is 17cℓ + 5. For arbitrary rotation numbers r1, . . . , r16, define

ρ := Weaveλ(r1, r2, . . . , r16)

to be the cycle

(17c : ↿17c+ 1⇂r1 : ↿17c+ 2⇂r2 : . . . : ↿17c+ 16⇂r16),

whose length is 17L. Independent of what the rotation numbers are, the
cycle structure of the composition ρ17 is

(17c)(17c+ 1)(17c+ 2) . . . (17c+ 16).

Thus transformation [Gρ]
17 indeed equals Gλ, so permutation ρ is a combi-

natorial 17-th root of λ.

Standing Condition (15[bis]). We set σ := π17 and S := T 17. As before, π
comprises K

J
many J-cycles; and so does σ, since J is relatively prime to 17.

We need but establish this version of (ζ4):
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(ζ4[bis]) Given ε there is a δ so that for each L |⊲ K and each L-cycle λ:

Dσ(λ) < δ =⇒ Dπ(ρ) < 2ε

where ρ is the 17L-cycle

Weaveλ
(
r, r, r, 16. . . , r

)

with r := J+1
17 .

With this value of r, the reader may convince himself that the following
analog of inequality (21) succeeds: For M arbitrary,

µ(π-M ′-blocks on ρ) ≥ M ′

17M · µ(σ-M -blocks on λ),

with M ′ := 17M − F , where F is some number which depends neither on
L nor M . A straightforward estimate (5) allows F = [J + 1] · 17.

The final step is to grab an M sufficiently large that

F

17M
< ε ; then let δ :=

ε

M
.

As before 1−Dπ(ρ) ≥ 1− 2ε, which delivers the goods on (ζ4[bis]).

Reflections on the argument. The combinatorics used to show
℘2(Ω) residual are elementary. The one non-elementary tool was (7), that
analytic sets are almost-open. We could do without this theorem if we had
a “yes” to this question.

(Q1) Question. Is ℘2(Ω), the set of Squares, a Borel subset of Ω?

In the more general setting of a Polish semigroup, there is an example
where the answer is known to be “no”. Humke and Laczkovich showed,
in the Polish semigroup (under composition) of continuous functions from
[0, 1] �, that the set of composition squares g ◦ g is not Borel. (See [6]. Also
see Beleznay [1].)

§D. THE POWER MAP IS LOCALLY COMPLEX

Having shown that LocDen(℘e) is dense in Ω, one would be singularly
incurious to not inquire about density of its complement.

It turns out that the tools already developed are sufficient to show that
℘e is “locally complex” in the sense of (23ab), below. Part (23a) is simply
an embellishment of what we already know.

(5) In general, F = [J+1]e works. A fastidious analysis would justify F = [J−2][e−1],
once M > J + 1.
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Use e
√
T to denote the collection of e-th roots of T , i.e., the closed set

℘ 1
e (T ).

Locally-lacunary. With respect to a mapping f :X→Λ, a point z ∈ X
is locally-lacunary if it is not locally-dense. Equivalently: There exists a

neighborhood of z whose f -image is dense in no neighborhood of f(z). Let
LocLac(f) denote the set of locally-lacunary points of f .

(23) Complexity Theorem. For each integer e ∈ [2 ..∞) and transforma-

tion T , the set
e
√
T is closed and nowhere-dense in Ω. Furthermore

(a) LocDen(℘e) is residual. Indeed , it is a dense Gδ-subcollection of Ω.

(b) LocLac(℘e), while meager , is dense.

Remark. Since e
√
T is closed, that it is nowhere-dense follows immediately

from noting that WeakMixing and Rotations are disjoint families, each
of which is Ω-dense and is sealed under taking e-th roots. (With ⊕ meaning
addition mod 1, the set Rotations comprises all transformations isomor-
phic to some rotation x 7→ x⊕ r, for some rotation number r ∈ R.)

Since LocDen(℘e) is Ω-dense, (23a) follows from this general assertion:

(24) Lemma. Suppose f :X→Λ is continuous map from a metrizable space X
(not necessarily separable) to a topological space Λ. Then LocDen(f) is a

Gδ-subset of X.

P r o o f. For a number α > 0, let Uα comprise those points z ∈ X such
that: There exists a positive ε < α for which f(Ballε(z)) is dense in some

neighborhood of f(z).

Since LocDen(f) =
⋂

αց0 Uα, it will do to simply show that Uα is open.
For demonstrating openness at a point z ∈ Uα, take an ε < α, then an open
set Υ ∋ f(z) such that f(Ballε(z)) is dense in Υ. Necessarily, the intersection

I := Ballα−ε(z) ∩ f 1(Υ)

is an open neighborhood of z. We need but show that I ⊂ Uα, as follows.

Fix a point y ∈ I and let r := dist(y, z). Then

Ballr+ε(y) ⊃ Ballε(z),

and so the f -image of Ballr+ε(y) is dense in Υ. Therefore y ∈ Uα, since
r + ε < α.

Transmogrifying (23b) into combinatorics. Following the strategy of
§B, let us find a statement about permutations that will imply (23b). Also
as earlier, since all the ideas appear in the e = 2 case we let ℘ mean ℘2 from
now on.
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It was essential in §B that J was odd. Here, in §B it is essential that J
be even. Fix any large even number J and a J-cycle π. Let σ := π2 and have
U denote this ball:

(25) U := Ball 1
3

(Gπ),

where the pseudo-metric used is dJ . We will show that

(25′) The ℘-image of U fails to be dense in each and every neighborhood ,
Υ, of Gσ.

Using H := J/2 to denote half of J , write our J-cycle π as

(a1b1a2b2a3b3 · · · aHbH).︸ ︷︷ ︸
some reordering of the numbers [0 .. J)

Its square, σ, has cycle structure (α)(β), two H-cycles, where

α := a1a2a3 . . . aH and β := b1b2b3 . . . bH .

We now perturb permutation σ to a nearby cycle, σK .

For each integer K |⊲ J , define a K-cycle σK to be (AB), where

(26′) A := ααα · · ·α︸ ︷︷ ︸
K
J

copies

and B := βββ · · ·β︸ ︷︷ ︸
K
J

copies

.

(26) Lemma. In the coarse topology , GσK → Gσ as K → ∞.

P r o o f (sketch). Since the dN -topologies ր C, we need but establish
that

(∗) lim
K→∞

dN

(
GσK , Gσ

)
= 0

for each N in some sequence N → ∞; so fix an N |⊲ J . Since dK ր C, we
only need prove (∗) for, say, those values K |⊲ N . Write K = kN ; then

dN

(
GσK , Gσ

)
≤ 1

k · Length(α) =
1

kH
,

courtesy the Frequency Lemma argument.

Defining property γ(π,K). In what follows, parameters J , π and K are
implicit. We write σ for π2. Phrases such as “For each/every/all ρ. . . ” shall
mean: “For each L |⊲ K and each L-cycle ρ. . . ”. Lastly, λ is another name
for ρ2.

Property γ(π,K): There exists a positive δ so that , for each ρ:

If DσK (λ) < δ, then Dπ(ρ) ≥ 1
3
.
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Remark. The value 1
3 , here and in (25), is conceptually 1

2 . We use 1
3 to

allow room for edge effects in the estimate to follow.

(27) LocLac Combinatorial Lemma. If γ(π,K) holds for all large (or
just infinitely many) K |⊲ J , then transformation Gπ is locally-lacunary for

the squaring map.

P r o o f. We verify (25′). Let δ(·) be a function going to zero sufficiently
eagerly that δ < 1

K
and γ(π,K) holds, where –here and henceforth– we

abbreviate δ = δ(K).

Centered at GσK , we would like to have a ball ΓK of transformations so
that for each λ:

(∗∗) Gλ ∈ ΓK =⇒DσK (λ) < δ.

So, courtesy the Frequency Lemma (14), letting

ΓK := dK-Ballδ(K)(GσK )

does the trick.

Handed an arbitrary C-open set Υ ∋ Gσ, Lemma 26 assures us that
the ΓK ball lies within Υ, once K is Brobdingnagian. (This uses that the
dn-topologies tend to C.) So establishing that ℘(U) misses ΓK is enough to
confirm (25′). In consequence, this statement:

The intersection U ′ := ℘ 1(ΓK) ∩ U is empty,

is what we wish to substantiate.

Restating (∗∗), if Gρ ∈ ℘ 1(ΓK) then DσK (λ) < δ. So property γ(π,K)
delivers that Gρ /∈ U . Thus the C-dense set

{
Gρ

∣∣ ρ is an L-cycle, for some L |⊲ K
}

is disjoint from U ′. In light of the fact that U ′ is C-open, it must of needs
be empty.

Demonstrating γ(π,K) for large K. Choose an L |⊲ K and an
L-cycle ρ. Similar to the paragraph of (17), cut ρ to produce a QJ -name

c = c0c1c2c3 · · · cL−1,

and let ⊕ mean addition modulo L. Recall that 1−Dπ(ρ) is the probability
that an index ℓ ∈ [0 .. L) satisfies

π(cℓ) = cℓ⊕1,

that is, is a position of agreement of the QJ -structures of ρ and π.
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Here now is the idea behind the proof of γ(π,K).

(28) Lemma. For each ε positive, for all large K, for each cycle ρ with

DσK (ρ) < δ, the following holds:

(28′) With probability exceeding 1− ε, if an index ℓ is a position of agree-

ment of ρ with π, then ℓ⊕K is a position of disagreement.

In particular , property γ(π,K) holds once ε is small enough.

P r o o f. Call a word w an “AB-block” if, using the words from (26′), it
is a concatenation

w = ABABAB · · ·AB

of consecutive copies of AB, possibly starting or ending with a partial copy.
Recall that A is a concatenation of copies of word a1 · · · aH , as B is

of b1 · · · bH . Let a prime, ′, flip a letter to the opposite letter having the
same index; so a

′
5 means b5, and b

′
5 means a5.

Since words A and B each have length K/2, every AB-block w is anti -
periodic with period K/2, in this sense:

wi+K
2

= w′
i,

whenever both indices i and i+ K
2 are in w.

σK-blocking the cycle λ. The QJ -structure of λ = ρ2 is (cEven)(cOdd),
where

cEven := c0c2c4c6 · · · cL−2, cOdd := c1c3c5c7 · · · cL−1.

Let the symbol cEven
[7 .. 13] mean the subsequence of cEven with indices in the

interval [7 .. 13]. In this example,

cEven
[7 .. 15] = c8c10c12c14 and cOdd

[7 .. 15] = c7c9c11c13c15,

where, for cOdd
[7 .. 15], we have made the analogous definition.

Now suppose K = 6. Then walking K
2 = 3 steps along cOdd brings us

from c7 to c13, i.e., to c7+K . So the above antiperiodicity gives this general-
ization, for every ℓ ∈ [0 .. L):

If cEven
[ℓ .. ℓ+K] and cOdd

[ℓ .. ℓ+K] are each AB-blocks, then cℓ+K = c′ℓ.

Lower-bounding disagreement. Since ε and K are known in advance,
we can take δ small enough (6) that inequality DσK (λ) < δ implies the
following: With probability exceeding 1− ε, an index ℓ in [0 .. L) satisfies

(∗) Sequences cEven
[ℓ .. ℓ+1+K] and cOdd

[ℓ .. ℓ+1+K] are each AB-blocks.

(6) Letting δ be [ε/[20K]]4 works. This uses the argument of the Blocking Lemma,
(18b).
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Finally, suppose that such an ℓ is a position of agreement of ρ with π. If
cℓ is in A, say cℓ = a5, then cℓ+1 = π(a5) = b5. Consequently, by (∗),

cℓ+K = a
′
5 = b5 and cℓ+1+K = b

′
5 = a5.

But π(cℓ+K) = π(b5) = a6 (well. . . the 6 is actually to be taken modulo H).
Consequently,

π(cℓ+K) 6= a5 = cℓ+1+K .

Thus position ℓ+K is a position of disagreement between ρ and π.

A similar argument goes through if cℓ is in B. Thus we have estab-
lished (28′). This wraps up the proof of (23a) of the Complexity Theorem.

§E. EGRESS

Questions in Newtonian mechanics lead to dynamical systems in which
“time is real”; the systems are R-actions (flows φ:I×R→I) rather than the
Z-actions studied in the current article.

(Q2) Question. Does the generic transformation embed in a flow? Is the
set {

T
∣∣ T (·) = φ(·, 1) for some flow φ on I

}

of transformations a residual subset of Ω?

For such a T , the set of those transformations S which commute with T ,
the commutant of T , includes a copy of R. So an inexpensive “no” to (Q2)
would follow from showing that only a meager set of T have an uncountable
commutant.

Alas, the generic T is rank-1 and rigid, thus necessarily has commutant
which is uncountable (7).

(Q3) Question. Does the generic T embed in a (measure-preserving) Q-

action?

For a T ∈ Rao, how close does the RAO Theorem come to answer-
ing (Q3)? Certainly, for each n, we can pick an n-th root Rn of T , then
fix a set S ⊂ [2 ..∞) and look at the group GS ⊂ Ω which is generated
by {Rn}n∈S. However, the RAO theorem gives no guarantee that Rn goes
to the identity, as n → ∞. So RAO does not give us control, in terms of S
solely, on the topology of GS. This is the reason that the groups below are
equipped with the “no restriction” (i.e., discrete) topology.

(7) Katok and Stepin showed, in [9], that “rank-1 and rigid” is generic, although using
a different language. Definitions of rank-1 and of rigid appear in [11]. That rigidity implies
uncountable commutant appears in [8] and [10].
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Fixing K, let QK be the additive subgroup of the rationals generated by
1/pK as p ranges over all the primes; equip QK with the discrete topology.
Call each pK a “K-prime”.

Evidently QK comprises all ratios

n
/
[pk1

1 p
k2

2 · · · pkJ

J ],

where n is an arbitrary integer and each kj ∈ [0 ..K].

(29) Theorem. The generic T extends to a QK-action.

P r o o f. It suffices to fix a T in

(30) WeakMixing ∩ Rank-1 ∩ Rao
and extend it to a QK-action.

For each K-prime γ, let Rγ be a γ-th root of T . Let GK be the sub-
group of (Ω, ◦) generated by the Rγ transformations. Since T is rank-1, its
commutant is abelian (8) and thus GK is abelian.

To show that GK is isomorphic to QK , define a map ψ from (GK , ◦)
to (QK ,+) as follows. For each finite set of K-primes {α, β, . . . , γ}, and of
integers a, b, . . . , c, let

ψ(Rα
a ◦Rβ

b ◦ · · · ◦Rγ
c) := a

α
+ b

β
+ · · ·+ c

γ
.

That this ψ is a group isomorphism will follow immediately once ψ is shown
to be well defined.

To address this latter aim, suppose that exponents a, . . . , c cause
S := Rα

a ◦ · · · ◦Rγ
c to be the identity transformation. Let L be the prod-

uct α · · · γ; then SL = T k, where

k := aL
α
+ · · ·+ cL

γ

note
=== L ·

[
a
α
+ · · ·+ c

γ

]
.

Since T is weak-mixing it cannot be periodic, so k must be zero. Thus
a
α
+ · · ·+ c

γ
is zero.

Root chains. Related to (Q3) is this: Does the generic T extend to a

Q∞-action? Here, Q∞ is the group of rationals (Q,+), but equipped with
the discrete topology.

In light of the foregoing theorem, what is the obstruction to fabricating a
Q∞-action? If, for each prime p, we can produce an infinite length “p-chain”

(31) T =: S0 ↼
p
S1 ↼

p
S2 ↼

p
. . .

(8) Although this follows from the Weak-Closure theorem, [10], there is a generic
subset of Rank-1 –the maps with “flat stacks”– where abelianness of the commutant
follows by an elementary argument.
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where each Sk+1 is a p-th root of Sk, then a Q∞-action can be built as
above. Thus one is led to ask:

(Q4) Question. Does there exist a weak-mixing T which has square-root

chains of each finite length, but no infinite square-root chain?

I raised this question at the Ergodic Theory seminar while on sabbatical
at U. of Toronto, in 1996/7. The menagerie of examples and techniques from
the 1960/70’s suggested a “yes” to (Q4).One natural approach, harking back
to Ornstein’s construction, is the “counterexample machine” built by Dan
Rudolph, which uses the rank-1 mixing map of Ornstein.

Vaguely, Rudolph’s machine takes a permutation of Z, and produces
a weak-mixing transformation with analogous properties. A standard ap-
proach to (Q4), then, would be to search the group of Z-permutations for:

A permutation π of Z which has arbitrarily long square-root chains,
but no infinite chains.

Alas, the reader can verify that no such π exists.

Techniques of del Junco and others. Nonetheless, ideas of the coun-
terexample machine can be used. Andrés del Junco developed machinery,
for certain abelian groupsG, which produces a G-action φ:I×G→I for which
the commutant of certain transformations in the action is limited to the
G-action itself.

This suggested first constructing a denumerable abelian group (M,⊞, e)
and an element η ∈ M such that η has square-root chains of each finite
length, but has no infinite chain. Here is one such group, the Madore
group:

Let M be the free abelian group on symbols (generators) η, γ1, γ2, . . . ,
where the generating relations are

(32) γj ⊞ γj ⊞ . . .⊞ γj︸ ︷︷ ︸
2j copies

= η, for j = 1, 2, . . .

We now describe M in an alternative way.

Let Gj be the additive cyclic group [0 .. 2j); that is, Z/2jZ. As a set,
define M to be the direct sum

(33) M := Z⊕G1 ⊕G2 ⊕ . . .

So M comprises all tuples 〈a | g1, g2, . . .〉 where a ∈ Z and gj ∈ Gj , and
only finitely many of the gj are non-zero. Given α := 〈a | g1, g2, . . .〉 and
β := 〈b | h1, h2, . . .〉, let N be smallest natural number with gn = hn = 0,
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for all n > N . Define addition in M by

α⊞ β :=
〈
a+ b+

N∑

j=1

cj

∣∣∣ r1, r2, . . .
〉
,

where cj is the j-th “carry” in group [0 .. 2j), and rj is the remainder. That
is,

gj + hj = rj + 2jcj , where rj ∈ [0 .. 2j) and cj is either 0 or 1.

Thus ⊞ is component-wise addition, with a carry from the j-th component
into the zero-th component. Evidently M is abelian with e := 〈0 | 0, . . .〉 its
neutral element.

To write down an additive inverse, ⊟α, let J be the number of indices j
with gj 6= 0. Then

⊟α =
〈
−[a+ J ]

∣∣∣ f1, f2, f3, . . .
〉
,

where fj is the Gj-inverse of gj . So fj is 2j − gj if gj 6= 0, and is zero
otherwise.

Identify 〈k | 0, . . .〉 with the integer k, thus exhibiting a copy of (Z,+)
inside of (M,⊞). OurM is generated by the collection {η, γ1, γ2, . . .}, where

η := 〈1 | 0, 0, 0, 0, 0, 0, . . .〉 The 1 is in the zero-th position.

γj := 〈0 | 0, . . . , 0, 1, 0, . . .〉 This 1 is in the j-th position.

Since γj is a 2j-th root of η, one sees that (33) with operation ⊞ is the same
group as defined by (32).

Fixing j, there is a square-root chain

η ↼ 2j−1γj ↼ 2j−2γj ↼ . . . ↼ 4γj ↼ 2γj ↼ γj

of length j. Yet one can check that no element in M r {e} has an infinite
chain.

Answering “yes” to (Q4). Blair Madore, a student of del Junco, proved
the following theorem as part of his doctoral travails.

(34) Madore’s Theorem (Theorem 1.1 in [13]). Let G be a countable

abelian group with subgroup Zd, for some d ≥ 1, where each element of the

quotient group G/Zd has finite order. Then there exists a rank-one action

of G so that the transformation T corresponding to (1, 0, 0, . . . , 0) in Zd is

mixing , simple, and only commutes with the other transformations in G.

In particular, there is such an action φ of the Madore group. With η
meaning 〈1 | 0, 0 . . .〉, then, T := φη is a mixing transformation having no
infinite square-root chain.
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Conditions implying a Q∞ extension. Various general results would im-
ply that the generic Z-action extends to an action of the discrete rationals.

(Q5) Question. Generically, does T have at most one square-root?

If a map T in (30) had, for each j, at most one j-th root, then the proof
of (29) would extend T to a unique Q∞-action.

Note that (Q5) is equivalent to this query: For the generic rank-1 map T ,
is the identity map the only involution commuting with T?

Closing thoughts. The RAO theorem was proved under the aegis of the
coarse topology on Ω. Because the set of maps with RAO is an analytic set,
the Equivalence Theorem of [4, Thm. 7] applies to say that Rao is also
residual in another standard setting, the Polish space of shift-invariant Borel
probability measures on the Hilbert cube [0, 1]Z.

It may well turn out that there are more general equivalence theorems,
and that settings whose topology is more natural for the transformations
arising in physics nonetheless have the same abstract genericity properties.
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