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Abstract. We analyze and cite applications of various, loosely related notions of uni-
formity inherent to the phenomenon of (multiple) recurrence in ergodic theory. An assort-
ment of results are obtained, among them sharpenings of two theorems due to Bourgain.
The first of these, which in the original guarantees existence of sets {x, x+ h, x+ h2} in
subsets E of positive measure in the unit interval, with lower bounds on h depending only
on m(E), is expanded to the case of arbitrary finite polynomial configurations in subsets
of positive measure in cubes of Rn. The second is a direct computation of a lower bound,
uniform in a and b and depending only on

T
f , for

T
f(x)f(x + at)f(x + bt) dx dt, where

0 ≤ f ≤ 1 is a function on the 1-torus. Our methodology parallels that of Bourgain, who
originally considered the case a = 1, b = 2.

1. Introduction. In 1974 Szemerédi proved the following theorem ([S1]).

Theorem Sz. For any l ∈ N and ε > 0 there exists a constant N =
N(l, ε) such that if a set S ⊂ {1, . . . , N} satisfies |S| ≥ εN then S contains

an l-term arithmetic progression.

Szemerédi’s proof used combinatorial methods. In 1977 Furstenberg gave
an ergodic-theoretic proof of the following multiple recurrence theorem ([F]).

Theorem F1. For any probability measure preserving system

(X,B, µ, T ), for any A ∈ B with µ(A) > 0, and for any l ∈ N there ex-

ists n ∈ N such that

µ(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA) > 0.

Furstenberg also gave a correspondence principle linking the fields of den-
sity combinatorics and recurrence in ergodic theory. Using this principle, he
was able to obtain a new proof of Theorem Sz via Theorem F1. Conversely,
Theorem F1 can easily be derived from Theorem Sz and, for example, the
ergodic theorem.

Consider the following ostensible strengthening of Theorem F1:
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Theorem F2. For any l ∈ N and ε > 0 there exist M = M(l, ε) and

δ = δ(l, ε) > 0 such that for any system (X,B, µ, T ) and any A ∈ B with

µ(A) ≥ ε there exists n, with 1 ≤ n ≤ M , such that

µ(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA) ≥ δ.

P r o o f. Let M = N(l, ε/2) as in Theorem Sz and let J be the number of
distinct arithmetic progressions of length l in {1, . . . ,M}. Put δ = ε/(2J).
Suppose we are given a probability measure preserving system (X,B, µ, T )
and a set A ∈ B with µ(A) ≥ ε. Let

f(x) =
1

M

M∑

n=1

1T−nA(x).

Then
T
f dµ ≥ ε, so letting B = {x : f(x) ≥ ε/2}, we have µ(B) ≥ ε/2.

For every x ∈ B, the set Ex = {n : 1 ≤ n ≤ M, x ∈ T−nA} satisfies
|Ex| ≥ (ε/2)M and hence contains an arithmetic progression I = {k, k + n,
. . . , k + (l − 1)n}, which implies that x ∈ ⋂

t∈I T
−tA. Hence

B ⊂
⋃

I

⋂

t∈I

T−tA,

so that for some I, µ(
⋂

t∈I T
−tA) ≥ δ. Since T preserves µ, we are done.

We say that F2 is a uniform version of F1. Other recurrence theorems
admit uniform formulations as well. Although the uniformity of recurrence
seems to be a rather transparent (and hence neglected) footnote to the
phenomenon of recurrence, there are reasons to pay attention to it. Uniform
versions of recurrence theorems can be stronger tools for application than
their non-uniform counterparts, and some confusion can result when this is
left unaccounted for. At the end of Section 2, an expository section devoted
mostly to various examples of “uniform” formulations, we give an example
of a multi-parameter multiple recurrence result that is a simple consequence
of (the uniform formulation of!) the single parameter case.

Although the constants of uniformity can be shown to exist based on
general principles, estimating them is another matter. For the constant
N(l, ε) of Theorem Sz, the original proof of Szemerédi gave an enormous
estimate, while Furstenberg’s argument gave none at all. The best estimates
for this class of problems in simple cases had been achieved via harmonic
analysis, an approach dating back to K. Roth, who in [R] showed that
N(3, ε) ≤ exp exp (C/ε) for an absolute constant C, but it was only recently
that W. T. Gowers ([G3]) was able to show, via highly non-trivial exten-
sions of these methods, that N(l, ε) ≤ exp exp(δ− exp exp(k+9)). In Section 4
we adopt a slightly different approach. Sticking to three-term configurations,
but of the form {x, x+an, x+bn}, we adopt a specialized formulation of the
corresponding generalized Roth theorem and, using methods developed by
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Bourgain in [Bo2], achieve in principle estimates that are uniform over all
choices (a, b). For more information concerning the best known estimates of
various constants of uniformity, the reader is referred to [G1], [G2], [Bo2],
[H-B] and [S2].

In Sections 3 and 5, we examine various matters having the flavor of
uniformity in R.

In Section 3, we state a finitary version (Theorem 3.2) of a polynomial
Szemerédi theorem (see [BL]) and use it to obtain polynomial configurations
in large subsets of Rl. The following special case of this result was considered
by Bourgain. Let m denote Lebesgue measure on R.

Theorem Bo ([Bo2]). Given ε > 0, there exists δ = δ(ε) > 0 such that

if S is a measurable subset of [0, N ], N ≥ 1, with m(S) ≥ εN , then there

exist x, h ∈ R with h > δN1/2 such that {x, x+ h, x+ h2} ⊂ S.

We reprove this result (Theorem 3.4), with the exception of finding a
lower bound on δ, which Bourgain’s method achieves. However, our method
allows for generalization to arbitrary finite families of polynomials. For
example: given ε > 0, there exists δ = δ(ε) > 0 such that if S is a measurable
subset of [0, N ]2, N ≥ 1, with λ(S) ≥ εN2 (λ denotes Lebesgue measure),
then there exist (x, y) ∈ R2 and h ∈ R with h > δN1/17 such that

{(x, y), (x + h2, y), (x + h, y + h3), (x+
√
2h17, y + 5h4)} ⊂ S.

Section 5 deals with sets of recurrence in R.

Definition 1.5. A subset R of a topological (semi)group G is called
a set of recurrence if for any measurable measure preserving flow (X,B, µ,
{Tg}g∈G), where µ(X) = 1, and any A ∈ B with µ(A) > 0 there exists g ∈ R
such that µ(A ∩ T−1

g A) > 0.

The measurability condition in Definition 1.5 is that the map (x, g) 7→
Tgx from X × G to X should be measurable, where we are taking the σ-
algebra on G to be the σ-algebra of Borel sets.

One can show ([Fo], see also [BH]) that any set of recurrence R in Z is
actually a set of uniform recurrence, in the sense that for any ε > 0 there
exist a finite subset R′ ⊂ R and a number δ > 0 having the property that
for any probability measure preserving system (X,B, µ, T ) and any A ∈ B
with µ(A) > ε there exists n ∈ R′ such that µ(A ∩ T−nA) > δ.

Remark 1.6. Appropriate modifications of the arguments in either [Fo]
or [BH] yield similar uniformities in the case of multiple recurrence. To
be precise, define a set of k-recurrence to be a set R having the property
that for any k commuting measure preserving tranformations T1, . . . , Tk of
a probability measure space (X,B, µ) and any A ∈ B with µ(A) > 0 there
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exists n ∈ R such that µ(A∩T−n
1 A∩ . . .∩T−n

k A) > 0. Then for any set of k-
recurrence R and any ε > 0 there exists a finite subset R′ ⊂ R and a number
δ > 0 having the property that for any commuting probability measure
preserving system (X,B, µ, T1, . . . , Tk) and any A ∈ B with µ(A) > ε there
exists n ∈ R′ such that µ(A ∩ T−n

1 A ∩ . . . ∩ T−n
k A) > δ.

The situation changes dramatically when one deals with R-actions. We
show in Theorem 5.3 below that if {rn : n ∈ N} ⊂ R is a set of recurrence and
if the set {1, r1, r2, . . .} is linearly independent over Q (for example, rn =
nα for α suitably chosen), then for any aperiodic flow (X,B, µ, {Tt}t∈R),
N ∈ N, and ε > 0 there exists a set A ∈ B with µ(A) > 1/2 − ε such that
µ(A ∩ T−1

rn
A) = 0, 1 ≤ n ≤ N .

2. Four formulations of the multi-dimensional Szemerédi theo-

rem. In this section, we show the equivalence of four “uniform” formulations
of the following multiple recurrence theorem of Furstenberg and Katznelson
from [FK].

Theorem FK. Suppose that l ∈ N and (X,B, µ) is a probability measure

space with commuting measure preserving transformations T1, . . . , Tl. For

any A ∈ B with µ(A) > 0,

lim inf
N→∞

1

N

N∑

n=1

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A) > 0.

Here are the four versions. (i) and (iv) are certainly standard, (ii) corre-
sponds to the case R = N in the remark at the end of the introduction, and
(iii) seems to be new. The proofs of all four implications are straightforward.
We include them as a service to the reader.

Theorem 2.1. The following are equivalent :

(i) For any l ∈ N and ε > 0 there exists a constant N0 = N0(l, ε) ∈ N

having the property that for any subset E ⊂ {1, . . . , N}l satisfying |E| ≥
εN l, E contains a configuration of the form

{(x1, x2, x3, . . . , xl), (x1 + n, x2, x3, . . . , xl),

(x1, x2 + n, x3, . . . , xl), . . . , (x1, x2, x3, . . . , xl + n)}.
(ii) For any l ∈ N and for any ε > 0, there exist constants N1 = N1(l, ε)

and β = β(l, ε) such that , for any l commuting measure preserving transfor-

mations T1, . . . , Tl of a probability measure space (X,B, µ) and any A ∈ B
with µ(A) > ε, there exists a positive integer n ≤ N1 such that

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A) ≥ β.

(iii) For any l ∈ N and for any ε > 0, there exist constants N2 = N2(l, ε)
and γ = γ(l, ε) such that , for any l commuting measure preserving transfor-
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mations T1, . . . , Tl of a probability measure space (X,B, µ), any A ∈ B with

µ(A) > ε, and any N > N2 one has

1

N

N∑

n=1

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A) ≥ γ.

(iv) Let l ∈ N and let Tl be the torus with normalized Lebesgue measure

λ. For any ε > 0, there exists a constant δ = δ(l, ε) > 0 such that , for any

measurable function f : Tl → [0, 1] with
T
f dλ ≥ ε,\

Tl

1/2\
0

f(x)f(x+ te1) . . . f(x+ tel) dt dλ(x) ≥ δ.

Remark. The vectors ei which appear in (iv) correspond to the ith
coordinate vectors in Rl, and the addition there is mod 1.

P r o o f (of Theorem 2.1). (i)⇒(ii). Let N1 = N0(ε/2) and let β =
ε/(2N l+1

1 ). For v = (v1, . . . , vl) ∈ Nl, let Av = T−v1
1 . . . T−vl

l A. Let

f =
1

N l
1

∑

v∈{1,...,N1}l

1Av
and B = {x : f(x) ≥ ε/2}.

As µ(Av) = µ(A) for every v, we have
T
X
f dµ = µ(A) ≥ ε. It follows that

µ(B) ≥ ε/2. For x ∈ B,

|{v ∈ {1, . . . , N1}l : x ∈ Av}| ≥
ε

2
N l

1,

which implies that this set contains an “l-simplex” {v, v + e1, . . . , v + el}.
Hence

B ⊂
⋃

v,n

(Av ∩Av+ne1
∩ . . . ∩Av+nel

),

where the union is taken over all v, n such that the simplex is contained in
{1, . . . , N1}l. There are fewer than N l+1

1 such simplices and thus one of the
intersections

Av ∩Av+ne1
∩ . . . ∩Av+nel

(clearly 1 ≤ n ≤ N1) has measure at least ε/(2N l+1
1 ) = β. Therefore,

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A) = µ(Av ∩Av+ne1
∩ . . . ∩Av+nel

) ≥ β.

(ii)⇒(iii). Let K = N1(l, ε) and β = β(l, ε). It is enough to show that
for all M ∈ N we have

1

MK2

MK2∑

n=1

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A) ≥ β

K2
.

For any m ∈ N, by substituting Tm
j for Tj in (ii), 1 ≤ j ≤ m, we may find

at least one n ∈ {1, . . . ,K} such that µ(A ∩ T−mn
1 A ∩ . . . ∩ T−mn

l A) ≥ β.
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Now, the products mn, where M(K − 1) < m ≤ MK and 1 ≤ n ≤ K, are
pairwise distinct: indeed, if 1 ≤ n < n′ ≤ K, then MKn ≤ MK(n′ − 1) ≤
M(K − 1)n′. Therefore

MK2∑

n=1

µ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A)

≥
MK∑

m=M(K−1)+1

K∑

n=1

µ(A ∩ T−mn
1 A ∩ . . . ∩ T−mn

l A) ≥ Mβ.

(iii)⇒(iv). Let δ = 1
2 (ε/2)

l+1γ(l, ε/2). Suppose f : Tl → [0, 1] withT
f dλ ≥ ε. Since f is bounded, the map

t 7→ I(t) =
\
Tl

f(x)f(x+ te1) . . . f(x+ tel) dλ(x)

is continuous and

(2.1)

1/2\
0

I(t) dt = lim
N→∞

1

2N

N∑

n=1

I

(
n

N

)
.

Let A = {x : f(x) ≥ ε/2}. Then λ(A) ≥ ε/2. Fix N and let

Tj(x) = x+
1

2N
ej (mod 1), j = 1, . . . , l; x ∈ Tl.

Then T1, . . . , Tl are commuting and measure preserving. Furthermore,

I

(
n

N

)
≥

(
ε

2

)l+1

λ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A), 1 ≤ n ≤ N.

It follows that for N sufficiently large,

1

2N

N∑

n=1

I

(
n

2N

)
≥ 1

2

(
ε

2

)l+1
1

N

N∑

n=1

λ(A ∩ T−n
1 A ∩ . . . ∩ T−n

l A)

≥ 1

2

(
ε

2

)l+1

γ

(
l,
ε

2

)
= δ,

which together with (2.1) implies that
T1/2
0

I(t) dt ≥ δ, as desired.

(iv)⇒(i). Let δ = δ(l, ε(1/4)l) and choose N so that N > 2/δ. Suppose
now that E ⊂ {1, . . . , N}l with |E| ≥ εN l. Let

S =
1

2N
E −

(
0,

1

4N

)l

=

{
1

2N
u− v : u ∈ E, v ∈

(
0,

1

4N

)l}
⊂ Tl.
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Then λ(S) ≥ ε(1/4)l, so by (iv) we have\
Tl

1/2\
0

1S(x)1S(x+ te1) . . . 1S(x+ tel) dλ(x) dt ≥ δ.

In particular, for some t with δ/2 ≤ t ≤ 1/2 and some x ∈ Tl we have

{x, x+ te1, . . . , x+ tel} ⊂ S.

Letting e0 = 0, we may write x + tej = 1
2N uj − vj , where uj ∈ E and

vj ∈ (0, 1/(4N))l, 0 ≤ j ≤ l. For j = 1, . . . , l, we have tej = 1
2N

(uj − u0)
+ (v0 −vj), from which we get uj −u0 = 2N(tej +(vj −v)) = 2Ntej + cj ,
where cj ∈ (−1/2, 1/2)l. It follows that uj − u0 = [2Nt+ 1/2]ej (where [z]
denotes the greatest integer ≤ z). Letting n = [2Nt+ 1/2], we have

{u0,u0 + ne1, . . . ,u0 + nel} ⊂ E.

We now come to the following two-parameter multiple recurrence the-
orem, which was alluded to in the introduction as a substantiating reason
for making explicit formulations of uniform versions of multiple recurrence
results. A special case of Theorem 2.2 below has been given a proof ([La])
parallel in methodology (and therefore of comparable difficulty) to the proof
of Theorem Sz given in [FKO]. Observe, however, that no such parallel proof
is necessary, for the two-parameter theorem is a consequence of the uniform
version 2.1(iii) of the one-parameter theorem.

Theorem 2.2. Let (X,B, µ) be a probability space and suppose that T
and S are commuting measure preserving transformations of X. Then for

every l ∈ N and every A ∈ B with µ(A) > 0 one has

lim inf
M,N→∞

1

MN

M∑

m=1

N∑

n=1

µ
( ⋂

0≤i,j≤l−1

(T inSjm)−1A
)
> 0.

P r o o f. By Theorem 2.1(iii) there exist N0 ∈ N and γ1 > 0 having the
property that for every N ≥ N0 we have

(2.2)
1

N

N∑

n=1

µ(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA) > γ1.

Similarly, there exist M0 ∈ N and γ2 > 0 having the property that for every
set B ∈ B with µ(B) ≥ γ1/2 and every M ≥ M0 we have

(2.3)
1

M

M∑

m=1

µ(B ∩ S−mB ∩ . . . ∩ S−(l−1)mB) > γ2.

Suppose now that N > N0 and M > M0. Let

H = {n : 1 ≤ n ≤ N0, µ(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA) ≥ γ1/2}.
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By (2.2) we have |H| ≥ Nγ1/2. Hence

1

MN

M∑

m=1

N∑

n=1

µ
( ⋂

0≤i,j≤l−1

(T inSjm)−1A
)

=
1

N

N∑

n=1

g

(
1

M

M∑

m=1

µ
( ⋂

0≤j≤l−1

(S−jm(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA))
))

≥ 1

N

∑

n∈H

(
1

M

M∑

m=1

µ
( ⋂

0≤j≤l−1

(S−jm(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA))
))

≥ 1

N

∑

n∈H

γ2 =
|H|γ2
N

≥ γ1γ2
2

.

It is easy to see in the above proof that N0 actually need not depend
on A, but only on µ(A). The proof would then give a uniform conclusion
serving as the initial case in an inductive scheme yielding the following
multi-parameter Szemerédi theorem:

Theorem 2.3. Let (X,B, µ) be a probability space and suppose that

{Tj}tj=1 are commuting measure preserving transformations of X. Then for

every l ∈ N and every A ∈ B with µ(A) > 0 one has

lim inf
N1,...,Nt→∞

1

N1 . . . Nt

N1∑

n1=1

. . .

Nt∑

nt=1

µ
( ⋂

0≤j1,...,jt≤l

(T j1n1

1 . . . T jtnt

t )−1A
)
> 0.

3. A polynomial Szemerédi type theorem for Rl. Our plan in this
section is to generalize Theorem Bo from the introduction. This involves
giving a polynomial version of formulation (iv) from Theorem 2.1. This is
accomplished via a polynomial version (Theorem 3.2) of formulation (i) from
Theorem 2.1. We leave it to the reader to show that polynomial versions
of formulations (ii) and (iii) could be given as well. However, due to non-
linearity, we see no simple way of obtaining the implication (iv)⇒(i) for the
polynomial case.

We use the following polynomial Szemerédi theorem.

Theorem 3.1 ([BL]). Let k, l ∈ N and suppose that S ⊂ Zl is a set of

positive upper Banach density

d∗(S) = lim sup
Ni−Mi→∞, 1≤i≤l

|S ∩∏l
i=1{Mi + 1, . . . , Ni}|∏l
i=1(Ni −Mi)

> 0

and let pi,j(n) ∈ Z[n] with pi,j(0) = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l. Then there

exist n ∈ N and (u1, . . . , ul) ∈ Zl such that

(u1 + pi,1(n), . . . , ul + pi,l(n)) ∈ S, 1 ≤ i ≤ k.
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Unfortunately, Theorem 3.1 is not quite a polynomial version of (i) from
Theorem 2.1. The following is. Its derivation from Theorem 3.1 is based on a
very simple idea: if it were possible to have arbitrarily large blocks of density
ε, each of which does not contain a polynomial configuration of a given type,
then one could build a set of upper Banach density ε not containing such
a configuration. As easy as this statement is to believe, the proof is rather
technical, so we defer it to an appendix.

Theorem 3.2. Let ε > 0, k, l ∈ N, and let pi,j(n) ∈ Z[n] with pi,j(0)
= 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l. Then there exists N = N(ε) ∈ N such that for

every set S ⊂ {1, . . . , N}l satisfying |S| ≥ εN l there exists (u1, . . . , ul) ∈ S
and n ∈ N, 1 ≤ n ≤ N , such that

(u1 + pi,1(n), . . . , ul + pi,l(n)) ∈ S, 1 ≤ i ≤ k.

P r o o f. See appendix.

We need the following lemma, a more general version of which is given
in Lemma 3.5 below.

Lemma 3.3. Let 0 < ε < 1 and suppose that A ⊂ [0, ε/2] is a finite set.

Suppose that S ⊂ [0, 1] is a measurable set with m(S) ≥ ε. Then

m({x : |(x+A) ∩ S|/|A| ≥ ε/4}) ≥ ε/4.

P r o o f. Take l = 1 in Lemma 3.5 below.

We now see how Theorem 3.2 and Lemma 3.3 combine to give Theorem
Bo. Let us outline the basic strategy of the proof, as it is the same for
Theorems 3.6 and 3.7 below.

We seek a configuration {x, x + h, x + h2} in a measurable set S of
“density” ε (relative to the interval in which S lies). We choose by Theorem
3.2 a square in N2 so big that any subset of it having density ε/4 (based on
counting measure) contains a configuration {(s, t), (s+n, t), (s, t+n2)}. We
then construct a linear map from the square into R taking the configurations
we can find in the square to the configurations we seek in R. The proof is
completed by “sliding” the image of this linear map around in R until it
intersects S with density ε/4, which is possible by Lemma 3.3. The preimage
of S under the map must now contain a configuration {(s, t), (s + n, t),
(s, t+n2)}, so that in particular S contains a configuration {x, x+h, x+h2}.
Theorem 3.4 ([Bo2]). Given ε > 0, there exists δ = δ(ε) > 0 such that

if S is a measurable subset of [0, N ], N ≥ 1, with m(S) ≥ εN , then there

exist x, h ∈ R with h > δN1/2 such that {x, x+ h, x+ h2} ⊂ S.

P r o o f. Let ε > 0. By Theorem 3.2 there exists L ∈ N having the
property that every set E ⊂ {1, . . . , L}2 satisfying |E| > (ε/4)L2 contains
a configuration of the form {(s, t), (s + n, t), (s, t + n2)}, where 1 ≤ n ≤ L.
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Fix δ with 0 < δ < ε/(4L). Suppose now that N > 1 and S ⊂ [0, N ] is a
measurable set with m(S) ≥ εN . Let S′ = (1/N)S = {(1/N )s : s ∈ S}.
Then S′ ⊂ [0, 1] and m(S) ≥ ε.

Choose a number M ∈ R which is not a rational multiple of N1/2 such
that δL < 1/M < ε/4. Consider the map f : {1, . . . L} × {1, . . . , L} → R

given by

f(s, t) =
s

N1/2LM
+

t

L2M2
.

Let A = f({1, . . . , L}2). Since

f(s, t) ≤ f(L,L) =
1

M
+

1

LM2
<

ε

2

for all 1 ≤ s, t ≤ L, we have A ⊂ [0, ε/2]. Furthermore, since M is not a
rational multiple of N1/2, one may show that |A| = L2.

Using part of the strength of Lemma 3.3, we see that there exists x′ ∈ R

such that |(x′ +A) ∩ S′| ≥ (ε/4)L2. Let

E = {(s, t) ∈ {1, . . . , L}2 : x′ + f(s, t) ∈ S′}.
Then |E| ≥ (ε/4)L2, so that E contains a configuration {(s, t), (s + n, t),
(s, t+ n2)}, where 1 ≤ n ≤ L. Let

x = N

(
x′ +

s

N1/2LM
+

t

L2M2

)
and h = nN1/2/LM.

One may now check that

{x, x+ h, x+ h2} ⊂ S.

Furthermore, h ≥ 1
LMN1/2 > δN1/2, as required.

As promised, here is the stronger version of Lemma 3.3.

Lemma 3.5. Suppose that 1 > ε > 0, l ∈ N, and A ⊂ [0, ε/(2l)]l is a

finite set. Suppose that S ⊂ [0, 1]l is a measurable set with λ(S) ≥ ε. Then

λ({x ∈ [0, 1]l : |(x+A) ∩ S|/|A| ≥ ε/4}) ≥ ε/4.

P r o o f. Since A ⊂ [0, ε/(2l)]l and λ(S) ≥ ε, for each a ∈ A we have\
[0,1]l

1S(a+ x) dx ≥ λ(S)− l
ε

2l
>

ε

2
.

Therefore, \
[0,1]l

|(x+A) ∩ S| dx =
\

[0,1]l

∑

a∈A

1S(a+ x) dx

=
∑

a∈A

\
[0,1]l

1S(a+ x) dx ≥ |A|ε
2
,
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so that \
[0,1]l

|(x+A) ∩ S|
|A| dx ≥ ε

2
.

It follows that if we let

U = {x ∈ [0, 1]l : |(x+A) ∩ S|/|A| ≥ ε/4},
then \

U

|(x+A) ∩ S|
|A| dx ≥ ε

4
.

Therefore, λ(U) ≥ ε/4.

We are almost ready to give the main result of this section. As the proof
is very technical, we choose to do another special case here that is more
indicative of the ideas necessary, relegating the proof of the general case to
the appendix.

Theorem 3.6. Given ε > 0, there exists δ = δ(ε) > 0 such that if S is

a measurable subset of [0, N ]2, N ≥ 1, with λ(S) ≥ εN2, then there exist

(x, y) ∈ R2 and h ∈ R with h > δN1/3 such that

{(x, y), (x + h2 −
√
7h, y), (x + h, y + 3h3 + πh)} ⊂ S.

P r o o f. Let ε > 0. By Theorem 3.2 there exists L ∈ N having the
property that every set E ⊂ {1, . . . , L}5 satisfying |E| > (ε/4)L5 contains a
configuration of the form

{(s, t, u, v, w), (s + n2, t+ n, u, v, w), (s, t, u + n, v + n3, w + n)},
where 1 ≤ n ≤ L. Fix a number δ with 0 < δ < 1

7
ε
8L . Suppose that N > 1

and S ⊂ [0, N ]2 is a measurable set with λ(S) ≥ εN2. Let S′ = (1/N )S.
Then S′ ⊂ [0, 1]2 and λ(S) ≥ ε.

Choose a number M ∈ R which is not a root of any polynomial whose
coefficients are taken from Q[N1/3, N2/3,

√
7, π] (this is the countable field

generated by Q and these 4 numbers) such that δL < 1/M < ε/56. Consider
the map

f(s, t, u, v, w) = s

(
1

L2M2N1/3
, 0

)
+ t

( −
√
7

N2/3LM
, 0

)
+ u

(
1

LMN2/3
, 0

)

+ v

(
0,

3

L3M3

)
+ w

(
0,

π

LMN2/3

)
, 1 ≤ s, t, u, v, w ≤ L.

Then f is a linear map whose coefficients are determined by the monomial
expressions appearing in the formulation of the theorem, namely p1(h) = h2,
p2(h) = −

√
7h, p3(h) = h, p4(h) = 3h3, and p5(h) = πh. For exam-

ple, the coefficient of s is precisely
(

1
N p1

(
N1/3

LM

)
, 0
)
. The coefficient of t is
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(
1
N
p2
(
N1/3

LM

)
, 0
)
. The coefficient of u is

(
0, 1

N
p3
(
N1/3

LM

))
, and so forth. It will

become clear presently why the choices are made in this fashion.
Let A = (ε/8, ε/8) + f({1, . . . , L}5). One checks that the coordinates

of f(s, t, u, v, w) are each not greater in absolute value than 7/M , which
is less than ε/8, 1 ≤ s, t, u, v, w ≤ L. Therefore A ⊂ [0, ε/4]2. Further-
more, since M is not a rational combination of the elements in the set
{1, N1/3, N2/3,

√
7, π}, one may show that |A| = L5.

By Lemma 3.5, there exists x′ ∈ R2 such that |(x′ +A) ∩ S′| ≥ (ε/4)L5.
Let

E = {(s, t, u, v, w) ∈ {1, . . . , L}5 : x′ + f(s, t, u, v, w) ∈ S′}.
Then |E| ≥ (ε/4)L5, so E contains a configuration

{(s, t, u, v, w), (s + n2, t+ n, u, v, w), (s, t, u + n, v + n3, w + n)},
where 1 ≤ n ≤ L.

Let (x, y) = N(x′ + f(s, t, u, v, w)) and put h = nN1/3/(LM). One may
now check that

{(x, y), (x + h2 −
√
7h, y), (x + h, y + 3h3 + πh)} ⊂ S.

Furthermore, h ≥ 1
LMN1/3 > δN1/3, as required.

We now come to the primary result of this section, Theorem 3.7. Bour-
gain mentions in [Bo2] that his method may be modified to prove the cases
l = 1, k = 2, p1(y) = y, p2(y) = yt, t ∈ N, though only t = 2 (i.e. our
Theorem 3.4) is carried out explicitly.

Theorem 3.7. Let ε > 0, k, l ∈ N, and let pi,j(x) ∈ R[x] with pi,j(0) = 0,
1 ≤ i ≤ k, 1 ≤ j ≤ l. Let t = max1≤i≤k, 1≤j≤l deg pi,j and write pi(x) =
(pi,1(x), . . . , pi,l(x)). There exists δ > 0 having the property that for any

N > 1, if f ∈ L∞(Rl), 0 ≤ f ≤ 1, and
T
[0,N ]l

f dλ > εN l then\
[0,N ]l

N1/t\
0

f(u)f(u+p1(y))f(u+p2(y)) . . . f(u+pk(y)) dy dλ(u) ≥ δN l+1/t.

P r o o f. See appendix.

Corollary 3.8. Let ε > 0, k, l ∈ N, and let pi,j(x) ∈ R[x] with pi,j(0) =
0, 1 ≤ i ≤ k, 1 ≤ j ≤ l. Let t = max1≤i≤k, 1≤j≤l deg pi,j. There exists δ > 0
having the property that for any N > 1, if S ⊂ [0, N ]l is a measurable set

with λ(S) ≥ εN l then there exist (x1, . . . , xl) ∈ Rl and h ∈ R with h ≥ δN1/t

such that

{(x1, . . . , xl), (x1 + p1,1(h), . . . , xl + p1,l(h)),

(x1 + p2,1(h), x2 + p2,2(h), . . . , xl + p2,l(h)), . . . ,

(x1 + pk,1(h), . . . , xl + pk,l(h))} ⊂ S.
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4. A generalized Roth theorem with estimates. Our small contri-
bution to the question of estimating the uniform constants of recurrence is
the following theorem:

Theorem 4.1. For any ε > 0 there exists a constant δ = δ(ε) > 0
(which may be explicitly identified) such that for any integers a, b and every

measurable function f : T → [0, 1] with
T
f(x) dx ≥ ε,\

T2

f(x)f(x+ at)f(x+ bt) dx dt ≥ δ.

Note that as the bounds we find on δ are not especially impressive, we
will satisfy ourselves with finding a recurrence relation from which they may
be computed.

In [Bo1], Bourgain gives a proof of Theorem 4.1 restricted to the case
a = 1, b = 2 by harmonic analysis, which yields Roth’s theorem. We follow
the main arguments of [Bo1], with some modification in order to find a
constant which does not depend on a and b. We then indicate how Theorem
4.1 may be used to obtain explicit gap estimates for a generalized Roth
theorem and for the special case l = 2 of Theorem 2.1(ii) in which T1 and
T2 are both powers of the same transformation T .

When a, b ∈ Z are fixed and f : T → [0, 1] is measurable we define

J(f) =
\
T2

f(x)f(x+ at)f(x+ bt) dx dt.

If a = 0, b = 0 or a = b, it is elementary to check that J(f) ≥ (
T
f(x) dx)2.

So, we henceforth suppose that a and b are non-zero and distinct.

As usual we denote the Fourier transform of f by f̂ , that is, for n ∈ Z,
f̂(n) =

T
f(x) exp(−2πinx) dx. Also we denote by f ∗ g the convolution

f ∗ (x) =
T
f(x − y)g(y) dy. For f, g ∈ L1 we have f̂ ∗ g = f̂ ĝ. Finally

we have Parseval’s identity: if f ∈ L2 then f̂ ∈ l2 and ‖f‖2 = ‖f̂‖2. The
following norm plays a crucial role here: let, for any bounded measurable
function f on T,

|||f ||| = ‖f̂‖4 =
(∑

n∈Z

|f̂(n)|4
)1/4

.

By the Cauchy–Schwarz inequality we have |||f ||| ≤ ‖f‖22. More generally,

‖f ∗ g‖2 = ‖f̂ ĝ‖2 ≤ ‖f̂‖4‖ĝ‖4 = |||f ||| · |||g|||. We will use these facts repeat-
edly.

Lemma 4.2. For every measurable f, g : T → [0, 1],

|J(f)− J(g)| ≤ 3|||f − g|||.
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P r o o f. Let h(x) = f(x)− g(x) and notice that

f(x)f(x+ at)f(x+ bt)− g(x)g(x + at)g(x+ bt)

= h(x)g(x + at)g(x + bt) + f(x)h(x+ at)g(x+ bt)

+ f(x)f(x+ at)h(x+ bt).

Define

J(f1, f2, f3) =
\\
T2

f1(x)f2(x+ at)f3(x+ bt) dx dt.

We must show that |J(h, g, g) + J(f, h, g) + J(f, f, h)| ≤ 3|||h|||. First, we
show |J(f, f, h)| ≤ |||h|||:

J(f, f, h)2 ≤ ‖f‖22
\
T

(\
T

f(x+ at)h(x + bt) dt
)2

dx

= ‖f‖22
\
T3

f(x+ as)f(x+ at)h(x+ bs)h(x+ bt) dx ds dt

= ‖f‖22
\
T3

f(y)f(y + au)h(z)h(z + bu) dy dz du

= ‖f‖22
\
T2

f(y)f(y + au)
(\

T

h(z)h(z + bu) dz
)
dy du

≤
\
T

∣∣∣
\
T

h(z)h(z + bu) dz
∣∣∣ du

=
\
T

|h ∗ ȟ(bu)| du = ‖h ∗ ȟ‖1 ≤ ‖h ∗ ȟ‖2,

where ȟ(x) = h(−x). We have ĥ = ̂̌h, whence

J(f, f, h)2 ≤ ‖h ∗ ȟ‖2 =
(∑

j∈Z

(ĥ(j)̂̌h(j))2
)1/2

=
(∑

j∈Z

|ĥ(j)|4
)1/2

= |||h|||2.

Similar arguments show that |J(f, h, g)| ≤ |||h||| and |J(h, g, g)| ≤ |||h|||,
completing the proof.

We shall need auxiliary “kernels”, i.e. continuous functions k on T such
that

(4.1) k ≥ 0, k̂ ≥ 0 and
\
T

k(x) dx = 1.

In the following lemma, ‖ · ‖ denotes the distance to the nearest integer.
Also we will use the fact that if f, g ∈ L∞(T) then

(4.2) f̂ g(n) =
∑

k∈Z

f̂(n− k)ĝ(k).
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Lemma 4.3. Given a finite set S ⊂ Z and η, with 0 < η ≤ 1/2, there
exists a kernel k satisfying (4.1) which vanishes outside the set

(4.3) A(S, η) = {t ∈ T : ‖jt‖ ≤ η for all j ∈ S}
and such that moreover

‖k̂‖1 = ‖k‖∞ ≤ η−|S|.

P r o o f. Consider the standard “triangle” kernel k0 given by k0(t) =
(η−|t|)/η2 if −η≤ t≤η (mod 1) and k0(t) = 0 otherwise. One easily checks

that k̂0(j) ≥ 0 for every j ∈ Z and that k̂0(0) = 1. Put k1(t) =
∏

j∈S k0(jt),
so that k1(t) = 0 outside A(S, η). Repeated application of (4.2) shows that

k̂1(j) ≥ 0 for all j ∈ Z and that moreover k̂1(0) ≥ 1. Now just let

k(t) = k1(t)/k̂1(0), t ∈ T.

For f : T → [0, 1] let ft denote the function ft(x) = f(x+ t). Set

(4.4) d(t) = max{|||f − ft|||, |||f − fat|||, |||f − fbt|||}
and for δ > 0 put

(4.5) B(δ) = {t ∈ T : d(t) < δ}.
Lemma 4.4. For every δ > 0, there exists ν = ν(δ) > 0 (which may

be identified explicitly), having the property that for all a, b ∈ Z and every

f : T → [0, 1] with
T
f(x) dx ≤ 1 there exists a kernel k satisfying (4.1) which

vanishes outside B(δ) (where B(δ) is given by (4.4) and (4.5)) and such that

‖k‖∞ ≤ 1/ν. In particular since
T
T
k(x) dx = 1 we have

λ(B(δ)) ≥ ν(δ).

P r o o f. Let ν = (4π
√
2/δ2)−96/δ4 and suppose a, b and f are given. Let

S = {j ∈ Z : |f̂(j)|2 ≥ δ4/32} and S′ = S ∪ aS ∪ bS.

Since ‖f‖2≤1, we have |S|≤32/δ4 and |S′|≤96/δ4. If t ∈ A(S′, δ2/(4π
√
2))

(see (4.3)) and c = 1, a or b we have

|||f − fct|||4 =
∑

j∈Z

|f̂(j)− e−2πijctf̂(j)|4 =
∑

j∈Z

|f̂(j)|4 |1− e2πijct|4

≤ 24|S|
(
δ4

32

)2

+ 24
δ4

32

∑

j 6∈S

|f̂(j)|2 ≤ δ4

2
+

δ4

2
= δ4.

So A(S′, δ2/(4π
√
2)) ⊂ B(δ) and, by Lemma 4.3, we can find a kernel k

vanishing outside B(δ) with

‖k‖∞ ≤ (4π
√
2/δ2)96/δ

4

= 1/ν.
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Proof of Theorem 4.1. Let ε > 0. We define sequences {δn}n≥0 and
{Kn}n≥0 by δ0 = 1 and, for n ≥ 0,

Kn = ν(δn)
−1/4, δn+1 = min

{
δn,

ε6

100Kn
,
ε3

20
ν

(
ε3

10Kn

)}
.

LetM be the smallest integer ≥ 50 ε−6 and set δ = δM (δ has been identified
explicitly). Suppose now that a, b ∈ Z and f : T → [0, 1] with

T
f(x) dx ≥ ε.

We must show that

J(f) =
\\
T2

f(x)f(x+ at)f(x+ bt) dx dt ≥ δ.

For n ≥ 0, choose a kernel kn such that

kn ≥ 0, k̂n ≥ 0 and
\
T

kn(x) dx = 1,

kn vanishes outside B(δn) (as defined in (4.4) and (4.5)), and ‖kn‖∞ ≤
1/ν(δn) (such a kn exists by Lemma 4.4), and put

f(n) = f ∗ kn.
By Young’s inequality,

‖f(n)‖p ≤ ‖f‖p‖kn‖1 ≤ 1 for all p ≥ 1.

Meanwhile since

(f − f(n))(x) = f(x)− f ∗ kn(x) = f(x)−
\
f(x− t)kn(t) dt

= f(x)−
\
f(x+ t)kn(−t) dt =

\
(f − ft)(x)kn(−t) dt

we have f − f(n) =
T
(f − ft) dµ(t), where dµ = ȟdλ. Since ||| · ||| is convex

and ǩn vanishes outside B(δn), Jensen’s inequality gives us

|||f − f(n)||| ≤
\
T

|||f − ft||| dµ(t) ≤
\
T

d(t) dµ(t)(4.6)

=
\
T

d(t)ǩn(t) dt ≤ δn.

Also, since by the Hausdorff–Young inequality k̂n(j) ≤ ‖k̂n‖∞ ≤ ‖kn‖1 = 1
for all j ∈ Z,

|||kn||| =
(∑

j∈Z

|k̂n(j)|4
)1/4

≤
(∑

j∈Z

|k̂n(j)|
)1/4

= ‖k̂n‖1/41(4.7)

≤ ν(δn)
−1/4 = Kn.
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Now

‖f(n+1) − f(n)‖22
= ‖f̂(n+1) − f̂(n)‖22

= ‖f̂(n+1)‖22 + ‖f̂(n)‖22 −
∑

j∈Z

(−f̂(n+1)(j)f̂ (n)(j) + f̂ (n)(j)f̂(n+1)(j))

= ‖f̂(n+1)‖22 − ‖f̂(n)‖22 + 2
∑

j∈Z

|f̂(n)(j)|2 − 2
∑

j∈Z

|f̂(j)|2k̂n(j)k̂n+1(j)

= ‖f(n+1)‖22 − ‖f(n)‖22 + 2
∑

j∈Z

|f̂(j)|2 k̂n(j)(k̂n(j) − k̂n+1(j))

≤ ‖f(n+1)‖22 − ‖f(n)‖22 + 2
∑

j∈Z

|f̂(j)|2k̂n(j)(1 − k̂n+1(j))

≤ ‖f(n+1)‖22 − ‖f(n)‖22 + 2‖f̂ k̂n‖2‖f̂ − f̂ k̂n+1‖2
≤ ‖f(n+1)‖22 − ‖f(n)‖22 + 2|||f |||2|||kn||| · |||f − f(n+1)|||,

upon applying twice the Cauchy–Schwarz inequality. By (4.6) and (4.7) and
the fact that |||f |||2 ≤ ‖f‖2 ≤ 1, the last term is ≤ 2Knδn+1 and according
to the definition of δn+1 we get

‖f(n+1) − f(n)‖22 ≤ ‖f(n+1)‖22 − ‖f(n)‖22 + ε6/50.

It follows that

M−1∑

n=0

‖f(n+1) − f(n)‖22 ≤ ‖f(M)‖22 − ‖f(0)‖22 +Mε6/50

≤ 1 +Mε6/50 ≤ Mε6/25

and therefore we can choose some n < M such that

‖f(n+1) − f(n)‖2 ≤ ε3/5.

Next, consider the expression

In(t) =
\
T

f(n)(x)f(n)(x+ at)f(n)(x+ bt) dx, t ∈ T.

Decomposing as in the proof of Lemma 4.2 and employing Cauchy–Schwarz,
we get

(4.8) |In(t)− In+1(t)| ≤ 3‖f(n) − f(n+1)‖2 ≤ 3ε3/5.

On the other hand,
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|In(0)− In(t)|
=

∣∣∣
\
T

(f(n)(x))
3 − f(n)(x)f(n)(x+ at)f(n)(x+ bt) dx

∣∣∣

=
∣∣∣
\
T

(f(n)(x))
2(f(n)(x)− f(n)(x+ at))

+ f(n)(x)f(n)(x+ at)(f(n)(x)− f(n)(x+ bt)) dx
∣∣∣

≤ ‖f2
(n)‖2‖f(n) − (f(n))at‖2 + ‖f(n)(f(n))at‖2‖f(n) − (f(n))bt‖2

≤ ‖f(n)‖24‖f(n) − (f(n))at‖2 + ‖f(n)‖4‖(f(n))at‖4‖f(n) − (f(n))bt‖2
≤ ‖f(n) − (f(n))at‖2 + ‖f(n) − (f(n))bt‖2
= ‖(f − fat) ∗ kn‖2 + ‖(f − fbt) ∗ kn‖2
≤ |||kn|||(|||f − fat|||+ |||f − fbt|||) ≤ 2Kn d(t).

As In(0) =
T
f(n)(x)

3 dx ≥ ‖f(n)‖31 = ‖f‖31 ≥ ε3 (Jensen’s inequality), it
follows that In(t) ≥ ε3 − 2Knd(t) and by (4.8) we get

In+1(t) ≥ 2ε3/5− 2Kn d(t) for every t ∈ T.

So, In+1(t) ≥ ε3/5 on the set B(ε3/(10Kn)) whence, by Lemma 4.4 and the
choice of δn+1,

J(f(n+1)) =
\
T

In(x) dx ≥ ε3

5
λ

(
B

(
ε3

10Kn

))
≥ ε3

5
ν

(
ε3

10Kn

)
≥ 4δn+1.

Finally, applying Lemma 4.2 and (4.6) we get

J(f) ≥ J(f(n+1))− 3δn+1 ≥ δn+1 ≥ δM

and the proof is complete.

Disappointingly, we see no way to preserve the uniformity of Theorem
4.1 over all a and b in the following corollaries.

Corollary 4.5. Let a, b ∈ N. For any ε > 0 there exists M = M(ε, a, b)
∈ N (which may be explicitly identified) such that every set E ⊂ {1, . . . ,M}
satisfying |E| ≥ εM contains a configuration of the form {x, x+an, x+ bn}
for some x and some positive integer n.

P r o o f. We may assume that a and b are relatively prime. First we will
prove the result substituting the weaker conclusion n 6= 0, then show that
n can in fact be chosen positive. Let δ = δ(ε/(4a2b2)) as in Theorem 4.1
and choose N with N > 1/(4a2b2δ). Suppose that E ⊂ {1, . . . , N} with
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|E| ≥ εN . Let

A =
1

2Nab
E +

(
0,

1

4Na2b2

)
.

Thenm(A) ≥ ε/(4a2b2) so by Theorem 4.1 there exists x, h ∈ T\(−δ/2, δ/2)
with {x, x + ah, x + bh} ∈ A. This implies that ah and bh both lie in
(−1/(2ab), 1/(2ab)) ⊂ T. In other words, there exist integers k1 and k2
such that

|ah− k1| <
1

2ab
and |bh− k2| <

1

2ab
.

In particular, |bk1 − ak2| < 1, so that bk1 = ak2, implying a | k1 and b | k2,
which gives us∣∣∣∣h− k1

a

∣∣∣∣ <
1

2ab
, so that h ∈

(
− 1

2ab
,

1

2ab

)
.

We may write

x =
n1

2Nab
+ α1, x+ ah =

n2

2Nab
+ α2, x+ bh =

n3

2Nab
+ α3,

where {n1, n2, n3} ⊂ E and 0 < α1, α2, α3 < 1/(4Na2b2). Solving for h in
the latter two expressions and setting the resulting quantities equal gives

(n2 − n1)b+ 2Nab2(α2 − α1) = (n3 − n1)a+ 2Na2b(α3 − α1),

which implies (n2 − n1)b = (n3 − n1)a since the quantities 2Nab2(α2 − α1)
and 2Na2b(α3 − α1) are less than 1/2 in absolute value. In other words,
the set {n1, n2, n3} has the form {x, x + an, x + bn}, and n 6= 0 since
h > 1/(4Na2b2).

This proves the result under the relaxed conclusion n 6= 0. Let now
M = N(ε2/6) and suppose that E ⊂ {1, . . . , N} with |E| ≥ εN . For some
l with 1 ≤ l ≤ 2N we have |(E + l) ∩ (2N − E)| > (ε2/2)N = (ε2/6)(3N),
hence there exists a configuration {x, x+ an, x+ bn} in (F + l)∩ (2N −F ),
where n 6= 0. If n > 0 we have {x+ l, (x+ l)+ an, (x− l)+ bn} ⊂ E and we
are done. Otherwise, {2N −x, (2N −x)+a(−n), (2N −x)+ b(−n)} ⊂ E.

The derivation of the following from Corollary 4.5 is analogous to the
proof of the implication (i)⇒(ii) in Theorem 2.1.

Corollary 4.6. Suppose a, b ∈ N and ε > 0. There exist N = N(a, b, ε)
∈ N and β = β(a, b, ε) > 0 (both of which may be explicitly identified) such

that for every measure preserving system (X,B, µ, T ) with µ(X) = 1 and

every A ∈ B with µ(A) > ε there exists a positive integer n ≤ N such that

µ(A ∩ T−anA ∩ T−bnA) ≥ β.

As we mentioned earlier, we are unable to carry over the uniformity with
respect to a and b from Theorem 4.1 to Corollaries 4.5 and 4.6. In a sense,
this is unsurprising, as Forrest has shown in [Fo] that any estimates that
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are good for arbitrary powers of the same transformation T are also good
for two commuting transformations T and S, and we certainly do not feel
that these methods are sufficient to handle such cases without substantial
modification.

Gowers mentions in [G2] that he suspects his methods can be adapted
to the case of commuting transformations, thus providing explicit bounds
for those cases. However, nothing along these lines has been published yet,
so for the moment the question of identifying uniform (over all a and b)
bounds in these two corollaries appears to be open.

5. Counterexamples and miscellanies. Recall from the introduction
that if R is a set of recurrence in N then we have uniformity: for every ε > 0
there exists a finite subset R′ ⊂ R such that for every probability measure
preserving system (X,B, µ, T ) and every A ∈ B with µ(A) ≥ ε there exists
n ∈ R′ such that µ(A ∩ T−nA) > 0.

We now seek to show that this result does not carry over to sets of
recurrence in R. Namely, we show that there exist sets of recurrence R ⊂ R

such that for any ε > 0, any finite subset R′ ⊂ R, and for any aperiodic
measurable measure preserving flow (X,B, µ, {Tt}t∈R) with µ(X) = 1, there
exists a set A ∈ B with µ(A) > 1/2 − ε such that µ(A ∩ TtA) = 0 for all
t ∈ R′. The following lemma, whose proof is modelled after the proof of
[BBB], Theorem D, is the key.

Lemma 5.1. Given ν > 0, a rationally independent set {λ1, . . . , λN}
⊂ R, and any aperiodic measurable flow (X,B, µ, {Tt}t∈R) with µ(X) = 1,
there exists a set A ∈ B with µ(A) > 1/2 − ν such that µ(A ∩ Tλi

A) = 0,
1 ≤ i ≤ N .

P r o o f. Let ε > 0 be so small that (1 − ε)(1/2 − ε) > 1/2 − ν. Scaling
if necessary by a constant we may assume that {1, λ1, . . . , λN} is rationally
independent. In this case it is well known that the set

{(nλ1, . . . , nλN ) : n ∈ N}
(multiplication modulo 1) is dense on the N -torus TN . Therefore there
exists n ∈ N such that nλi ∈ (1/2− ε, 1/2+ ε) (mod 1), 1 ≤ i ≤ N . By [L],
Theorem 1, there exists some L ∈ N, some number a with 1 − ε ≤ a ≤ 1,
and a set B ∈ B with the following properties:

(i) for all t, s with 0 ≤ t < s ≤ L, TtB ∩ TsB = ∅,
(ii) for any Lebesgue measurable set D ⊂ [0, L], D̃ =

⋃
t∈D TtB ∈ B, and

moreover µ(D̃) = am(D)/L, where m is Lebesgue measure.

Let S = {j/n+β : j ∈ {0, 1, . . . , Ln−1}, 0 ≤ β ≤ (1/n)(1/2−ε)} ⊂ [0, L].

Then m(S) = L(1/2 − ε) and S ∩ (S + λi) = ∅, 1 ≤ i ≤ N . Let A = S̃ (as
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in (ii) above). Then µ(A) = a(1/2 − ε) > 1/2 − ν and µ(A ∩ Tλi
A) = 0,

1 ≤ i ≤ N .

We are now ready to give the example of the set of recurrence R ⊂ R

with the specified non-uniformity properties. The set R will be of the form
R = {nα : n ∈ N}. Such sets are sets of recurrence for continuous actions in
R for α 6= 0. (For a proof of this fact, see [BBB, Section 3].) For many α,
we have the sought-after non-uniformity as well:

Theorem 5.2. For all but countably many α ∈ R, the set Rα = {nα :
n ∈ N} has the property that for any ε > 0, any finite subset R′ ⊂ Rα, and
any aperiodic measurable flow (X,B, µ, {Tt}t∈R), where µ(X) = 1, there

exists a set A ∈ B with µ(A) > 1/2 − ε such that µ(A ∩ TtA) = 0 for all

t ∈ R′.

P r o o f. By [BBB], Lemma 2.9, Rα is rationally independent for all but
countably many α ∈ R. The result follows from Lemma 5.1.

We now give another negative result. In [F], what is actually proved is
that for any l ∈ N, any probability measure preserving system (X,B, µ, T ),
and any A ∈ B with µ(A) > 0 one has

lim inf
N−M→∞

1

N −M

N∑

n=M+1

µ(A ∩ T−nA ∩ . . . ∩ T−(l−1)nA) > 0.

We now show that it is impossible to extend this result in the manner of
Theorem 2.1(iii). Indeed, we have the following:

Theorem 5.3. For any invertible ergodic aperiodic probability measure

preserving system (X,B, µ, T ), any ε > 0, and any N ∈ N there exists a set

A ∈ B with µ(A) > 1/2 − ε and some M ∈ N having the property that for

all n with M + 1 ≤ n ≤ M +N , one has µ(A ∩ T−nA) = 0.

P r o o f. By Rokhlin’s Theorem there exists k ∈ N large enough that
k > N/ε and

1− ε

2
· k −N

k + 1
>

1

2
− ε,

and a set B ∈ B such that T iB ∩T jB = ∅, 0 ≤ i < j ≤ k, and µ(
⋃k

i=0 T
iB)

> 1 − ε (which implies µ(B) > (1− ε)/(k + 1)). Let M = [(k −N)/2] and

set A =
⋃M

i=0 T
iB. Then

µ(A) ≥ 1− ε

k + 1
· k −N

2
>

1

2
− ε.

One may also check that A ∩ TnA = ∅, M + 1 ≤ n ≤ k − M , and since
M ≤ (k −N)/2 we have k −M ≥ M +N .
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6. Appendix

Proof of Theorem 3.2. Suppose not. Then there exist ε > 0, k, l ∈ N, and
polynomials pi,j(n) ∈ Z[n] with pi,j(0) = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l having
the property that for every N ∈ N there exists a set SN ⊂ {1, . . . , N}l with
|SN | ≥ εN l such that, if we set p0,j(n) = 0, 1 ≤ j ≤ l, then SN contains no
configuration of the form

(3.1) {(u1 + pi,1(n), . . . , ul + pi,l(n)) : 0 ≤ i ≤ k},
for any n, 1 ≤ n ≤ N . We may assume that p1,j(n) = n, 1 ≤ j ≤ l, and
that k ≥ 2. For convenience, we will use the following notation: pi(n) =
(pi,1(n), . . . , pi,l(n)), 0 ≤ i ≤ k. We may assume as well that pi 6= pj

whenever 0 ≤ i 6= j ≤ k.
We will now construct a set E ⊂ Zl with d∗(E) ≥ ε such that E contains

no configuration of the form (3.1), thus obtaining a contradiction to Theorem
3.1. The set E will be a countable union of larger and larger finite sets each of
which contains no configuration of the type in question and each of which is
of density at least ε in some l-dimensional cube. The cubes containing these
sets, on the other hand, are shifted (by l-tuples ui determined presently) so
as to be so sparsely distributed that no applicable configuration can lie in
their union without being wholly contained in a single one of the cubes (this
is the content of (i) and (ii) below).

Let then u1 be arbitrary. Having chosen u1, . . . ,uN−1, let

FN−1 =
N−1⋃

r=1

(ur + {1, . . . , r}l).

We seek to choose uN having the following properties:

(i) if there exist u ∈ Zl, n ∈ Z, and 0 ≤ i 6= j ≤ k such that {u +
pi(n),u + pj(n)} ⊂ FN−1 then u + pm(n) 6∈ uN + {1, . . . , N}l for all m,
0 ≤ m ≤ k,

(ii) if there exist u ∈ Zl, n ∈ Z, and 0 ≤ i 6= j ≤ k such that {u +
pi(n),u + pj(n)} ⊂ uN + {1, . . . , N}l then u + pm(n) 6∈ FN−1 for all m,
0 ≤ m ≤ k.

Let us now see how to ensure that (i) is satisfied. Let

T = {n : pi(n)− pj(n) ∈ FN−1 − FN−1 for some 0 ≤ i 6= j ≤ k}.
Then T is a finite set. Suppose that

(3.2) uN 6∈
⋃

0≤i,m≤k

(FN−1 − {1, . . . , N}l + (pm − pi)(T )).

Then suppose that u+pi(n) ∈ FN−1 and u+pj(n) ∈ FN−1 for some u ∈ Zl,
n ∈ Z, and 0 ≤ i 6= j ≤ k. Then pi(n)−pj(n) ∈ FN−1−FN−1, so n ∈ T . If
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now u+ pm(n) ∈ uN + {1, . . . , N}l for some m, 0 ≤ m ≤ k, then

(u+ pm(n))− (u+ pi(n)) ∈ uN + {1, . . . , N}l − FN−1,

which implies that

uN ∈ FN−1 − {1, . . . , N}l + (pm − pi)(T ),

contradicting (3.2). Hence if (3.2) is satisfied then (i) is satisfied.
Now we see how to ensure that (ii) is satisfied. Let

U = {n : pi(n)− pj(n) ∈ {−N,−N + 1, . . . , N}l for some 0 ≤ i 6= j ≤ k}.
Then U is a finite set. Suppose that

(3.3) uN 6∈
⋃

0≤i,m≤k

(FN−1 − {1, . . . , N}l + (pi − pm)(U)).

Then suppose that u + pi(n) ∈ uN + {1, . . . , N}l and u + pj(n) ∈ uN +
{1, . . . , N}l for some u ∈ Zl, n ∈ Z, and 0 ≤ i 6= j ≤ k. Suppose that
u+ pm(n) ∈ FN−1 for some m, 0 ≤ m ≤ k. Then

pi(n)− pj(n) = (u+ pi(n))− (u+ pj(n)) ∈ {−N,−N + 1, . . . , N}l,
so n ∈ U . Furthermore,

(u+ pi(n))− (u+ pm(n)) ∈ uN + {1, . . . , N}l − FN−1,

which implies that

uN ∈ FN−1 − {1, . . . , N}l + (pi − pm)(U),

contradicting (3.3). Hence if (3.3) is satisfied, (ii) is satisfied.
Hence, we need only choose uN such that (3.2) and (3.3) are satisfied,

which is obviously possible since the sets appearing in these displays are
finite. This establishes that we may find a sequence {u1,u2, . . .} having
properties (i) and (ii).

Now let

E =

∞⋃

N=1

(uN + SN).

Since

|(uN + SN ) ∩ (uN + {1, . . . , N}l)|
N l

=
|SN ∩ {1, , . . . , N}l|

N l
≥ ε

for all N ∈ N, we have d∗(E) ≥ ε. Therefore, by Theorem 3.1 there exist
(u1, . . . , ul) ∈ Zl and n ∈ N such that

(u1 + pi,1(n), . . . , ul + pi,l(n)) ∈ E, 0 ≤ i ≤ k.

Let N ∈ N be minimal with respect to the property that

(u1 + pi,1(n), . . . , ul + pi,l(n)) ∈
N⋃

i=1

(ui + Si), 0 ≤ i ≤ k.
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Write u = (u1, . . . , ul). By minimality of N , u + pm(n) ∈ uN + SN ⊂
uN + {1, . . . , N}l for some m, 0 ≤ m ≤ k. By (i) and the fact that Si ⊂
{1, . . . , i}l, 1 ≤ i ≤ N − 1, we have

u+ pj(n) ∈
N−1⋃

i=1

(ui + Si) ⊂ FN−1

for at most one j, 0 ≤ j ≤ k. It follows that, since k ≥ 2, u + pj(n) ∈
uN + SN ⊂ uN + {1, . . . , N}l for some j 6= m, 0 ≤ j ≤ k. Hence by (ii),

u+ pr(n) 6∈
N−1⋃

i=1

(ui + Si) ⊂ FN−1, 0 ≤ r ≤ k.

Therefore u+ pi(n) ∈ uN + SN , 0 ≤ i ≤ k, which implies that

{(u− uN ) + pi(n) : 0 ≤ i ≤ k} ⊂ SN .

Furthermore, since SN ⊂ {1, . . . , N}l, p0,1(n) = 0, and p1,1(n) = n, we have
1 ≤ n ≤ N , contradicting the fact that SN contains no such configuration
and completing the proof.

Proof of Theorem 3.7. Let ν > 0 be so small that for any g ∈ L∞(Rl)
with 0 ≤ g ≤ 1 and

T
[0,1]l

g dλ ≥ ε we have

λ

({
u ∈

[
ν

4l
, 1 − ν

4l

]l
: g(u) ≥ ν

})
≥ ν.

Let a = klt and denote by ej the jth coordinate unit vector in Ra,
1 ≤ j ≤ a. By Theorem 3.2 there exists L ∈ N having the property that if
E ⊂ {1, . . . , L}a with |E| ≥ νLa/4 then E contains a configuration of the
form

{s+ ui(n) : 1 ≤ i ≤ k},
where 1 ≤ n ≤ L and

ui(n) =
l∑

j=1

t∑

b=1

nbeb+(j−1)t+(i−1)tl.

Let αi,j,b be the coefficient of xb in pi,j(x), 1 ≤ b ≤ t, 1 ≤ i ≤ k,
1 ≤ j ≤ l, and put

V = 2 max
1≤j≤l

k∑

i=1

t∑

b=1

|αi,j,b|.

Set δ = νk+2/(8lV La+2).
Suppose now that N is any real number with N ≥ 1. Let M be any

number which is not the root of any polynomial having coefficients in

Q[{N b/t, αi,j,b : 1 ≤ i ≤ k, 1 ≤ j ≤ l, 1 ≤ b ≤ t}]
and for which 1/M ≤ ν/(2lV ).
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Unlike in Theorems 3.4 and 3.6 our intention is not to fix M , with some
specific lower bound on 1/M ; rather we wish to point out that the steps in
the argument below may be carried out for all but countably many M ≥
2lV/ν. Each of these M ’s will supply an h, much as in the previous proofs.
(However, note that the role of h below is somewhat different than in the
previous arguments; actually nh serves the function that h did before.) The
proof is completed by noting the the combined measure of these h’s, which
come from the various M ’s, is large enough to give the desired conclusion.

Consider the map γ : {1, . . . , L}a → Rl given by

γ(s1, . . . , sa) =

k∑

i=1

l∑

j=1

t∑

b=1

sb+(j−1)t+(i−1)tl

(
αi,j,b

LbM bN1−b/t

)
cj ,

where cj is the jth coordinate unit vector in Rl, 1 ≤ j ≤ l. Let

A =

(
ν

4l
, . . . ,

ν

4l

)
+ γ({1, 2, . . . , L}a) ⊂ Rl.

(Compare with the map f of Theorem 3.6.) One easily checks that the
range of γ is contained in [−ν/(4l), ν/(4l)]l. In particular, A ⊂ [0, ν/(2l)]l.
Furthermore, since M is not a root of any polynomial having coefficients in

Q[{N b/t, αi,j,b : 1 ≤ i ≤ k, 1 ≤ j ≤ l, 1 ≤ b ≤ t}],
we have |A| = La.

Assume now that f ∈ L∞(Rl) with
T
[0,N ]l

f dλ ≥ εN l. Let f̃(u) =

f(Nu), u ∈ Rl. Then
T
[0,1]l

f̃ dλ ≥ ε. Recall the property whereby ν was

chosen. Namely, if we now let

S =

{
u ∈

[
ν

4l
, 1− ν

4l

]l
: f̃(u) ≥ ν

}
,

then λ(S) ≥ ν. By Lemma 3.5, if we let

UM = {x ∈ [0, 1]l : |(x+A) ∩ S|/|A| ≥ ν/4},
we have λ(UM ) ≥ ν/4. (Notice as well that UM ⊂ [ν/(4l), 1− ν/(4l)]l.) For
x ∈ UM , let

Ex = {(s1, . . . , sa) ∈ {1, . . . , L}a : x+ γ(s1, . . . , sa) ∈ S}.
Then |Ex| ≥ (ν/4)La, so Ex contains a configuration of the form

{s+ ui(n) : 1 ≤ i ≤ k},
where 1 ≤ n ≤ L and

ui(n) =
l∑

j=1

t∑

b=1

nbeb+(j−1)t+(i−1)tlg.
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This in turn implies that

{x+ γ(s+ ui(n)) : 1 ≤ i ≤ k} ⊂ S.

Note that γ is a linear function. In particular,

x+ γ(s+ ui(n))

= x+ γ(s) + γ(ui(n))

= x+ γ(s) +
l∑

j=1

t∑

b=1

γ(nbeb+(j−1)t+(i−1)tl)

= x+ γ(s) +

l∑

j=1

( t∑

b=1

nb

(
αi,j,b

LbM bN1−b/t

))
cj ∈ S, 1 ≤ i ≤ k.

Let h = N1/t/(LM). Then

(x+ γ(s)) +
1

N
pi(nh)

= (x+ γ(s)) +
1

N

l∑

j=1

pi,j(nh)cj

= (x+ γ(s)) +
1

N

l∑

j=1

( t∑

b=1

αi,j,b(nh)
b
)
cj

= x+ γ(s) +

l∑

j=1

( t∑

b=1

nb

(
αi,j,b

LbM bN1−b/t

))
cj ∈ S, 1 ≤ i ≤ k.

Therefore,
k∏

i=1

f̃

(
x+ γ(s) +

1

N
pi(nh)

)
≥ νk.

At this point, n and s depend on x. However, recalling that s∈{1, . . . , L}a
and n ∈ {1, . . . , L}, we have, for all x ∈ UM ,

∑

s∈{1,...,L}a

L∑

n=1

k∏

i=1

f̃

(
x+ γ(s) +

1

N
pi(nh)

)
≥ νk,

which implies that (recall UM ⊂ [ν/(4l), 1− ν/(4l)]l)

(3.4)
∑

s∈{1,...,L}a

L∑

n=1

\
[ν/(4l),1−ν/(4l)]l

k∏

i=1

f̃

(
x+ γ(s) +

1

N
pi(nh)

)
dλ(x)

≥ νkλ(UM ) ≥ νk+1

4
.
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Recall that h = N1/t/(LM), and M can be, with the exception of some
countable set, any number for which 1/M ≤ ν/(2lV ). In other words, (3.4)
is true for all h, excepting some countable set, for which

0 ≤ h ≤ νN1/t

2lV L
.

Therefore,

∑

s∈{1,...,L}a

L∑

n=1

\
[ν/(4l),1−ν/(4l)]l

νN1/t/(2lV L)\
0

k∏

i=1

f̃

(
x+γ(s)+

1

N
pi(nh)

)
dh dλ(x)

≥ νk+2N1/t

8lV L
.

This in turn implies that for some fixed s ∈ {1, . . . , L}a and n ∈ {1, . . . , L},\
[ν/(4l),1−ν/(4l)]l

νN1/t/(2lV L)\
0

k∏

i=1

f̃

(
x+γ(s)+

1

N
pi(nh)

)
dh dλ(x) ≥ νk+2N1/t

8lV La+2
,

which is the same as\
[ν/(4l),1−ν/(4l)]l

νN1/t/(2lV L)\
0

k∏

i=1

f(N(x+γ(s))+pi(nh)) dh dλ(x) ≥
νk+2N1/t

8lV La+2
.

Making the substitution u = N(x+ γ(s)) (recall that f is non-negative and
γ(s) ⊂ [−ν/(4l), ν/(4l)]l) we have\

[0,N ]l

νN1/t/(2lV L)\
0

k∏

i=1

f(u+ pi(nh)) dh dλ(u) ≥
νk+2N l+1/t

8lV La+2
.

Making the substitution y = nh, we get\
[0,N ]l

νnN1/t/(2lV L)\
0

k∏

i=1

f(u+pi(y)) dy dλ(u) ≥
nνk+2N l+1/t

8lV La+2
≥ νk+2N l+1/t

8lV La+2
,

which gives\
[0,N ]l

N1/t\
0

f(u)f(u+ p1(y))) . . . f(u+ pk(y)) dy dλ(u) ≥ δN l+1/t.
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