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Abstract. We prove Fujita-type global existence and nonexistence theorems for a
system of m equations (m > 1) with different diffusion coefficients, i.e.
m

i
Uiy — djAu; = Huzk, i=1,...,m, z € RN, ¢t>0,
k=1
with nonnegative, bounded, continuous initial values and p}; >0,i,k=1,...,m, d; >0,
i=1,...,m. For solutions which blow up at t =T < oo, we derive the following bounds

on the blow up rate:
wi(z,t) < C(T —t)~%
with C' > 0 and «; defined in terms of p}'c.

1. Introduction. We consider the following semilinear problem:

1.1 wp — d; Aug = uMc i=1,....m
( k ) ) 9
k=1

for x € RV, ¢t > 0 and
ui(0,2) = ugi(x), i=1,...,m, v € RV,

where d;, p};, i,k =1,...,m, are nonnegative constants and ug;, ¢ = 1,...,m,
are nonnegative, continuous, bounded functions, N, m > 1.

As the main results, we present a classification of solutions according
to their time existence, and bounds on the rate of blow up for nonglobal
solutions. It turns out that blow up is driven by the nonlinearity in our
system, i.e. (u1,...,uy,) blows up at the same rate as the solutions of the
corresponding kinetic system. Namely, if 7" denotes the maximal existence
time of u, we prove that

wi(z, ) < C(T —t)"%, i=1,....m,
where the «; are given in terms of p.
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We briefly review some related work. The system (1.1) for m =1 or
m =2 and d; = 1 has been analyzed by several authors. We mention the
papers of Fujita ([Ful], [Fu2]) for the scalar problem, Lu [L] and Escobedo
and Levine [EL] for a system of two equations. Some special problems,
namely (1.1) with pi = 0for k #i+1,i=1,...,m —1 and pJ* = 0 for
k # 1 (the so-called “completely coupled systems”), have been considered
by Escobedo and Herrero [EH] for m = 2 and by the author for m > 3 [R1],
[R4]. The system (1.1) for m = 2 and positive d; is examined in [R2] where
the result analogous to Theorem 2 below is proved. In [R3] the system (1.1)
with m =3 and d; = 1, i = 1,2, 3, is treated and the assertions correspond-
ing to Theorem 2 and Theorem 1B below are shown. To our knowledge, the
paper [AHV] is the only work where the estimates of the rate of the growth
of solutions for a completely coupled system of two equations in RY x (0,7,
namely for

(1.2) up = Au + o
v = Av + uf,

have been proved. However, the method used, based on classical regularity
techniques, seems to be suitable only for the system (1.2). We also mention
[CM] where the authors prove similar bounds, but only for some class of ra-
dially symmetric solutions, eliminating any possibility of oscillation in time.
In our work we use an idea originally due to Lu [L], based on the compari-
son principles and the concept of invariant region. It is worth noticing that
these tools are crucial to derive our growth rate estimates. We also apply
the results of [LS] to construct a subsolution to our system.
For the statement of the main results, we need some notations. Let

(13) Am:[p;c]a ’L,kil,,m,

where i labels the rows and k the columns of the matrix. It is clear that, for
definiteness, we can assume henceforth

(1.4) min Y ph =Y pie
k=1 k=1

By a = (o, ..., qy,) we denote the unique solution of
(1.5) (A — Dot = (1,...,1)%
We put

(1.6) 0 =det(4,, — I).

Denoting by Dy (A, — I) the matrix A,, — I with column k replaced by the
vector (1,...,1)%, we have, whenever § # 0,

(1.7) op =6 "det(Dp(Am — 1)), k=1,...,m.
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We also set

(1.8) b = ar/ar, k=1,...,m,
assuming that a; # 0, by > 0. We put
m
1+ oy
L. = L= :
(1.9) T Z bipy, o
k=1
REMARK 1.1. Without loss of generality, we can assume that b, < 1 for
k = 2,...,m, which implies maxy o = a;. Otherwise, we have maxy oy

= «; and instead of by, r we define by(j) = ax/aj, 7(j) = Spe, br(j)pl =
(14 )/ where b(j) < lfork=1,...,m, k # j.

By the above remark we set r = r(j) and formulate our results.
THEOREM 1. Assume that p} > 1.

A If (O ph —1)7t < N/2, then for sufficiently small initial data the
solutions of (1.1) exist globally whereas all solutions with initial values large
enough blow up in finite time.

B. If (30 ,pi—1)"' > N/2, then every nontrivial solution of (1.1) is
nonglobal.

THEOREM 2. Assume that pi <1 and § # 0.

AL If max, o <0 (ice. 0 <r < 1), then all solutions of (1.1) are global.

B. If 0 < maxgar < N/2 (i.e. v > 1+ 2/N), then there are both
nontrivial global solutions and nonglobal solutions of (1.1).

C. If ming ap > N/2 (i.e. 1 <7 <142/N with by, > 1 fork=2,...,m),
then all nontrivial solutions of (1.1) are nonglobal.

THEOREM 3. Let u be a solution of (1.1) which blows up at xo and

T < 0. Then for any compact subset {2 5 xq there exists a constant C > 0
such that the following bounds hold:

(1.10) Ina%(ui(z,t) >C(T—t)~%, i=1,...,m.
kS
THEOREM 4. Let u be a solution of (1.1) in RY x (0,T). Assume that
max; a; = a1 and min; o; > 0. If one of the following conditions holds:

N -2
(1.11) N=1,2 or N>3, o>

(1.12) dy Augy + Ayugt ™ >0,
then for some constant C > 0,
(1.13) ui(z,t) <C(T —t)~, i=1,...,m.

Some auxiliary assertions are gathered in the next section. The proofs
of the global existence and blow up results in the case pi > 1 can be found
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in Section 3, whereas the contrary situation is discussed in Section 4. The
lower and upper bounds on the blow up rate are proved in Section 5.

2. Preliminary results. Let S;(t) denote the semigroup operator for
the heat equation with diffusion coefficient d;, i.e.

(2.1) Si(t)wo(x) = S (4d;mt)~N/? exp(—%)wo(y) dy.
RN

We consider classical nonnegative solutions of (1.1). Such solutions satisfy

t m
(22)  wi(t) = Si(tuoi + | Si(t — o) [[ (wn(s))P ds, i=1,...,m.
0 k=1
In particular, we have
T—1; m
ui (1) = Si(r — ti)ui(t;) + X Si(t—t; —s H p’v ds
0 k=1

> Si(r —ti)ui(t;), i=1,...,m.

Let u be a nondegenerate, nonnegative solution of (1.1), i.e. no compo-
nent vanishes identically on RV x (0, T). If (x;,t;) are such that u;(x;, ;) > 0,
it =1,...,m, then in view of the positivity of S;(t) the above variation of con-
stants formula implies that w;(7) > 0 for 7 > ¢;. Consequently, u;(x,7) > 0

forx € RN, 7> t, = max;—1__mt;.
LEMMA 2.1. Let u = (u1,...,uy,) be a nondegenerate solution of (1.1).
Then we can choose T = T(ug1, - - - , Uom) and some constants ¢ > 0 and a > 0

such that minwu;(7) > ce—alzl®,

Proof. We know that there exists to such that w;(x,7) > 0 for 7 > .
Thus, if necessary, we can shift the initial time from zero to some ¢ > t;y to
obtain the positivity of the initial data. We can assume that for some R > 0,

v; = inf{ug;(x) : |[z| < R} > 0.

Using (2.2) we have, by positivity of wuy,

, . . A\ —N/2 —|z]? —|y|?
ui(t) > S;(t)ug; > v;i(4d;mt) exp | ——— S exp dy.

4d;t 4d;t
ly|I<R
We define
u;(t) = ui(t+7) for some 19 > 0,
_ 1 _ —N/2 —|y|2
a; = T ¢; = v;(4d;mp) S exp (m dy.

ly|<R
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Then
w;(0) = ui(70) > c; exp(—ai|z[?).
To get the assertion, we choose a, ¢, Ty suitable for all u;. =

We introduce the following kinetic system, corresponding to (1.1):

(2.3) {U—Hk 1uk, 1=1,...,m,

DEFINITION 2.2 ([H], Definition 6.1.1). A set D C RxR?Y is an invariant
manifold for an equation du/dt + Au = f(t,u) provided for any (¢g,uo) € D,
there exists a solution u of the equation on an interval containing ¢, with
u(to) = uo and (¢,u(t)) € D on this interval.

LEMMA 2.3. The set
OM ={(u1,...,um) | Flur,...,um) = (F1,...,Fpn_1) = 6;

Fj(ulv"'aum):uj+l aj+1uj+l/b ]Zlvamila UzZO}a
where © = (0,...,0) and a; are constants given by the conditions
k
24)  ar=1, b[[a’" AU =2 m,
( a;
k=1 j=1

s an tnvariant mamfold for (2.3).

Proof. Notice that along the set F' = @ we have

k
(2.5) up = apupt/ P = H a?’“/bjubk
j=1
Computing the derivative of F;, i = 1,...,m — 1, with respect to ¢t and using
(2.3) and (2.5) we have
o )
ULy -y Um
ot F=0
b _
=Ujq — iy ZbH ubwl/b 1U/
i F=6
m i1 b _ m i
= H ’U/Zk a/z-‘,—l ZbJrl ubl+1/b ! H ’U/Ilzk
k=1 g k=1 F=e
m k i1 [
by /b; Py bit1 bi/b; bit1/bi—
T (Tt = a2 (T
k=1 j=1 o=
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By (1.5)—(1.6), we check

m m

; 14+ o4 1+o0; o1 — oy ;
E bipyt = = = Ly E bipy, + bit1 — b;.
k=1 =1

aq aq aq P

Therefore, using (2.4) we get

JF;
(ula"'7um) =0. =
ot
F=6
LEMMA 2.4. (i) If r <1, then any nonnegative solution of (2.3) exists
globally.
(i) If r > 1, then any nonnegative nontrivial solution of (2.3) blows up
in finite time.

Proof. First, we take ug € M, i.e. ug(it1) = Git1uoi, 1 = 1,...,m —1,
ug1 > 0. By Lemma 2.3, M is an invariant manifold for the system (2.3),
so u(t) = (u1(t),...,um(t)) € OM, because u(0) € OM. This means that
i1 (t) = aiy1[ug(t)]b+1/% for any t € [0,T). Hence, system (2.3) on OM
reduces to the scalar equation

uy =aui, u1(0) =wup >0,

where a'/" = [T, ([T" at/").

J=17y
We can easily obtain the solution u; of this equation by integrating, and

the conclusions (i) and (ii) hold on OM.
Next, we assume ug ¢ OM. We consider two cases:

a) r < 1. Then we choose Up; in such a way that
i b,
1/b; L .
OSuOig(Haj/]u01) = UQq, Z:L...,m.
j=1

By (2.5) we get Ug(it1) = ait1tio; for i = 1,...,m — 1, therefore Ty =
(TWo1, - - -, Uom) € OM. Then for the supersolution @ = (U1, ..., uyn) of (2.3)
we can apply Lemma 2.3 to infer (i). Moreover, the comparison principle
(see [LS], Theorem 1.2) gives

0 < w(t) <u(t),
whence the conclusion (i) holds for ().

b) r > 1. Then by the Lipschitz condition we have uniqueness, so ug # 0
implies u(t) > 0, t > to. By this condition we can assume ug > 0 and take
w1 such that

T 1, bi .
0 <wo; = Ha/j wor) <woi, t=1,...,m.
Jj=1
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Since wo(it1) = ai+1g8§“/bi, it follows that u(t) € OM (by Lemma 2.3)
and for the subsolution u(t) to (2.3) we obtain part (ii). The same property
remains true for u(t) by the comparison theorem, i.e. 0 < u(t) < u(t). Thus
the proof is complete. m

DEFINITION 2.5. Let du/dt+Au = f(t,u), u = (u1,...,um). Aregion D
is called a regular invariant region for this system if the conditions ug € C?,
ug € 9D imply that (¢,u(z,t)) € D (where u denotes a solution of this
system).

LEMMA 2.6. Let u= (u1,...,Um), F(u) = (Fi(u),..., Frn-1(u)), and

Fi(u) = ujp1 — ai+1“?i+l/bi, i=1,....,m—1;
M = {u | F(u) S @, (173 Z O, (di-i-l — di)AuOi S 0
for up; = u;(0) € C%, i=1,...,m}.

Then M is a regular invariant region for (1.1) if bi+1/b;<1,i=1,...,m—1.

Proof. We assume that ug € OM, ug € C?, i.e. Up(it1) = ai+1ug§“/bi,

Up;g > 0, (diJrl — dz)AuOZ S 0. Using (25) we have

OF;(u1(z,t),...,um(z,t))

(2.6) -

F=0,t=0

9 bit1 bia/bi—1 0
= &ui—i-l — Q41 Zb U; +1/ aui

4

F=0,t=0

biJrl b, .
i+1/bi—1
= di+1Au0(i+1) — Q41 b, Ug; dZAUOZ
K3

i+1

p i+1  b; b;—1 X
#[TLutt” = a2l T ]
k=1 ’ k=1

F=6
bi_;’_l b; P
_ +1/bi—1
= (dit1 — di)ait1 TUOQ t Augg
1

b; b; b
+ di+1ai+1b—+'1< bfl - 1>Ug§+l/bl ?|Vugi2 <0
fori=1,...,m — 1 since b;11 < b;.

If (d; = dj or Aup; = 0) and simultaneously Vug; = 0 then OM is
a regular invariant manifold for (1.1).

By (2.6) we infer

OF (u(z,t))

< 6.
ot e

F=0,t=0

We now proceed to prove that M is locally invariant, ie. u(x,t) € M
for all 2 € RV and ¢t sufficiently small.
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By (2.5),

(2.7) Vauoi(@)] = b [T a5/" (uor (2))% =} Vuor ().

Jj=1

Let o € RN and |Vugi(zg)| > 0. Then, by (2.6), (2.7) and assuming
bit1 < b; we get Fi(u(zo,0)) < O (if bj11 = b; we can repeat our considera-
tions taking yo such that Awugi(yo) > 0).

Since F|i—¢ = O, it follows that there exists d;(x¢) satisfying

Fi(u(xo,t)) <0 for 0 <t < d;(xo),

whence

F(u(xg,t)) < © for 0 <t < mind;(xg).
If Fy(u(x,0)) = O, then we can choose € > 0 and z* = (1,%0,1,.-.,ZoN)
such that

[Vuor(z®)| >0 for 0 < |z1 —zo1| <e
and then Fy(u(z*,0)) < ©. It follows that for some §(z*) > 0,

F(z*,t) < F(z*,0) =0 for 0 <t <d(z")
and there exists e(z*) > 0 such that
F(x,t) <© for |z —z| <e(z"), 0 <t<da").

We note that assuming F(xg,t) > © we would get a contradiction. Indeed,
this condition implies F(z,t) > © for some z in a neighbourhood of x¢ and
this is incompatible with the above result. Thus, we have proved the local
invariance of M.

Now, we want to verify that u(x,t) € M for any x € RY and t € [0,7T).
Assume that this condition is not satisfied, i.e. there exist to,zg € RY such
that

(2.8) F(x,t) <6, xRN t<ty,

and
F(wo,t)>@, t0<t<t0+(50($0).

Take a regular supersolution w(z,t) of (1.1) with initial values @(x,tg) such
that

ﬁi+1 (1"; tO) = Qi1 (ﬁz(z; to))bi+l/bi7 ﬁ1 (1"; tO) = 'LLl(Z', t0)7
(di—i-l — di)Aﬂi(l‘,tQ) S 0.
Then, since u(x,tg) > u(x,ty), the comparison theorem gives

u(x,t) <a(z,t), xRN telty,T").
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Using (2.8), we also obtain
Wi (2, 1) > wig1(zo,t) > iy (us(zo, t))2i+1/b
fori=1,...,m—1,ty <t <tg+ dp(xo), and by continuity
Ui (2,1) > agr (ui(z, t)b/% o —mo| <1, to <t < to+ do(zo).
Therefore, putting
ei(,t) = W1 (2, 1) — g (wi(x, 1)) /b
we have g;(z,t) > 0 for to <t < to+ do(x), |x — zo| <n. We can also choose
d1(x) > 0 satisfying
0 < ag?? (x,t) — agul? (x,t) < ter(z,t), to <t<to+di(z).
Let §(x) = min{dop(z), d1(x)}. Then
er1(z,t) >0, 0<a@?(z,t) — agul(2,t) < teq(,t),
for |z — xzo| < m, to <t < to+ d(x). Therefore,
(2.9) as@} (2,t) < asul?(z,t) + Ley(z,t)

= agulf (x,t) + %ﬂg(ac, t) — %aguZF (x,t)

= 7%a2u?2(z,t) + %52(5”,15) < T(w,1)

for |z — zo| < m, to <t < to+ d(x).
By assumption, @(z,tg) € M so it follows that locally u(x,t) € M, and
in particular

Up(x,t) < agu(x,t), xRN, tg <t <ty+d(x)

Thus, for | —xo| < n, to < t < to+min{d(x), ' (z)} we have a contradiction
with (2.9). Finally, we infer that

F(u(z,t) <O forzeRY, te(0,7),
i.e. M is globally invariant. m

REMARK 2.7. We can always make the numbers «; into a decreasing
sequence. Namely, we find a permutation o such that o=1(i + 1) < o71(i),
i=1,...,m — 1. Then, putting c~1(i) instead of i in u;, i = 1,...,m, and
consequently in a;, d;, p., we get aj11 < a;. Thus, the assumption bj1 < b;
is natural.

3. Case p} > 1. In this part we consider separately the case pi > 1
proving Theorem 1. The method used to obtain blow up results in this case
is based on some lower bounds and does not require applying an invariant
region.

In further considerations we use the notion of a subsolution and a su-
persolution of the system (1.1) and the comparison principles. The related
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definitions and theorems can be found in [EL] (Lemmas Al, A2 in Appen-
dices) and [LS] (Definition 1.1, Theorem 1.2).

First, our goal is to show the existence of global solutions of (1.1) under
the assumptions of part A of Theorem 1. To establish this assertion, we look
for a global supersolution of the form

2
1 T — eilt + to) N2 exp [ ——12__
(3.1) u; = &;(t + to) exp <4di(t+t0)

with some positive constants ¢;,8;, i =1,...,m.
Consider the system

(3.2) —d; A; > H alk.

Substituting (3.1) to (3.2) we obtain

(3.3) 3(;pk—1)—1>;pkﬁi—ﬁi, i=1,...,m,

provided that e; are sufficiently small and %, is large enough. By assumption
S ph > >0 ph > 2/N +1, so the left-hand sides of (3.3) are positive
and we can find small positive 3;, i = 1,...,m, which satisfy (3.3). Thus,
the functions u;, i = 1,...,m, are supersolutions of (1.1), so the system has
global solutions.

Now we prove the blow up results. We shall derive some lower bounds
for solutions of (1.1) which eventually lead to establishing the assertions of
Theorem 1. For simplicity, we denote here p} by p.

LEMMA 3.1. Suppose that p=pi > 1. Let t;€(0,T) and for all z€ RV,
v(x) = min; u;(z,t1) > 0. Then

(5.4) @.8) > i 0@ /0D (V128 (0u(2)) "

forj=1,2,..., 2 € RN t € (0,T — 2t;) where 0,d > 0 are some constants,
Smin 18 the semigroup operator for the heat equation with diffusion coefficient

ming dg, and
S L
k=2

Proof. Using a rescaling argument in formulas (2.2) we observe that
(3.5) wi(t) > Si(t)o > A2 S (t)v

where d = miny, dj,/maxy d, and t € (0,7 — 2t1). To obtain the estimate we
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apply (3.5) in (2.2) for i = 1 and the Jensen inequality for > ;" pp >p > 1
to get
(3.6)  wi(t) > d™/2Smin(t)v
t
+ dNDOHE D | S it — ) (Sin(5)0) e P dis
0
> dN/QSmin(t)U + d(N/2)(1+E::1 Pi)t(smin(t)v)zzlzl pi-
In this way, we have established our lemma for j = 1. Further, we assume
that

(3.7) ZC dpt™ mm( ) )

where

In+1 = YnD + 1; Tin4+1 = Tnp + ZZLZQ pllca

m

Cot1 = C8 /sty dnay = dBdN/D 2y Pt

We see that mp = 1, and since p > 1 we find that m,, > 1 for all n and we
can use Jensen’s inequality. By applying the inequality (a + b)P > aP + bP
for a,b > 0, p > 1, we deduce from (2.2), (3.5), (3.7) that

wy(t) — d™/? S min (t)v

ZiSl(t—s)H pk(ZC 87y, (Smin(s )U)“")pds

0 k=2

(3.8)

t
>d (N/2) 1+Zk 2pk)xsmin(t — 5)(Smin(8)v) 2k Pk
) 0
J
X Z dP CP sP7 (Spmin($)0)P™ ds
n=0

J
> d(N/Q)(lJrZ:::2 Pi) Z & $Pnt1 dr (Smin(t)’l))pﬂn+2::2 P

=Pt 1
i.e.
Jj+1
(3.9) ZC At (Swin (t)0)™

Notice that (3.9) is (3.7) for j + 1 and by (3.8) we can compute that

p"—1  p"—1 N,
,y":ja Wn:pn‘f'kzpllcpfl =d ﬂ/Qa

(3.10)

cr Cr,(p—1)pt v
Cp=—"Lp—1)= n—2(p : H( )
pr—1 (" =1D(pr—t —1)? p—1
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To estimate C,, from below we observe that

(3.11) InCy, > p"[In(p— 1) — In(p! — 1)]
=1

n_ 1 n
> 1;7 —n(p—1) =) ip" ' Inp
=1

pt—1 e o,
> In(p—1)—p" 'npy ip~*!
=1

n 2

e G

_p-1 1) /P (=12
=1 In((p—1)/p ).

Therefore we have found 6 = (p — 1)1)_172/(17_1)2 > 0 such that C,, > 6.
Thus, by (3.7) and (3.10), the proof is complete. m

Proof of Theorem 1A. The existence of nonglobal solutions in the case

pl > 1 (Theorem 1A) is now a consequence of Lemma 3.1. Lemma 2.1

—Alz|?
)

implies that min; u;(x,t) > Ce SO

_ —Alaf®
| . - N/2 i i I
(3.12) Smin(t)v(z) 2 C(1 + 440t) ™" exp (1 ¥ 4A0t)

where Ay = A(min; d;).

Now put z = 0 and fix #o such that 8t > 1 (i.c. to > p? /=D /(p—1) by
(3.11)). We remark that by the assumption on the initial data we can make
C as large as we wish. In particular, we can take C' > 2[(1 + 4Aoto)/d]™/2.
Then, by (3.4),

(3.13) up(0,0) >2(j+1) forj=1,2,...

and this contradicts the boundedness of u;. Thus, u is nonglobal. m

LEMMA 3.2. Suppose that p} = p > 1 and (> ;- pr — 1)N/2 < 1. If

u = (U1,...,Un) s a nondegenerate solution of (1.1) satisfying, for some
Co and A >0,
(3.14) min u;(0) > Cp exp(—A|z|?)

then there exist positive C,0 > 0 such that

;
_ —Amp|z|?
1 14+4At) N2 3 " 101In(1 4+ 4Adot) ™ —
(3.15)  wi(x,t) > C(14+4At) [9 n(1+4Adyt) eXp(1+4Ad0t)]

n=0

where dy = min(dy,...,dmn,1), =1,2,... and vn, T, are given by (3.10).
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Proof. By Lemma 2.1, the assumption (3.14) is satisfied. Then using
formulas (2.2) we obtain

(3.16)  minw;(z,t) > min(S;(t)ue;) > d™¥/% min(So(t)uo;)

N/2 —N/2 —Alz|?
Z d 00(1 + 4Ad0t) exp m
0

where Sy is the semigroup operator for the heat equation with diffusion
coefficient dy and d = dy/max, d.

The proof is very similar to that of Lemma 3.1. Using (3.16) in (2.2) we
want to get (3.15) for j = 1. We have

—Alzl?
uy(z,t) > dN2Co(1 + 4Adot) ™™/ exp (HTZ'dt)
0

m 1 ¢ m
4 dMAE P G (1 4 4 Adgs) VD Tk
0

—A mﬁ 1 .T2
X So(t — s)exp (EZ;A%) ds

= dN2Cy(1 + 4Adot) N/ ? exp ﬂ
0 0 1+ 4Adot

t
AN (AN2 )2k P S (1 + 4Adys) VD, PiD)

0
m —N/2
x [1 +4Adys + 44> pi(t— s)}
k=1
_A m 1 2
X exp ( Lzt pffmm 1 > ds.
14+ 4Ados +4A% " pp(t—s)

Putting
f(s) =1+44Adgs +4AY pi(t —s)
k=1

we notice that f/(s) = 4A(do — Y 1, pt) < 0as >, pr >p > 1> dy.
This implies

_ —Alz|?
t) > dN2Co(1 + 4Adgt)~N/? L el
ur(@,t) 2 A7 Co(1 + 4Adot) ™" exp | 77
m 1 m —N/2
+dN/2(dN/2CO)Zk:1Pk (1 +4Azp]1€t)
k=1

t
—AY L pylaf? —(N/2)O0" pr—1)
X exp (H4—14d0t §(1 + 4Ad0$) k=1"Fk dS
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Finally, using (>, pt — 1)N/2 < 1 we obtain

—A|z|?
(3.17) wi(z,t) > Co(ddo)N/2(1 + 4Adot)~N/2 exp <ﬁ|A|dot)

(ddO)N/z(dN/QCO)ZZ;l P
(e PR)N/?

—A Yt pilel?
—="=—" | In(1 4 4Adpt
xexp< Tt dAdyt n(1 + 4Adot),
which is our statement for j = 1. Arguing by induction, we assume that

(3.18)  wi(x,t)

(14 4Adgt)~N/?

—N/2 ! —Amy |z|?
> (1 + 4Adyt) > Crexp ( — = | [In(1 + 4Adgt)]"

= 1+ 4Adyt
where
Cot = (CodN/Q)EZL:?pi (ddo)™">C 7
(P + 22 PR) N2 (Yap + 1)
(3.19) Yatl =P +1, 0 =0,

m
Tnt1 :pﬂnJer,lc, o = 1.
k=2

We employ (3.18) and (3.16) in (2.2). Then
ul(‘rv t)

- —Alz[? N2 i) o PA
> CndN/2(1 L4 A8 - N/2 AN/, Pt D) k=2 Pk
>Covd (1+ ) exp 1+ 4Adgt + k=2 Oh

¢

mo 1,02
—(N/2)Y " Pk —AY o1yl
X §(1 + 4Adys) k exp ( 15 dAdys

_ 7Tn|:C| Tn :
o(t —s {ZC’ exp<1+4Ad S>(ln(1+4Ados)) } ds

N/2 —N/2 A|$|2
0

m m 1 ¢ m
+ dN, Pi+1>cozk:2 "1 (1 + 44dgs)” 2y P
0

J A m 1 9
(p n Zk: p )lxl
E P n 2 Pk
X So(t —s) CPexp < 1+ 4Adys

n=1

x (In(1 4+ 4Adps))P"™ ds
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N/2 —N/2 —Alz[?
0

t
n dN/Q(COdN/2)Z:L:2 i S(l + 4Adys)” (N/2)Q0 k-

0

J
x > CP(1+4Adgs + 4Amp 41 (t — 5)) "N/ (In(1 + 4Adys))? "
n=1
7A - m 1 2
X exp ( (7 + 2= p£)|x|1 ) ds.
14 4Ados + 4A(pmn + > 4o 1) (t — 5)

As in the case j = 1 we observe that

fils) = 1+ 4A4dos + 44 (pm + 3" ph ) (t = 5)
k=2
satisfies

fr(s) = 4A(d0 - (p?Tn + Zp,lc))s <0
k=2
because m,41 > T, > p > do for n = 1,...,m by (3.19). Employing also
(2?21 pglc - 1)N/2 < 1 we obtain
(3.20)  wi(x,t)

> Cod"?(1+ 4At)~ N2 AT a2y Sk
> Co exp 1+ 4Adot + ( )ér=2

« z]:(c )P(1 + 4Ar t)_N/2 ex M

y S [In(1 + 4A4dys)]P
0 1+ 4Adys

—A|z|?
> Co(ddO)N/2(1 + 4Ad0t)*N/2 exp (ﬁ%)

(1 + 4Adot)~N12aN2 (CodN/2) s P

pdN/2 (Aﬂn+1|$|2)
Z exp [ — L M In(1 + 4Adot)]P i+
n—=1 Wr]:[ﬁ(P% +1) 1+ 4Adot

J+1
—Am, 2
> (1+4Adot)™N?Y " Cpexp (%) [In(1 4 4Adgt))""
n=0

so we have proved that (3.18) holds with j + 1 in place of j. It remains to
estimate C,, because by (3.19), 7, and =, are as in the preceding lemma,
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i.e.

p—1 n N~ Pt 1
(3.21) Yo = . Ta=p +Zp;1cp :

We compute

N N/ &
InCpy1 =pnC, + glndo + 3(];21711 + 1) Ind

- N
+ E pi,lnC’O—?lnwnfln'yn
k=2

N 1 p
>plnC, — =1 1 ! =1
o= Y [(1e )] -n

+ g(lndo + (ip}c + 1) 1nd) +ip;£ In Co
k=2

k=2

N
>plnC, — (3 + 1)nlnp—a

where a does not depend on n. This implies

ntlq N Z" ,
(322) In Cn+1 > pn In CO + % - 1np<§ + 1> (TL — k)pk
k=0

o n—1 e
> pn+1 [hl Co o a(l p ) _ hlp(E + 1> kak1:|

p p—1 :
In C| N 2
G 8 )
P p—1 2
By (3.22) we can find D > 0 such that

n

pt—1
p—
where § = ¢=P? > 0. Thus C,, > 67 and therefore, by (3.20) and (3.21)
the proof is complete. m

Proof of Theorem 1B. Let us take into account (3.15). For x = 0 and %
such that 1n(1 + 4Adotg) > 1 we obtain

=Ino"

In Cn Z _an Z _Dp

(3.23) ur(0,t0) > C(1 +4Ate) N2 +1) forj=1,2,...,

which implies that for ¢ > ¢, the solution of (1.1) is not bounded. This
establishes Theorem 1B. m

4. Case p} < 1. We prove Theorem 2 using comparison principles (see
Lemmas Al, A2 in [EL], Theorem 1.2 in [LS]). Applying a minimal subsolu-
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tion or maximal supersolution instead of a subsolution or supersolution, we
can omit the Lipschitz continuity requirement for the nonlinear functions in
the system. This makes it possible to establish blow up or global existence
of solutions.

Proof of Theorem 2A. Consider a solution u*(t) of the kinetic system
(2.3) with initial value uj defined as follows:

(4.1) uy; = supuoi(x) > woi(z), i=1,...,m.
RN

Then u*(t) is also a space-independent solution of (1.1) and by the compar-
ison theorem
0 < u(z,t) < u*(t).

As 0 < r < 1 we apply Lemma 2.4(i) to the solution u*(¢) of (2.3). Therefore,
(4.1) implies that u(x,t) exists globally since u*(t) does. m

Proof of Theorem 2B. First, we take ug(z) € M, so by Lemma 2.6,
u(z,t) € M,ie. 0<ujq(z,t) < appr(ui(x,t))bi+1/% for (z,t) € RN x [0,7).
Applying this inequality to the system (1.1), we get, by (2.5),

m k
) (1+ai)/ax
uit—diAuiS(HHa;/b]ul) , i=1,...,m.
k=1j=1

Thus, (1.1) can be compared with the following supersystem:

— — —(1+4a;)/

ui(x,0) = ugi(x), i=1,...,m,
o (TT™ k L/b5\(1+4as)/as
where A; = ([[;Z, [[j=1a;"7) , and then
(4.3) u(z,t) > u(x,t).

We note that (1 + «1)/a; =r > 1+ 2/N. We apply the Fujita theorem
to the first equation of (4.2). Thus, for wugi(x) sufficiently small, @;(x,t)
exists globally. Using (4.2); we infer that w;(z,t) also exists globally for
i=2,...,m and hence so does u(z,t) = (ui(x,t),...,un(x,t)) by (4.3).

Next, we take ug(r) ¢ OM and choose uf; (x) such that

i
bi/b; b;
0 <up < ]:[ajl " (ug1)” = ug;-
i=1

Then a solution u*(x,t) of (1.1) has its initial values u{(z) on OM and we
can apply the above considerations. Moreover, by comparison,

0 <ufz,t) < u'(z,t),

so by the global existence of u*(z,t) we get the assertion for u(z,t). m
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Next, we argue similarly. If ug(z) € M, then by Lemma 2.6, u(z,t) €
M, and (1.1) takes the form

LT —1/b; qgp, | (ATei)/en
wip — d; Aug > (H H a; ”u% ’")
k=1 j=k+1
because ux > ([[j2; 1, a;l/bj AL
We consider a subsystem corresponding to (1.1):

{ Wir — diAu; = BZ.QS'*‘%‘)/O%,

(4.4)
wi(x,0) = ugi(x), i=1,...,m,

where B; = ([T,2; [1j2r11 agl/bj)(1+o‘i)/o‘l. Using the comparison principle

to systems (1.1) and (4.4) we have
(4.5) u(x, t) < wulz,t).

By assumption

1+ am, 1 1 2
=l+—21+—=r>1+—
Oy Qo aq N

so we can apply the Fujita theorem to the last equation of (4.4). Hence,
wm(2,t) blows up in finite time provided w,(x,0) = ugm,(z) is large enough.
By (44);, i = 1,...,m — 1, we see that u;(x,t) does not exist globally;
by (4.5) also u(x,t) = (ui(x,t),...,um(x,t)) blows up in finite time.

If uo(x) € OM, by Lemma 2.1 we can choose ufy; (x) satistying

i
x bi/bj (% \b;
0 <y = Ha’j (ug1)” < uoi-
Jj=1

Next, we complete the proof using the same argument as in the proof of the
previous part. m

The proof of Theorem 2C is based on a construction of subsolutions to
a system of reaction-diffusion equations (see [LS]). Adapting this result to
a system of m equations, we get the following lemma.

LEMMA 4.1. Let

(46) Ust :dzAuz+fz(u177um)a
ui(x,0) = ugi(x) >0, i=1,...,m.
Let u; = @i (t,up1, - - Umg), £ = 1,...,m, be a solution of the kinetic system
(47) Uit :fi(ulv"'-aum)a
u;(0) =wgs, t=1,...,m.

Putting z(x,t) = Sy (t)v* (then z = d, Az, 2(0) = v*(x)) we define
(4.8) D;(x,t) = ¢i(t,0,...,0,2(x,t), i=1,...,m.
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Then @(x,t) = (P1(x,t), ..., Pm(x,t)) is a subsolution to (4.6) iff P1(0) =

’U*(ZE) < Uom(.’I]) and ¢ivv > 0) 1= 13 ceey M

Proof of Theorem 2C. Let fi(u1,...,um) = [11ey uzz. Then (4.6) takes
the form of (1.1). Assume that ming o = am, ie. by > by, i =1,...,m.
Setting the initial values in the kinetic system (4.7) as follows: u,,(0) = v,
ui(0) = [Ty, a;bi/ijbi/bm, i = 1,...,m — 1, we obtain the following
solution of this system:
(4.9) di(t,v) = c;[v 7T — A, (q — 1))~/ bmla=1)

where ¢, =1, ¢; = H;n:iﬂ aj_bi/bj, A, = bmci/o‘1 and ¢ =1+ 1/ay,. Thus

(4.10) di(t) = ciply/"m ().

We assume that 0 < v*(x) < ugm(x), c;(v*(z))?/P < ugi(z), where
up(x) is the initial value in (1.1). Let &(t, z(z,t)) be given by (4.8) and
(4.9). Then, by Lemma 4.1, if ¢, > 0, ¢ = 1,...,m, then &(¢, z(x,t)) is
a subsolution to (1.1).

By (4.9) we get

¢mvv = ;anv_l_q [(¢_m)q_1 - 1:|a
v

and so, since ¢1~9 < v179 ¢, > 0 for t > 0. Using (4.10), we also have,
fori=1,...,m—1,

q—1
O ]| I | ()
b b v

SO Gjpy > 0fori=1,...,m—1iff
b — by
A, > ylea

(q—1)t = g "

This inequality holds for ¢ > 0 since ¢ > 1 and b; > b,,, i =1,...,m.
Next, we show that the subsolution &(z,t) to (1.1) blows up in finite
time. Putting © = 0 in &,,,(z,t) we have
P (0,8) = [2179(0,1) = Au(q — )] 707D = )=t/ (7D
so f(0) = z174(0,0) = v*(0) > 0.
Since 1 < ¢ < 1+ 2/N, there exists t* > 0 such that f(¢*) = 0, namely

2 - q—171/(N(g-1)/2-1)
= [Autg — (| (a2 PO gy a) -
RN

Therefore, for some t** € (0,t*], limy_ ¢ @, (0,¢) = +00. Consequently, also
u(z,t) blows up in finite time. m
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5. Growth rate estimates. This section establishes an upper and a
lower bound on the growth rate near the blow up time 7. To get both
estimates, we use an idea of invariant regions to replace (1.1) by a corre-
sponding sub- or supersystem. The utility of the concept lies in reducing
our system to another one, involving a scalar equation. It is remarkable that
such a significant modification of nonlinear terms yields the bounds which
are suggested by the kinetic system.

First, we prove a lower estimate on the blow up rate.

Proof of Theorem 3. Retaining the notations of Section 2 we check
whether the initial values ug belong to M. If this assumption is satis-
fied, we will consider a corresponding subsolution of (1.1) starting from the
same initial data. Otherwise, we have to choose w1 (z) such that

(5.1) 0 <wp = H aii/bj (wo01)" < ug;.
j=1

We consider u*(z,t) satisfying (1.1) with initial values ug. Since ug € OM
by (5.1), Lemma 2.6 implies that u*(z,t) € M, so (1.1) leads to

m

ul, — d; Auf > By(us,)(tei)/am
ur(z’O)ZQOZ(z)a 7::1;-.-77717
m m —1 b] @ a
where B; = (szl Hj:k+1 a / )(1+ ) a1

J
If we take into account a subsystem

(5 2) U4t — dlAﬂz = Biugyll+ai)/am,
| gi(x,()) :Eoz'(z),
then by comparison w;(z,t) < wi(z,t), 7 = 1,...,m. Moreover, we remark

that the last equation in (5.2) has the form
(53) Umt — dzAQm = BmﬂlJrl/am-

m

For any compact set 2 C RN and U,,(t) = max,ecnum(v,t) we prove

LEMMA 5.1. If u., satisfies (5.3) then Uy, (t) is Lipschitz continuous and

(5.4) ULty <U'™  a.e., where ry, =1+ 1/ap,.
Proof. Suppose that x; € (2 is such that

Um(tz) = ’U,(ZL'Z', tz) for ¢ = 1, 2.

Putting h = t2 — t1 > 0 we can estimate
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Un(t2) — Un(t1) > um(x1,t2) — um(x1,t1)
= hum(z1,t1) + o(h),
Um(tQ) - Um(t1> S um($27t2) - Um(x%tl)
= htmt(z2,t2) + o(h).
This yields the Lipschitz continuity. By definition of U,,, Au,(x;,t;) < 0,
so (5.5) implies
Um(tQ) - Um(tl)
to — 11

(5.5)

< Ut (22, t2) +o(1)
< (um(z2,t2))™ +0(1) = Un(t2)™ + o(1)
and the assertion follows. m

Continuation of the proof of Theorem 3. We conclude that (5.4) takes
the form

Upn(7)
d(Un)
. < T —
(5.6) | o STt
U (1)

provided that Sgo s~ ds < co. By integration, we get

(5.7) Up > Co(T — t) "/ m=1) — (T — t)=m

with Cy = )b, Since u;(z,t) € M we also have

m
b;
(5.8) meaggi(x,t) > ( H aj_*l/bjUrln/bm) > CiU,gfLi/Oém, > C(T )
* j=it1

Thus, because u(z,t) is a subsolution,

maxu;(x,t) > C(T —t)™%, i=1,...,m,

e
which concludes the proof. m

Next, we prove an upper bound.

Proof of Theorem 4. We will proceed similarly to the previous proof to
obtain the assertion for some supersolution. Then by comparison the same
bound from above remains true for the solution of (1.1).

We set Ug;(x) in the following way: if ug(xz) € OM then To;(z) = ugi(x),
whereas for ug(z) ¢ OM we find Up1 (x) such that

0<wup < H a?i/bj (T01)% = To;.
j=1
Then a solution u* of (1.1) with u*(0) = @ belongs to M, so it satisfies
{U:t — dZA’Uf; < Ai(ui>(1+ai)/o‘17

(5.9) v '
uf(z,0) =ug(x), i=1,...,m,
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where A; = ([[,-; H;C:l a;/bj)(“rai)/o‘l, i =1,...,m. This yields a super-
system corresponding to (1.1) of the form
Ty — d; AT; = Aa T/,
ﬂi(l', 0) == EOZ'(ZL'),

with constants A; as above. Thus u;(z,t) < u;(z,t). We notice that the first
equation in (5.10) is scalar, i.e.

(5.10)

ﬂltfdlAﬁl :Alﬂ{, where r = 1+1/O&1,
Uy (x, 0) = Uol(l').

Let us now consider this equation. We have two separate cases when a so-
1utior7lnof (}1) blows up in finite time. If p] < 1 (assuming that millqi > o Pl
= > p—1Py) then by Theorem 2 we have oy = max; a; > 0. If p; > 1 then
by Theorem 1 we can only claim that Z;nzl pi — 1> 0. On the other hand

m m
1= (p1 — Dy +Zp,1€ak < (Zp,lc — 1) max a
k=2 k=1

so maxy o = aq > (D00, pr — 1)71 > 0. It follows that r > 1.
LEMMA 5.2. Let v(z,t) be a solution of

(5.11)

v —dAv=Av", xRN te(0,T),
v(z,0) = vo(x), r € RV,
where r > 1, vo(x) >0, d,A > 0. Then

(5.12) v(x,t) <C(T —t)7"  with a = " i 7

provided that either

(5.13) dAvg + Avg >0

or

(5.14) N=1,2 or N>3anda>"2
Proof. Suppose that (5.13) holds. Set

(5.15) F=uv, —6Av"

where 6 > 0 is a constant to be determined. The function F' satisfies
Fy —dAF = A(v")'vy — §A%(v") 0" + 6 Ad(v")"|Vu?
and by (5.15),
Fy — dAF = Arv"™ 'F = §Adr(r — 1)v" 2| Vu|?.
This implies, as r > 1,
(5.16) Fy — dAF — Arv""'F > 0.
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We remark that we can choose 6 > 0 small enough to guarantee
that F(0)>0. Indeed, by (5.13) we have v:(0) > ¢ > 0, and clearly v"(0) < ¢/
as long as T > 0. Then, by comparison and (5.15), (5.16), it follows that F’
cannot be negative, i.e. there exists 6 > 0 such that

(5.17) vy > AV".
This is equivalent to
a ,UfrJrl
- >0A
ot < r—1 > -
or, by integration,
t —r+1
Y@ sar— 1),
r—1

Finally, we obtain
1
v(x,t) < C(T —t)™%, where a = 7 C=((r—-1)054)"“.
r—
It remains to consider the case where (5.14) holds. Then, by assumption,
N +2
N -2
and we can apply the relevant result proved in [GK] (cf. Theorem 3.7). Thus,
our assertion follows. m

N<2 or N>3andl<r<

Continuation of the proof of Theorem 4. Employing Lemma 5.2 in (5.11)
we conclude that

ui(x,t) <uy(x,t) < C(T —t)~ .

Notice that starting from u*(z,t) (which is also a solution of (1.1)) instead
of u(x,t) we can obtain the same bound:

(5.18) Wiz, t) < C(T — )=,

Moreover, since u*(z,t) € M, we have

i
b;
(5.19) < (H a;/”fu;) < CT — )% = Cy(T — 1)~
j=1
It remains to observe that u}(z,t) is, by construction, a supersolution
o (1.1). Therefore, the upper estimate (5.19) also holds for a solution wu(z, t)
of (1.1). This establishes our assertion. m
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