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H1-BMO DUALITY ON GRAPHS

BY

EMMANUEL RU S S (AIX-MARSEILLE)

Abstract. On graphs satisfying the doubling property and the Poincaré inequality,
we prove that the space H1max is equal to H

1
at, and therefore that its dual is BMO. We

also prove the atomic decomposition for Hpmax for p ≤ 1 close enough to 1.

I. INTRODUCTION

In [RUS], Theorem 1, it is proved that, on any complete Riemannian
manifold M satisfying the doubling property and the Poincaré inequality,
the spaces H1

max(M) and H1
at(M) are equal and their dual is BMO(M).

Moreover, in Theorem 2 of the same paper, the atomic decomposition for
Hp

max is obtained for all p sufficiently close to 1. Those results are closely
related to the existence of estimates for the heat kernel ht (or the Poisson
kernel pt), and essentially an upper estimate for the oscillation of ht (or pt).

In the present paper, we give the analogous results in the discrete setting
of graphs. We rely on estimates recently obtained for Markov chains on
graphs. In [DEL2], T. Delmotte shows that, if Γ is a graph satisfying the
doubling property and the Poincaré inequality, and p is a Markov kernel with
suitable assumptions, then a Gaussian upper bound and a Gaussian lower
bound hold for the nth iteration pn(x, y) of p (the same result is obtained in
a different way by P. Auscher and T. Coulhon in [AC]). Moreover, pn(x, y)
is Hölderian with respect to the first variable. Those results allow us to
prove that, as in the case of manifolds, H1

max(Γ ) = H1
at(Γ ) and their dual is

BMO(Γ ). We are also able to get the atomic decomposition for Hp
max when

p is sufficiently close to 1.

We state precisely our main result. The following presentation is bor-
rowed from [DEL2]. Let Γ be an infinite connected graph, endowed with its
natural metric and a symmetric weight µxy = µyx on Γ × Γ . Assume that
x and y are neighbors if and only if µxy 6= 0. Define, for every x ∈ Γ ,

m(x) =
∑

y∼x

µxy.
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For every real r ≥ 0, the ball B(x, r) is defined as follows:

B(x, r) = {y ∈ Γ : d(y, x) ≤ r},
and, if A is a subset of Γ, its volume is

V (A) =
∑

x∈A

m(x).

When A is a ball B(x, r), V (A) will be denoted by V (x, r).
For any p > 0, we denote by Lp(Γ ) the set of all complex-valued functions

f defined on Γ and satisfying
∑

x

|f(x)|pm(x) < +∞.

When f ∈ Lp(Γ ), set

‖f‖p =
[

∑

x

|f(x)|pm(x)
]1/p

.

The graph Γ is said to satisfy the doubling property if there exists a constant
C > 0 such that, for every x ∈ Γ and r > 0,

(1) V (x, 2r) ≤ CV (x, r).

The graph Γ is said to satisfy the Poincaré inequality if there exists a con-
stant C > 0 such that, for every function f from Γ to R, every x0 ∈ Γ and
r > 0, one has

(2)
∑

x∈B(x0,r)

m(x)|f(x)− fB|2 ≤ Cr2
∑

x,y∈B(x0,2r)

µxy|f(x)− f(y)|2,

where

fB =
1

V (x0, r)

∑

x∈B(x0,r)

m(x)f(x).

Finally, one says that Γ satisfies ∆∗(α) for α > 0 if

(3) x ∼ y ⇒ µxy ≥ αm(x).

One may then consider on Γ a discrete-time Markov kernel. Set

p(x, y) = µxy/m(x)

and define the iterated kernel pn as follows:

p0(x, y) = δ(x, y), pn(x, y) =
∑

z

p(x, z)pn−1(z, y).

We define Hp
max(Γ ) when 0 < p ≤ 1. If f ∈ L1

loc(Γ ), define

Pnf(x) =
∑

Γ

pn(x, y)f(y)

for any n ∈ N, x ∈ Γ and f+(x) = supn∈N |Pnf(x)|.
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If f ∈ L1(Γ ) satisfies
∑

f(x)m(x) = 0, we say that f ∈ H1
max(Γ ) if

f+ ∈ L1(Γ ), and we define

‖f‖H1
max

= ‖f+‖1.
Notice that ‖ · ‖H1

max
is a norm on H1

max, and H
1
max is a Banach space.

When p < 1, Hp
max(Γ ) is defined as a space of distributions. For any

α > 0, define the Hölder space Lα as being the space of all functions f on
Γ such that there exists C > 0 satisfying, for any x and y ∈ Γ and any ball
B containing both x and y,

(4) |f(x)− f(y)| ≤ C[V (B)]α.

When (4) holds, define ‖f‖(α) to be the infimum of all constants C > 0
satisfying (4).

If p ∈ ]0, 1[ is sufficiently close to 1 and f is a continuous linear form on
L1/p−1, one may define, for any n ∈ N and any x ∈ Γ ,

Pnf(x) = 〈f, pn(x, ·)〉 and f+(x) = sup
n∈N

|Pnf(x)|.

Indeed, the estimates for pn which will be given later on (Lemma 5) ensure
that, under the assumptions (1)–(3) and an extra assumption (see Theorem 1
below), for each fixed x ∈ Γ , pn(x, ·) ∈ L1/p−1 for p close enough to 1. When
f ∈ L∗

1/p−1, we say that f ∈ Hp
max(Γ ) if f

+ ∈ Lp, and we set

‖f‖Hp
max

= ‖f+‖p.
This is not a norm, but the function

d(f, g) = ‖f − g‖p
Hp

max

is a distance on Hp
max. Moreover, the metric space (Hp

max, d) is complete.
We now give the definition of Hp

at for p ≤ 1. Whenever p ≤ 1, a function
a is said to be a p-atom if

∑

a(x)m(x) = 0, a is supported in a ball B =
B(x0, r0) and ‖a‖∞ ≤ (1/V (B))1/p.

A function f ∈ L1(Γ ) is said to be in H1
at if there exist a sequence

(λn)n≥1 ∈ l1 of numbers and a sequence (an)n≥1 of atoms such that

f =
+∞
∑

n=1

λnan,

where the convergence is to be understood in the sense of L1; we let

‖f‖H1
at
= inf

+∞
∑

n=1

|λn|

where the infimum is taken over all such decompositions.
The definition of Hp

at for p < 1 is a bit more complicated. When p < 1,
a p-atom a defines a bounded linear form on L1/p−1(Γ ) with norm ≤ 1. A
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linear form f on L1/p−1(Γ ) is said to be in Hp
at if there exist a sequence

(λn)n≥1 ∈ lp of numbers and a sequence (an)n≥1 of atoms such that

f =

+∞
∑

n=1

λnan,

with convergence in the sense of (L1/p−1)
∗; we let

‖f‖Hp
at
= inf

(

+∞
∑

n=1

|λn|p
)

where the infimum is taken over all such decompositions. This is not a norm,
but the function

dp(f, g) = ‖f − g‖p
is a distance on Hp

at.

When f ∈ L1
loc(Γ ), we say that f ∈ BMO if

sup
B

1

V (B)

∑

B

|f(x)− fB|m(x) < +∞,

the supremum being taken over all balls of Γ ; we let

‖f‖BMO = sup
B

1

V (B)

∑

B

|f(x)− fB|m(x).

Whenever f belongs to BMO, one has ‖f‖BMO = 0 if and only if f is
constant almost everywhere. For f, g ∈ BMO, we say that f ∼ g if f − g is
constant almost everywhere. Thus, one obtains a set of equivalence classes,
which is again denoted by BMO. The norm of an equivalence class is defined
as ‖f‖BMO where f is any of its members, and BMO, equipped with that
norm, is a Banach space.

Here is the main result of this paper:

Theorem 1. Let Γ be an infinite graph endowed with a symmetric
weight , and consider the corresponding Markov kernel pn(x, y). Assume that
Γ satisfies the doubling property , the Poincaré inequality and ∆∗(α) for a
certain α > 0. Assume also that there exists ̺ ∈ N such that , for all x ∈ Γ ,
there exists a path of length 2̺+1 which starts from x and returns to x, i.e. a
finite sequence of vertices (xi)0≤i≤2̺+1 ⊂ Γ such that for all i, xi ∼ xi+1 and
x0 = x2̺+1 = x. Then there exists p0 ∈ ]0, 1[ such that , for any p ∈ ]p0, 1],
Hp

max = Hp
at. As a consequence, the dual of H1

max(Γ ) is equal to BMO(Γ ),
and , for any p ∈ ]p0, 1[, the dual of Hp

max(Γ ) is L1/p−1.

I thank A. Bonami for providing [MEY], and P. Auscher for very use-
ful conversations. I am also grateful to T. Coulhon who suggested a more
convenient presentation of this paper.
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II. THE ATOMIC DECOMPOSITION FOR H
p

max

In the present section, we prove Theorem 1, which is the discrete ana-
logue of Theorems 1 and 2 of [RUS]. Adapting continuous methods to this
discrete setting creates technical difficulties (especially with the area inte-
gral). That is the reason why the strategy of the proof will be completely
different. The inclusion H1

at ⊂ H1
max is easily obtained as in Theorem 1 of

[RUS]. The converse inclusion and the atomic decomposition for Hp with
p < 1 will be obtained by methods which are very much inspired by [UCH].

More precisely, the most natural way to obtain an atomic decomposition
forHp

max is to use a variant of theCalderón–Zygmund decomposition: see, for
instance, [ST] in the Euclidean setting. Roughly speaking, when f ∈ Hp

max,
one writes, for any j ∈ Z, the Calderón–Zygmund decomposition at level
2j : f = gj + bj . Then one easily sees that gj → f in Hp

max as j → +∞,
whereas gj → 0 uniformly as j → −∞. Therefore, f =

∑

j [g
j+1 − gj ], and,

after some manipulations using the properties of the Calderón–Zygmund
decomposition, one finally obtains an atomic decomposition for f . Such ideas
are used by Coifman of [COI] to get the atomic decomposition for Hp(R), by
Latter of [LAT] for the analogous result in R

n, and by Maćıas and Segovia
of [MS2] in the general context of a normal space (which is, approximately,
a space with linear volume growth).

The point is that, in those papers, the Hp
max spaces are defined by means

of suitable test functions. Namely, in [MS2], for any f ∈ L1(X) where X is
a normal space, the authors define, for any x ∈ X,

f∗(x) = sup
{∣

∣

∣

\
f(y)φ(y) dµ(y)

∣

∣

∣

}

,

where the supremum is taken over all functions φ : X → R+ satisfying an
appropriate Hölder regularity condition. Then they say that f ∈ Hp

max if
f∗ ∈ Lp(X). When one considers a maximal Hp space defined by means of
a kernel, as we do in the present paper, the methods developed by Coifman,
Latter, Maćıas and Segovia cannot be applied directly. That is why, for the
proof of the inclusion Hp

max ⊂ Hp
at, we consider (following Uchiyama [UCH])

another maximal Hp space, defined in [MS2]. Then we prove that our Hp
max

space (defined by means of the Markov kernel) is included in that maximal
Hp space, for which it is well known (see [MS2], Theorem 4.13) that one has
an atomic decomposition. Thus, the inclusion Hp

max ⊂ Hp
at is proved.

Once this is done, one finds that Hp
at(Γ ) = Hp

max(Γ ). Since Γ is a space
of homogeneous type, Theorem B of [CW] ensures that the dual of H1

at(Γ ) is
BMO(Γ ) and the dual ofHp

at(Γ ) is L1/p−1(Γ ), which implies that the dual of
H1

max(Γ ) is BMO(Γ ) and the dual of Hp
max(Γ ) is L1/p−1(Γ ). Therefore, the

proof of Theorem 1 will be complete provided that one shows Hp
at ⊂ Hp

max

and Hp
max ⊂ Hp

at for p ∈ ]p0, 1].
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It is important to observe that the techniques developed for the proof of
Theorem 1 do not depend on the graph structure: they only use the doubling
property (1) and the estimates for the kernel. In other words, the results of
the present paper hold in the general context of a space of homogeneous type
endowed with a kernel satisfying a Gaussian upper bound, an on-diagonal
lower bound and a Hölder regularity assumption. Consequently, they give an
alternative proof of the equality H1

max,H = H1
at and of the atomic decompo-

sition forHp
max,H on a Riemannian manifold satisfying suitable assumptions,

which is part of Theorems 1 and 2 of [RUS]. However, the estimates for the
Poisson kernel do not allow one to apply such techniques, and that is the
reason why, in [RUS], one uses other techniques to get results about Hp

max,P .

Let us point out that, to prove that H1
at = H1

max, it is possible to prove
a representation theorem for BMO functions, using Carleson’s [CAR] ideas,
as done by Y. Meyer [MEY]. Precisely, the following result is true:

Theorem 2. Let Γ be a graph satisfying the assumptions of Theorem 1.
Then there exists C1 > 0 such that , for all measurable functions k : Γ → N

∗

and all functions b1, b2 ∈ L∞, the function

f(x) = b1(x) +
∑

y∈Γ

pk(y)(x, y)b2(y)

belongs to BMO and satisfies ‖f‖BMO ≤ C1[‖b1‖∞ + ‖b2‖∞]. Conversely ,
there exists C2 > 0 such that every f ∈ BMO has a representation as above
with ‖b1‖∞ + ‖b2‖∞ ≤ C2‖f‖BMO.

This theorem is interesting in its own right, and provides a proof of the
equality H1

max = H1
at. However, it does not give any result about Hp for

p < 1.

The paper is organized as follows. We first give estimates for pn, partic-
ularly a Hölder regularity result, from which we deduce that Hp

at ⊂ Hp
max.

Then we prove a theorem which allows us to compare ‖f+‖p with ‖f∗‖p
(where f∗ is the maximal function considered by Maćıas and Segovia [MS2]).
This last theorem gives the atomic decomposition for Hp

max, p ≤ 1, thanks
to Maćıas and Segovia’s work [MS2].

1. Kernel estimates. In the present section, we will need the following
definition. We say that Γ satisfies ∆(α) if

(5) x ∼ y ⇒ µxy ≥ αm(x), ∀x ∈ Γ, µxx ≥ αm(x).

In other words, Γ satisfies ∆∗(α) and, for all x ∈ Γ , x ∼ x.

Recall that, when (1), (2) and (5) hold, one has the following estimate
for pk:
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Theorem 3. Let Γ satisfy the doubling property , the Poincaré inequality
and ∆(α) for α > 0. Then there exist c1, C1, c2, C2 > 0 such that

d(x, y) ≤ k ⇒ c1m(y)

V (x,
√
k)
e−C1d(x,y)

2/k ≤ pk(x, y) ≤
C2m(y)

V (x,
√
k)
e−c2d(x,y)

2/k.

This theorem is shown by T. Delmotte in [DEL2], Theorem 1.7 (see also
[AC], Theorem 2.5).

As a consequence of Theorem 3 and of Proposition 4.1 in [DEL2], one
gets, under the same assumptions, the following estimate:

Lemma 4. Let Γ satisfy the doubling property , the Poincaré inequality
and ∆(α) for α > 0. Then there exist C3, c3 > 0 and h ∈ ]0, 1[ such that ,
for any k ∈ N and x, y, y0 ∈ Γ such that d(y0, y) ≤

√
k,

|pk(y, x)− pk(y0, x)| ≤ C3

[

d(y, y0)√
k

]h
m(x)

V (x,
√
k)
e−c3d

2(x,y0)/k.

P r o o f. Assume first that d(y, y0) ≤ 1
2

√
k and x ∈ Γ . Proposition 4.1 of

[DEL2] may be applied to u(k, z) = pk(z, x), with R ∼ 1
2

√
k and n0 ∼ 5

4
k.

Since y ∈ B(y0, R) and k ∈ Z ∩ [n0 −R2, n0], one gets

|pk(y, x)− pk(y0, x)| ≤ C

[

d(y, y0)

R

]h

sup
Q
pl(z, x)

where Q = (Z∩ [n0−2R2, n0])×B(y0, 2R). But, thanks to Theorem 3, when
n0 − 2R2 ≤ l ≤ n0 and z ∈ B(y0, 2R),

pl(z, x) ≤
C2m(x)

V (x,
√
l)
e−c2d(x,z)

2/l ≤ C2m(x)

V (x,
√
n0 − 2R2)

e−c2d(x,z)
2/n0 .

One has

−d(x, z)
2

n0
≤ −d(x, y0)

2

2n0
+
d(y0, z)

2

n0
≤ −d(x, y0)

2

2n0
+ 4,

so that

pl(z, x) ≤
C3m(x)

V (x,
√
k)
e−c2d

2(y0,x)/k.

It follows that

(6) |pk(y, x)− pk(y0, x)| ≤ C4

[

d(y, y0)√
k

]h
m(x)

V (x,
√
k)
e−c2d

2(y0,x)/k.

Finally, if d(y, y0) ≤
√
k, consider a point y1 such that d(y, y1) ≤ 1

2

√
k and

d(y1, y2) ≤ 1
2

√
k, and apply (6) to |pk(y, x) − pk(y1, x)| and to |pk(y1, x) −

pk(y0, x)|.
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We now deduce from Lemma 4 some estimates for pk(x, y) when Γ sat-
isfies the assumptions of Theorem 1, which are weaker than the ones of
Theorem 3.

Lemma 5. Assume that Γ satisfies the doubling property , the Poincaré in-
equality and ∆∗(α) for a certain α > 0. Assume also that there exists ̺ ∈ N

such that , for all x ∈ Γ , there exists a path of length 2̺ + 1 which starts
from x and goes back to x, i.e. a finite sequence of vertices (xi)0≤i≤2̺+1 ⊂
Γ such that for all i, xi ∼ xi+1 and x0 = x2̺+1 = x. Then there exist
c′1, C

′
1, c

′
2, C

′
2 > 0 such that , for all x, y ∈ Γ and k ∈ N,

pk(x, y) ≤
C ′

2m(y)

V (x,
√
k)
e−c′2d(x,y)

2/k,

and , when d(x, y) ≤ 2k,

C ′
1m(y)

V (x,
√
k)
e−c′1d(x,y)

2/k ≤ p2k(x, y).

Moreover , there exist C ′
3, c

′
3 > 0 and h ∈ ]0, 1[ such that , for any k ∈ N and

x, y, y0 ∈ Γ such that d(y0, y) ≤
√
k,

|pk(y, x)− pk(y0, x)| ≤ C ′
3

[

d(y, y0)√
k

]h
m(x)

V (x,
√
k)
e−c′3d(x,y0)

2/k.

P r o o f. Following [DEL1], p. 122, one considers the iterated graph
(Γ, µ(2)) where

µ(2)
xy =

∑

z∈Γ

µxzµzy

m(z)
.

The corresponding kernel p
(2)
k (x, y) satisfies p

(2)
k (x, y) = p2k(x, y), whereas

the corresponding weights m(2)(x) satisfy m(2)(x) = m(x). It is easy to
check that, under the assumptions of Lemma 5, the induced distance d(2)

satisfies

(7) d(x, y)/2 ≤ d(2)(x, y) ≤ (2̺+ 2)d(x, y).

As a consequence, under the assumptions of Lemma 5, (Γ, µ(2)) satisfies
the doubling property (see [DEL1], p. 123, Proposition 7.5), the Poincaré
inequality (see [DEL1], p. 123, Proposition 7.6) and the condition ∆(α2)
(see [DEL1], p. 125). Applying Theorem 3, Lemma 4 and (7), one gets the
first two assertions of Lemma 5 (see also [DEL1], p. 124, Théorème 7.7) and
the third one when k is even. When k = 2l + 1 and d(y0, y) ≤

√
k, one has

|pk(y, x)− pk(y0, x)| ≤
∑

u∼x

|p2l(y, u)− p2l(y0, u)|p(u, x)

≤
∑

u∼x

C3

[

d(y, y0)√
2l

]h
m(u)

V (u,
√
2l)

e−c3d(u,y0)
2/(2l)p(u, x)
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≤ C ′
3

[

d(y, y0)√
k

]h
m(x)

V (x,
√
k)
e−c′3d(x,y0)

2/k.

In the last line, one uses the doubling property and the fact that d(u, x)
≤ 1.

2. Reduction to the case of a normal space. The proof of the
inclusion Hp

at ⊂ Hp
max is exactly analogous to the proof of Hp

at ⊂ Hp
max,H in

[RUS], II, 2, and we do not repeat it. Note that it uses the Hölder regularity
of pn (Lemma 5), which is due to the Poincaré inequality.

To prove the converse inclusion, as well as Hp
max ⊂ Hp

at for p < 1 suf-
ficiently close to 1, we need a theorem which is very close to Uchiyama’s
result in [UCH] (Theorem 1′). That theorem deals with a particular class of
spaces of homogeneous type, namely the normal spaces. Via an appropriate
reduction, the inclusion Hp

max ⊂ Hp
at for p ∈ ]p0, 1] is an easy consequence

of that result, which we are going to state now.

Let X be a set, equipped with a non-negative quasi-distance d : X×X →
R+. Precisely, d is symmetric, d(x, y) = 0 ⇔ x = y, and there exists A > 0
such that, for any x, y, z ∈ X,

(8) d(x, y) ≤ A[d(x, z) + d(z, y)].

Let µ be a σ-finite measure on X such that µ(X) = +∞. Assume that
(X, d, µ) is a normal space, which means that there exists κ > 0 such that,
for any x ∈ X and any r > 0,

(9)

V (x, r) ≥ A−1r,

V (x, r) ≤ Ar if r ≥ κµ({x}),
B(x, r) = {x} if r < κµ({x}).

Assume that K : R∗
+ × X × X → R+ is a symmetric measurable function

and that, for any β > 0, there exists Cβ such that, for t > 0 and x, y ∈ X,

(10)

K(t, x, y) ≤ Cβ

V (x, t)

[

1 +
d(x, y)

t

]−1−β

,

K(t, x, x) ≥ A−1

V (x, t)
.

Assume also that there exist γ > 0 and C > 0 such that, for all t > 0 and
x, y, z ∈ X satisfying d(y, z) ≤ (t+ d(x, y))/(4A),

(11) |K(t, x, y)−K(t, x, z)| ≤ C

V (x, t)

[

d(y, z)

t

]γ[

1 +
d(x, y)

t

]−1−2γ

.

Notice that, under the assumptions (10) and (11), there exist C1, C2 > 0
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such that, for any t > 0 and x, y ∈ X satisfying d(x, y) ≤ C2t,

K(t, x, y) ≥ 1

C1V (x, t)
.

For any x ∈ X, we say that a function φ : X → R+ belongs to the class
Tγ(x) if it is supported in a ball B(x, r) with r ≥ κµ({x}), ‖φ‖∞ ≤ 1/r and,
for any y, z ∈ X,

|φ(y)− φ(z)| ≤ [d(y, z)/r]γ .

If f ∈ L∗
γ(X), set, for r > 0 and x ∈ X,

Kf(r, x) = 〈f,Kr(x, ·)〉, f+(x) = sup
r>0

|Kf(r, x)|.

Define also
f∗(x) = sup{|〈f, φ〉| : φ ∈ Tγ(x)}.

Theorem 6. Let (X, d, µ) be a normal space equipped with a kernel K
satisfying (10) and (11). Then there exists p0 ∈ ]0, 1[ such that , for any
p ∈ ]p0, 1], there exists Cp such that , for any f ∈ L∗

γ ,

‖f∗‖p ≤ Cp‖f+‖p.
Before proving that result, we explain how to use it to prove that, under

the assumptions of Theorem 1, one has Hp
max(Γ ) ⊂ Hp

at(Γ ) for p ∈ ]p0, 1].
The results of [MS1] show that there exists a quasidistance δ on Γ such

that (Γ, δ, µ) satisfies the assumptions of Theorem 6. Moreover, for any
p ∈ ]0, 1], the p-atoms for d and for δ coincide, and therefore, the same
is true for the Hp

at spaces defined with respect to d and to δ.
If one defines, for all t > 0 and x, y ∈ Γ ,

K(t, x, y) = p2n2(x, y)/m(y),

where n = inf{p ∈ N : V (x, p) ≥ t}, then it is easy to check that K also
satisfies the assumptions of Theorem 6. (See an analogous reduction in [SC],
Section 4, p. 322, in the setting of Lie groups.)

Apply Theorem 6 with (X, δ, µ,K): there exists p0 ∈ ]0, 1[ such that the
conclusion of Theorem 6 holds. Let p ∈ ]p0, 1], and consider f ∈ Hp

max(Γ )
defined with respect to the kernel p. The definitions of K and of Hp

max show
that f also belongs to Hp

max defined with respect to K. Theorem 6 proves
that f∗ ∈ Lp(Γ ), and Theorem 4.13 in [MS2] ensures that f ∈ Hp

at defined
with respect to δ, which coincides with Hp

at defined with respect to d. Thus,
f ∈ Hp

at(Γ ) and the inclusion Hp
max ⊂ Hp

at is proved. As was explained at
the beginning of the present part of the paper, the duality of H1

max(Γ ) and
BMO(Γ ) and the one of Hp

max(Γ ) and L1/p−1(Γ ) follows, and the proof of
Theorem 1 is complete.
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3. Proof of the fundamental theorem. The rest of this paper is
devoted to a self-contained proof of Theorem 6. Note first that it is a bit
more general than Theorem 1′ in [UCH], p. 586. Indeed, the assumptions
on the volume in Theorem 1′ of [UCH] say that V (x, r) ≤ Ar for any x ∈ X
and r > 0, which, in particular, implies that µ({x}) = 0 for all x ∈ X and
excludes precisely the case of graphs.

We follow Uchiyama’s methods in [UCH], modifying some points, in
particular the statement and proof of Lemma 1 of [UCH].

We claim that it is enough to prove that there exist p0 ∈ ]0, 1[ and C > 0
such that, for any f ∈ Hp

max and x0 ∈ X,

(12) f∗(x0) ≤ CM [(f+)p0 ]1/p0(x0),

where M denotes the Hardy–Littlewood maximal function. Indeed, assume
that (12) is proved. Then, for any p > p0, writing g = (f+)p0 , we get

‖f∗‖p ≤ C‖Mg‖1/p0

p/p0
≤ C ′‖g‖1/p0

p/p0
= C ′‖f+‖p,

which is the conclusion of Theorem 6 (the second inequality holds because
p/p0 > 1). Therefore, we turn to the proof of (12).

One has to show that, for any function φ supported in B(x0, r0) with
r0 ≥ κµ({x0}), such that, for any x, y ∈ X,

|φ(x)− φ(y)| ≤ 1/rγ0

and ‖φ‖∞ ≤ 1, one has

(13)
∣

∣

∣

\
fφ dµ

∣

∣

∣
/r0 ≤ CM [(f+)p0 ]1/p0(x0),

where C > 0 is independent of f , φ, x0, r0.

It is sufficient to show (13) when r0 = 1. Indeed, if it is proved in that
case, consider the quasidistance d′ = d/r0, the measure µ′ = µ/r0 and the
kernel K ′ = r0K(t/r0, x, y). Then (X, d′, µ′,K ′) satisfies the same assump-
tions as (X, d, µ,K) with the same constants, and an elementary computa-
tion proves that (13) holds.

From now on, assume that r0 = 1. For any x ∈ X, set

d(x) = 1 + d(x0, x).

We will make use of the following lemma:

Lemma 7. Let g be a non-negative function on X and t < (2A)−5. Then
there exists a sequence (xj)j∈N ⊂ X and constants Ci > 0 for i = 3, 4, 5
such that :

• X =
⋃

j B(xj , C2td(xj)),

• each point of X belongs at most to C3 balls B(xj , C2td(xj)),

• g(xj) ≤ C4Kg(td(xj), xj).
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Moreover , there exists C > 0 only depending on X such that , for any k ∈ N,
r > 0 and x ∈ X,

(14)
∑

2k−1≤d(xj)<2k, xj∈B(x,r), t2k−1≤r

V (xj , td(xj)) ≤ CV (x, r).

Finally , if 0 ≤ a, a+ γ/2 ≤ b ≤ 2γ, M ≥ 0, and

uj(x) = d(xj)
−1−a

[

1 +
d(xj , x)

td(xj)

]−1−b

1[M,+∞]

[

d(x, xj)

td(xj)

]

,

then, for all x ∈ X,
∑

j

uj(x) ≤ C5d(x)
−1−a max(tb, (1 +M)−b).

We postpone the technical proof of Lemma 7 to the appendix.
Another lemma, which is necessary to the proof of Theorem 6 (and which

should be compared with Lemma 1 of [UCH]), deals with any measure ν
over X × R+ supported in B(x0, R)× [0, R], where x0 ∈ X and r > 0, and
satisfying, for any r > 0 and any x ∈ X,

(15) ν({B(x, r)× [0, r]}) ≤ V (x, r)1+δ .

Lemma 8. Let p ∈ ]1,+∞[ and δ ≥ 0. Then, for each β > 0, there exists
Cp,δ,β > 0 such that , for any x0 ∈ X, R > 0, k ∈ N, any positive measure
ν over X × R+ supported in B(x0, R) × [0, R] and satisfying (15) and any
function f ∈ Lp(X,µ) supported in B(x0, 2

k+1R) \B(x0, 2
kR),

‖Kf‖Lp(1+δ)(ν) ≤ Cp,δ,β2
−kβ‖f‖Lp(µ).

P r o o f. The idea of the proof is borrowed from [HOR]. Notice first that
(15) implies that there exists C > 0 such that, for any x ∈ X and r > 0,

(16) ν({(y, s) : B(y, s) ⊂ B(x, r)}) ≤ CV (x, r)1+δ .

Indeed, assume first that r ≥ κµ({x}). Then, if B(y, s) ⊂ B(x, r), then

A−1s ≤ V (y, s) ≤ V (x, r) ≤ r.

Moreover, y then belongs to B(x, r). Consequently,

ν({(y, s) : B(y, s) ⊂ B(x, r)}) ≤ ν(B(x, r)× [0, Ar])

≤ CV (x,Ar)1+δ ≤ CV (x, r)1+δ.

If r ≤ κµ({x}), then B(x, r) = {x}. If B(y, s) ⊂ B(x, r), then y = x and
A−1s ≤ V (y, s) ≤ µ({x}). Therefore,
ν({(y, s) : B(y, s) ⊂ B(x, r)}) ≤ ν({x} × [0, Aµ({x})])

≤ V (x,Aµ({x}))1+δ

≤ CV

(

x,
κ

2
µ({x})

)1+δ

= CV (x, r)1+δ.

Thus, (16) is shown.



H1
-BMO DUALITY ON GRAPHS 79

We recall that K is the linear operator which, to a locally integrable
function f defined on X, associates the function Kf defined on X ×R+ by

Kf(x, r) =
\
K(r, x, y)f(y) dµ(y).

For any f ∈ L1(µ), consider the “maximal” function

Mf(x, r) = sup

{

1

V (y, s)

\
B(y,s)

|f(z)| dµ(z) : B(y, s) ⊃ B(x, r)

}

.

We claim that, for any p > 1,M is bounded from Lp(X,µ) into Lp(1+δ)(X×
R

∗
+, ν). Since it is clear that it maps continuously L∞(X,µ) into L∞(X ×

R
∗
+, ν), thanks to the Marcinkiewicz interpolation theorem, we just have to

show that M maps continuously L1(X,µ) into L(1+δ),∞(X × R, ν), which
means that there exists a constant C > 0 such that, for any λ > 0 and
f ∈ L1(µ),

(17) ν({(x, r) : |Mf(x, r)| > λ}) ≤ C

λ1+δ
‖f‖1+δ

L1(µ).

The argument is very much inspired by [HOR]. First, we prove the following
proposition (see [HOR], Lemma 2.2, p. 67):

Proposition 9. Assume that E ⊂ X × R+ and there exists R > 0 such
that , for any (x, r) ∈ E, r ≤ R. Assume also that there exists no infinite
sequence of points (xi, ri) in E such that the balls B(xi, ri) are pairwise
disjoint. Then there exist finitely many points (xi, ri) in E such that the
balls B(xi, ri) are pairwise disjoint and

E ⊂ {(x, r) : ∃i, B(x, r) ⊂ B(xi, 5A
2ri)}.

P r o o f. Set R1 = sup{r > 0 : (x, r) ∈ E} and choose (x1, r1) ∈ E such
that r1 ≥ R1/2. Assume that N ≥ 2 and that (xi, ri) have been constructed
for i ≤ N − 1. Define

RN = sup{r > 0 : (x, r) ∈ E and ∀i ≤ N − 1, B(xi, ri) ∩B(x, r) = ∅}
if this set is not empty, and choose (xN , rN ) ∈ E such that rN ≥ RN/2
and the ball B(xN , rN ) is disjoint from B(xi, ri) for each i ≤ N − 1. The
assumption about E implies that this construction must stop after a fi-
nite number of steps. The balls B(xi, ri) which have been constructed are
pairwise disjoint. It remains to prove that, for any (x, r) ∈ E, there ex-
ists i such that B(x, r) ⊂ B(xi, 5A

2ri). Take (x, r) ∈ E and define i to be
the smallest integer such that B(x, r) ∩ B(xi, ri) 6= ∅. Then r ≤ Ri. Let
y ∈ B(x, r) ∩ B(xi, ri). Then B(x, r) ⊂ B(xi, 5ri). Indeed, let u ∈ B(x, r).
One has

d(u, xi) ≤ Ad(u, x) +Ad(x, xi) ≤ Ar +A2d(x, y) +A2d(y, xi)

≤ Ar +A2r +A2ri ≤ 5A2ri.
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We are now ready to prove (17). Assume that f ∈ L1(X,µ). For any
λ > 0, set

Eλ = {(x, r) :Mf(x, r) > λ}.
For any ε > 0, define

Eε
λ =

{

(x, r) :
\

B(x,r)

|f(y)| dµ(y) > λ(ε+ V (x, r))
}

,

E′ε
λ = {(x, r) : ∃(y, s) ∈ Eε

λ, B(x, r) ⊂ B(y, s)}.
Observe that there exists no infinite sequence (xi, ri) ∈ Eε

λ such that the
balls B(xi, ri) are pairwise disjoint. Indeed, if (xi, ri) ∈ Eε

λ and the B(xi, ri)
are pairwise disjoint, then, for each i,

λ(ε+ V (xj , rj)) <
\

B(xj ,rj)

|f(y)| dµ(y),

so that
∑

j

λ(ε+ V (xj , rj)) <
\
|f(y)| dµ(y) < +∞,

which implies that the sequence (xi, ri) is finite. Applying Proposition 9, one
gets a finite sequence (xi, ri) in E

ε
λ such that the balls B(xi, ri) are pairwise

disjoint and

(18) Eε
λ ⊂

⋃

i

{(x, r) : B(x, r) ⊂ B(xi, 5A
2ri)}.

Hence

E′ε
λ ⊂

⋃

i

{(x, r) : B(x, r) ⊂ B(xi, 5A
2ri)}.

Therefore, using (16), one gets

ν(E′ε
λ ) ≤

∑

i

ν({(x, r) : B(x, r) ⊂ B(xi, 5A
2ri)})

≤ C
∑

i

V (xi, 5A
2ri)

1+δ ≤ C
∑

i

V (xi, ri)
1+δ

≤ C

λ1+δ

∑

i

( \
B(xi,ri)

|f |
)1+δ

≤ C

λ1+δ

(

∑

i

\
B(xi,ri)

|f |
)1+δ

≤ C

λ1+δ
‖f‖1+δ

L1(µ).

The second inequality follows from (16). The fourth one holds because
(xi, ri) ∈ Eε

λ, and the sixth one is true because the balls B(xi, ri) are pair-
wise disjoint. Therefore, letting ε → 0 yields (17). Thus, for any p > 1, M
maps continuously Lp(X,µ) into Lp(1+δ)(X × R+, ν).
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We are now able to conclude the proof of Lemma 8. Consider r ≤ R,
x ∈ B(x0, R) and f ∈ L1(µ) supported in B(x0, 2

k+1R)\B(x0, 2
kR). Then,

whenever y ∈ B(x0, 2
k+1R) \ (x0, 2

kR), one has d(x, y) ≥ c2k−1r for a
constant c > 0 (use (8)), so that

|Kf(x, r)|

=
∣

∣

∣

+∞
∑

i=k−1

\
B(x,c2i+1r)\B(x,c2ir)

K(r, x, y)f(y) dµ(y)
∣

∣

∣

≤ Cβ

+∞
∑

i=k−1

1

V (x, r)
[1 + c2i]−1−β

\
B(x,2i+1r)

|f(y)| dµ(y)

≤ C

+∞
∑

i=k−1

V (x, 2i+1r)

V (x, r)
[1 + c2i]−1−β 1

V (x, 2i+1r)

\
B(x,2i+1r)

|f(y)| dµ(y)

≤ C ′
+∞
∑

i=k−1

2i+1[1 + 2i]−1−βMf(x, r) ≤ C ′′2−kβMf(x, r).

SinceM maps continuously Lp(X,µ) into Lp(1+δ)(X×R+, ν), it follows that

‖Kf‖Lp(1+δ)(X×R+,ν) ≤ C2−kβ‖Mf‖Lp(1+δ)(X×R+,ν) ≤ C2−kβ‖f‖Lp(X,µ).

Lemma 8 is proved.

We now use Lemmas 7 and 8 to prove (13) when r0 = 1. Define C6 =
2(2A)1+γ/2C1, C7 = 4C5C6Cβ and ε = inf(1/C7, (2A)

−1−γ/2). Let η > 0 be
sufficiently small, to be chosen at the end of the proof.

Step 1: Representation of φ by means of the kernel K. We build a

sequence (x
(n)
j )j∈N ⊂ X and a sequence (ε

(n)
j )j∈N ⊂ {−1, 0, 1} such that,

for any n ∈ N, the points (x
(n)
j ) satisfy all the requirements of Lemma 7 for

t = ηn and g =
√

f+, and

φ(x) =
∑

n

∑

j

C6ε(1− ε)n−1ε
(n)
j d(x

(n)
j )−1−γ/2

× V (x
(n)
j , ηnd(x

(n)
j ))K(ηnd(x

(n)
j ), x

(n)
j , x),

the convergence being uniform on X.

For that purpose, for each n ∈ N, we are going to build a sequence

(x
(n)
j )j∈N ⊂ X and a sequence (ε

(n)
j )j∈N ⊂ {−1, 0, 1} such that, for any

n ∈ N, the points (x
(n)
j ) satisfy all the requirements of Lemma 7 for t = ηs
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and g =
√

f+, and

(19) |φn(x)| ≤ (1− ε)nd(x)−1−γ/2,

where

φn(x) = φ(x)−
n
∑

i=1

C6ε(1 − ε)i−1

×
∑

j

ε
(i)
j d(x

(i)
j )−1−γ/2V (x

(i)
j , ηid(x

(i)
j ))K(ηid(x

(i)
j ), x

(i)
j , x).

Set φ0 = φ. Assume that the construction is done up to n− 1 and let (x
(n)
j )

be given by Lemma 7 applied with t = ηn and g =
√

f+. Define also

ε
(n)
j = sgnφn−1(x

(n)
j ).

We claim that (19) holds. Indeed, if

ψn(x) = C6Cβε(1 − ε)n−1

×
∑

j

ε
(n)
j d(x

(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))K(ηnd(x

(n)
j ), x

(n)
j , x),

then Lemma 7 proves that, for any x ∈ X,

|ψn(x)| ≤ C6ε(1− ε)n−1
∑

j

d(x
(n)
j )−1−γ/2

(

1 +
d(x

(n)
j , x)

ηnd(x
(n)
j )

)−1−γ

(20)

≤ 1
4 (1− ε)n−1d(x)−1−γ/2.

Set C8 = (ε(2A)−1−3γ/2/2)1/γ . Let x, y ∈ X satisfy d(x, y) ≤ C8η
n−1d(y).

We now prove that

(21) |φn−1(x)− φn−1(y)| ≤ ε(1 − ε)n−1d(y)−1−γ/2.

One has d(x, y) ≤ ηn−1d(x)/(4A)2. Consequently, for any i ≤ n− 1,

d(x, y) ≤
ηn−1d(x

(i)
j ) + d(x

(i)
j , x)

4A
.

Therefore,

(22) |φn−1(x)− φn−1(y)| ≤ |φ(x) − φ(y)|

+
n−1
∑

i=1

C6ε(1 − ε)i−1
∑

j

d(x
(i)
j )−1−γ/2V (x

(i)
j , ηid(x

(i)
j ))

× |K(ηid(x
(i)
j ), x

(i)
j , x)−K(ηid(x

(i)
j ), x

(i)
j , y)|

= |φ(x) − φ(y)| + Sn−1,
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where

Sn−1 ≤ 2

n−1
∑

i=1

C6ε(1− ε)i(23)

×
∑

j

d(x
(i)
j )−1−γ/2

(

d(x, y)

ηid(x
(i)
j )

)γ(

1 +
d(x

(i)
j , x)

ηid(x
(i)
j )

)−1−2γ

≤ 2d(x, y)γC6ε

n−1
∑

i=1

(1− ε)iη−iγ

×
∑

j

d(x
(i)
j )−1−3γ/2

(

1 +
d(x

(i)
j , x)

ηid(x
(i)
j )

)−1−2γ

≤ 2d(x, y)γC6ε
n−1
∑

i=1

(

1− ε

ηγ

)i

C5d(x)
−1−3γ/2

≤ d(x, y)γ
(

1− ε

ηγ

)n−1

d(x)−1−3γ/2.

Since d(x, y) ≤ C8η
n−1d(y), one has

d(y)

2A
≤ d(x) ≤ 2Ad(y),

which implies that

(24) |φ(x)− φ(y)| ≤ ε

2
(1− ε)n−1d(y)−1−γ/2.

Indeed, one may assume that either x or y belongs to B(x0, 1). Therefore,
1/(2A) ≤ d(y) ≤ 4A, and

|φ(x) − φ(y)| ≤ d(x, y)γ ≤ ε

2
ηγ(n−1)d(y)γ

≤ ε

2
(1− ε)n−1d(y)−1−γ/2.

It follows from (22)–(24) that (21) holds.

Consequently, if φn−1(y) ≤ 0 and d(x, y) ≤ C8η
n−1d(y), then

φn−1(x) ≤ ε(1− ε)n−1d(y)−1−γ/2 ≤ (2A)1+γ/2ε(1− ε)n−1d(x)−1−γ/2.

We have proved that, if φn−1(y) ≤ 0, then for any x ∈ B(y,C8η
n−1d(y)),

φn−1(x) ≤ 1
2
(1− ε)n−1d(x)−1−γ/2.

Now, it is clear that (19) holds when φn−1(x) >
1
2 (1 − ε)n−1d(x)−1−γ/2.



84 E. RUSS

Indeed,

ψn(x) = C6ε(1 − ε)n−1

×
∑

j;φn−1(x
(n)
j )>0

d(x
(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))K(ηnd(x

(n)
j ), x

(n)
j , x)

− C6ε(1− ε)n−1

×
∑

j;φn−1(x
(n)
j )<0

d(x
(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))K(ηnd(x

(n)
j ), x

(n)
j , x),

so that

ψn(x) ≥ 2ε(1 − ε)n−1d(x)−1−γ/2

− C6ε(1 − ε)n−1

×
∑

j

d(x
(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))|K(ηnd(x

(n)
j ), x

(n)
j , x)|

× 1[C8η−1,+∞[

(

d(x, x
(n)
j )

ηnd(x
(n)
j )

)

≥ 2ε(1 − ε)n−1d(x)−1−γ/2 − C6Cβε(1 − ε)n−1C5d(x)
−1−γ/2(C8η

−1)−γ

≥ ε(1 − ε)n−1d(x)−1−γ/2

provided that η is small enough. Thus, one has

(25) ψn−1(x) ≥ ε(1 − ε)n−1d(x)−1−γ/2,

and (19) holds. In the same way, one may prove that, whenever φn−1(x) <
− 1

2
(1− ε)n−1d(x)−1−γ/2, then

(26) ψn−1(x) ≤ −ε(1− ε)n−1d(x)−1−γ/2,

which proves that, in that case, (19) holds. Finally, if − 1
2
(1−ε)n−1d(x)−1−γ/2

≤ ψn−1(x) ≤ 1
2 (1−ε)n−1d(x)−1−γ/2, then (20) shows that (19) holds again.

As claimed, we have shown that, for any x ∈ X,

φ(x) =
∑

n

∑

j

C6ε(1− ε)n−1ε
(n)
j d(x

(n)
j )−1−γ/2(27)

× V (x
(n)
j , ηnd(x

(n)
j ))K(ηnd(x

(n)
j ), x

(n)
j , x),

the convergence being uniform on X.

Step 2: Proof of (13). It follows from (27) that

|〈f, φ〉| ≤ C6ε
∑

n

∑

j

(1− ε)n−1d(x
(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))f+(x

(n)
j )
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≤ C
\

X×R+

(K
√

f+(x, r))2 dν(x, r),

where the measure ν is defined by

ν =
∑

n

∑

j

ε(1− ε)nd(x
(n)
j )−1−γ/2V (x

(n)
j , ηnd(x

(n)
j ))δ

(x
(n)
j ,ηnd(x

(n)
j ))

≤ Cε
∑

k

2−kγ/2

×
∑

n,j;2k−1≤d(x
(n)
j )<2k

(1− ε)nd(x
(n)
j )−1V (x

(n)
j , ηnd(x

(n)
j ))δ

(x
(n)
j ,ηnd(x

(n)
j ))

= Cε
∑

k

2−kγ/2νk.

We are going to apply Lemma 8 with νk. For that purpose, fix x ∈ X and
r > 0. Then

νk(B(x, r)× [0, r])

=
∑

n

(1− ε)n
∑

j; x
(n)
j ∈B(x,r),

ηnd(x
(n)
j )≤r, 2k−1≤d(x

(n)
j )<2k

d(x
(n)
j )−1V (x

(n)
j , ηnd(x

(n)
j ))

≤ 21−k
∑

n; ηn2k−1≤r

(1− ε)n

×
∑

j; x
(n)
j ∈B(x,r), ηnd(x

(n)
j )≤r, 2k−1≤d(x

(n)
j )<2k

V (x
(n)
j , ηnd(x

(n)
j ))

≤ 21−kV (x, r)
∑

n; ηn2k−1≤r

(1− ε)n

≤ C2−kV (x, r)(2−kr)log(1−ε)/log η ≤ C(2−kV (x, r))1+δ ,

where δ = log(1− ε)/log η. The third inequality holds thanks to Lemma 7.

Notice that νk is supported in B(x0, C2k)× [0, C2k]. Set g =
√

f+ and

gi = g[1B(x0 ,C2k+i) − 1B(x0,C2k+i−1)] for i ∈ N
∗, g0 = g1B(x0,C2k).

Applying Lemma 8 with 2k(1+δ)νk, p = 2/(1 + δ), R = C2k, one gets

‖Kg‖L2(2k(1+δ)νk) ≤
∑

i

‖Kgi‖L2(2k(1+δ)νk) ≤ C
∑

i

2−iγ‖gi‖Lp(µ).
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As a consequence,

‖Kg‖L2(νk) ≤ C
∑

i

2−iγ2−k(1+δ)/2‖gi‖Lp(µ)

≤ C
∑

i

2−iγ2−k(1+δ)/2
[ \
B(x0,C2k+i)

|g|p
]1/p

≤ C
∑

i

2−iγ2−k(1+δ)/2V (x0, C2k+i)1/p[M |g|p]1/p(x0)

≤ C[M |g|p]1/p(x0),
provided that γ is chosen > (1 + δ)/2. Finally,\

X×R+

(K
√

f+(x, r))2 dνk(x, r) = ‖K
√

f+‖2Lp(1+δ)(νk)

≤ CM [(f+)1/(1+δ)]1+δ(x0).

Thus, (13) and, consequently, (12) are proved, which concludes the proof of
Theorem 6.

4. Appendix: proof of the constructive lemma. We give the proof
of Lemma 7.

Step 1: Definition of the xj’s. Consider a sequence (y
(0)
i ) ⊂ B(x0, 2)

satisfying

d(y
(0)
i , y

(0)
j ) ≥ 1

8 (2A)
−2C2t ∀i 6= j,

and maximal for this property. For any k ∈ N, consider a sequence (y
(k)
i ) ⊂

B(x0, 2
k+1) \B(x0, 2

k) satisfying

d(y
(k)
i , y

(k)
j ) ≥ 2k−3(2A)−2C2t ∀i 6= j,

and maximal for this property.

It is important to notice that the balls B(y
(k)
i , 2k−3(2A)−3C2t) are pair-

wise disjoint for any k ∈ N. Moreover,

X =
⋃

k

⋃

i

B(y
(k)
i , 2k−3(2A)−2C2t).

In every ball B(y
(k)
i , 2k−3(2A)−2C2t), consider a point x

(k)
i such that

g(x
(k)
i ) ≤ 2

V (y
(k)
i , 2k−3(2A)−2C2t)

\
B(y

(k)
i ,2k−3(2A)−2C2t)

g(y) dµ(y).

Note that such a point always exists. Thus, we obtain a sequence xj . The
triangle inequality (8) shows that

[1 + (2A)−12k] ≤ d(x
(k)
j ) ≤ A2k+2.
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Step 2: Properties of the xj’s. Before checking that the conclusions of
Lemma 7 hold, we give some properties of the points xj .

Proposition 10. For all l ∈ N and x ∈ X, define

Il(x) = {j : x ∈ B(x
(l)
j , C2td(x

(l)
j ))}.

Then |Il(x)| ≤ C.

For all k ∈ N, define

Jk = {xj : 2k−1 ≤ d(xj) < 2k}.
Then |Jk| ≤ C/t.

For all x ∈ X and all integers k, i ∈ N, set

Lk,i(x) = {xj : 2k−1 ≤ d(xj) < 2k and d(xj , x) < 2i+k−1t}.
Then |Lk,i(x)| ≤ C2i.

In all those assertions, C > 0 only depends on X.

P r o o f. We begin with the first assertion. Let j ∈ Il(x). Then

d(x, y
(l)
j ) ≤ A[d(x, x

(l)
j ) + d(x

(l)
j , y

(l)
j )] ≤ A[C2td(x

(l)
j ) + 2l−3(2A)−2C2t]

≤ A22l+3C2t.

It follows that, for any j ∈ Il(x), B(y
(l)
j , 2l−3(2A)−3C2t) ⊂ B(x,A32l+4C2t),

and

V (x,A32l+4C2t) ≥
∑

j∈Il(x)

V (y
(l)
j , 2l−3(2A)−3C2t)

≥ C
∑

j∈Il(x)

V (y
(l)
j , A42l+5C2t)

≥ C|Il(x)|V (x,A32l+4C2t).

In the first line, we used the fact that the balls B(y
(l)
j , 2l−3(2A)−3C2t) are

pairwise disjoint. The second one holds thanks to the doubling property.
The claim about Il(x) is proved.

We now turn to the assertion about Jk. Define first, for k ∈ N, J ′
k =

{y(k)j }. Then |J ′
k| ≤ C/t. Indeed,

V (x0, A2
k+2) ≥

∑

j

V (y
(k)
j , 2k−3(2A)−3C2t) ≥ Ct

∑

j

V (y
(k)
j , A22k+3)

≥ Ct|J ′
k|V (x0, A2

k+2).

From that, one deduces that |{x(k)j }| ≤ C/t.
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We are now able to prove the assertion about Jk. Indeed, if x
(l)
j ∈ Jk,

then since [1 + (2A)−12l] ≤ d(x
(l)
j ) < A2l+2, one has

2k−1 < A2l+2, 1 + (2A)−12l < 2k,

which shows that the number of l’s concerned is in [k − k0, k + k0] where
k0 ∈ N only depends on A. Thus, the assertion about Jk is proved.

Finally, we prove the result about Lk,i(x). We have just seen that if

x
(l)
j ∈ Lk,i, then k−k0 ≤ l ≤ k+k0. Therefore, if, for each l ∈ [k−k0, k+k0],
Ll
k,i(x) = {j : x(l)j ∈ Lk,i(x)}, then

V (x,C2i+lt) ≥
∑

j∈L
(l)
k,i(x)

V (y
(l)
j , 2l−3(2A)−3C2t)

≥ c2−i
∑

j∈L
(l)
k,i(x)

V (y
(l)
j , C2i+lt)

≥ c2−i|L(l)
k,i(x)|V (x,C2i+lt).

The assertion about Lk,i(x) is thus proved.

Step 3: End of Proof of Lemma 7. To begin with, one has

X =
⋃

j

B(xj , C2td(xj)).

Indeed, let x ∈ X. Then x ∈ B(y
(k)
j , 2k−3(2A)−2C2t) for some k ∈ N and

j ∈ N. Thus,

d(x, x
(k)
j ) ≤ A[d(x, y

(k)
j ) + d(y

(k)
j , x

(k)
j )]

≤ A[2k−3(2A)−2C2t+ 2k−3(2A)−2C2t]

≤ 2k−3(2A)−1C2t ≤ C2td(x
(k)
j ).

Now, we prove that each point of X is an element of at most C3 balls
B(xj , C2td(xj)). Take, for instance, x∈B(x0, 2

k+1)\B(x0, 2
k). Assume that

x ∈ B(x
(l)
j , C2td(x

(l)
j )). We claim that k− 3 ≤ l ≤ k+2. Indeed, on the one

hand,

2k ≤ d(x, x0) ≤ A[d(x, x
(l)
j ) + d(x

(l)
j , x0)] ≤ A[1 + C2t]d(x

(l)
j ) ≤ A22l+3.

On the other hand,

(2A)−12l ≤ d(x0, x
(l)
j ) ≤ A[d(x0, x) + d(x, x

(l)
j )] ≤ A[2k+1 +A2l+2C2t],

hence l ≤ k + 3, since t < (2A)−5. Since the cardinality of each Il(x) is
controlled by a constant (Proposition 10), x belongs to at most C3 balls
B(xj , C2td(xj)).
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As for the assertion about g, for any (j, k), one has

Kg(td(x
(k)
j ), x

(k)
j ) =

\
K(td(x

(k)
j ), x

(k)
j , x)g(x) dµ(x)

≥
\

B(y
(k)
j ,2k−3(2A)−2C2t)

K(td(x
(k)
j ), x

(k)
j , x)g(x) dµ(x)

≥ C

V (y
(k)
j , 2k−3(2A)−2C2t)

\
B(y

(k)
j ,2k−3(2A)−2C2t)

g(x) dµ(x)

≥ Cg(x
(k)
j ).

We turn to the proof of (14). Consider k ∈ N, x ∈ X and r > 0. We
want to estimate

(28)
∑

2k−1≤d(xj)<2k, xj∈B(x,r), 2k−1t≤r

V (xj , td(xj)).

The xj ’s involved are of the form x
(l)
j with k − k0 ≤ l ≤ k + k0. Thus, the

sum is equal to

k+k0
∑

l=k−k0

∑

2k−1≤d(x
(l)
j )<2k, x

(l)
j ∈B(x,r), 2k−1t≤r

V (x
(l)
j , td(x

(l)
j )) =

k+k0
∑

l=k−k0

Sl.

For any fixed integer l in [k − k0, k + k0], one has

Sl ≤
∑

2k−1≤d(x
(l)
j )<2k , x

(l)
j ∈B(x,r), 2k−1t≤r

V (x
(l)
j , 2kt)

≤
∑

2k−1≤d(x
(l)
j )<2k , x

(l)
j ∈B(x,r), 2k−1t≤r

V (y
(l)
j , A2k+1t)

≤ C
∑

2k−1≤d(x
(l)
j )<2k, x

(l)
j ∈B(x,r), 2k−1t≤r

V (y
(l)
j , 2k−3(2A)−3C2t)

≤ CV (x,Kr) ≤ CV (x, r).

In those computations, the third inequality is a consequence of the doubling

property, and the fourth holds because the balls B(y
(l)
j , 2k−3(2A)−3C2t) are

pairwise disjoint. Thus, (14) is proved.

Finally, we show the assertion about uj . Let n be the integer such that
2n ≤M < 2n+1. For each k ∈ N, write
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∑

2k−1≤d(xj)<2k

uj(x)

≤ 2−(k−1)(1+a)
∑

2k−1≤d(xj)<2k, d(xj ,x)>Mt2k−1

[

1 +
d(xj , x)

t2k

]−1−b

≤ 2−(k−1)(1+a)
∑

i≥n

[

∑

2k−1≤d(xj)<2k, 2k+it>d(xj ,x)>2k−1+it

[

1 +
d(xj , x)

t2k

]−1−b]

≤ 2−(k−1)(1+a)C
∑

i≥n

2i[1 + 2i−1]−1−b ≤ C2−(k−1)(1+a)(1 +M)−b.

Moreover, if 2k−1 > 2Ad(x), then d(xj , x) > cd(xj), and it follows that
∑

2k−1≤d(xj)<2k

uj(x) ≤ 2−(k−1)(1+a)t1+b
∑

2k−1≤d(xj)<2k

1 ≤ C2−(k−1)(1+a)tb.

Finally, if 2k < d(x)/(2A), then d(xj , x) > cd(x), and

∑

2k−1≤d(xj)<2k

uj(x) ≤ 2−(k−1)(1+a)

[

1 +
d(x)

t2k

]−1−b
∑

2k−1≤d(xj)<2k

1

≤ C2−(k−1)(1+a)d(x)−1−btb2k(1+b).

Lemma 7 is proved.
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[MEY] Y. Meyer, Dualité entre H1 et BMO sur les espaces de type homogène par
Lennart Carleson, unpublished notes.

[RUS] E. Russ, H1-BMO duality on Riemannian manifolds, preprint.
[SC] L. Salof f -Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark.
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