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ON UNRESTRICTED PRODUCTS OF (W) CONTRACTIONS

BY

W. K. B A R T O S Z E K (PRETORIA)

Abstract. Given a family of (W) contractions T1, . . . , TN on a reflexive Banach space
X we discuss unrestricted sequences Trn ◦ . . .◦Tr1 (x). We show that they converge weakly
to a common fixed point, which depends only on x and not on the order of the operators
Trn if and only if the weak operator closed semigroups generated by T1, . . . , TN are right
amenable.

Let (X, ‖ · ‖) be a reflexive Banach space. Its dual space is denoted by
(X∗, ‖ · ‖). The dual operation, where x ∈ X and λ ∈ X∗, is denoted by
λ(x) or 〈x, λ〉. We say that a linear contraction T : X → X satisfies the (W)
condition if for every sequence xn ∈ X we have w-limn→∞(xn−T (xn)) → 0
whenever xn is bounded and satisfies ‖xn‖ − ‖T (xn)‖ → 0 (we write w-lim
for weak limits). If for every x ∈ X we have ‖T (x)‖ = ‖x‖ if and only if
T (x) = x (i.e. when x is a T -fixed point) then we say that T satisfies the
(W′) condition. Clearly (W)⇒(W′).

Given a finite collection T1, . . . , TN of linear operators on X we study
the asymptotic behaviour of Trn ◦ Trn−1

◦ . . . ◦ Tr1 , where 1 ≤ rj ≤ N . If
F ⊆ {1, . . . , N} we define SF = {Trn ◦ Trn−1

◦ . . . ◦ Tr1 : rj ∈ F} to be the
semigroup of linear operators generated by Tj , where j ∈ F . Elements of SF
are called F-words. We say that SF has property (W) if for every bounded
sequence of vectors xn ∈ X and F -words Wn, if limn→∞(‖xn‖−‖Wn(xn)‖)
= 0, then w-limn→∞(xn −Wn(xn)) = 0.

The closure of SF in the weak operator topology (w.o.t.) is denoted
by SF . Obviously all SF as well as their adjoints S

∗
F = {P ∗ : P ∈ SF }

are w.o.t. compact semitopological semigroups (X is reflexive). An infinite
sequence r = (rj)

∞
j=1, where all rj ∈ F , is called F -unrestricted if every index
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from F appears in rj infinitely many times. The set of all F -unrestricted
sequences is denoted by RF .

If x ∈ X is simultaneously a fixed point for all Tj , where j ∈ F ⊆
{1, . . . , N}, then it is called an F-common fixed point. Clearly all F -common
fixed points form a closed linear subspace of X which is denoted by XF . The
same terminology applies to fixed points of the adjoint operators T ∗

j , acting
on X∗. We say that XF separates X∗

F if for any λ1 6= λ2 in X∗
F , there exists

u ∈ XF such that 〈u, λ1 − λ2〉 6= 0. Similarly X∗
F separates XF if for any

u 6= v in XF there exists λ ∈ X∗
F such that 〈u− v, λ〉 6= 0.

Given a sequence r of numbers 1 ≤ rj ≤ N we set

Sn = Trn ◦ Trn−1
◦ . . . ◦ Tr1 ,

which is a sequence of contractions on X. The purpose of this paper is to
study asymptotic properties of such products, mainly when r ∈ RF and F

goes through the subsets of {1, . . . , N}. This is motivated by applications
in various mathematical fields, or even in computer tomography (see [DKR]
for more details in this regard). It was John von Neumann (see [N]) who
proved that if T1 and T2 are orthogonal projections on a Hilbert space, then
for every x the sequence (T1 ◦T2)

n(x) converges strongly to a common fixed
point. This has been generalized in several directions (see [AA], [B], [BA],
[D], [DKLR], [DR], [DKR], [R], and [RZ]). In particular, [DKR] shows that
any unrestricted Sn(x) converges weakly to a common fixed point Q(x) of
T1, . . . , TN as long as the space X is reflexive and smooth. We emphasise
here that Q(x) does not depend on a specific r as long as all T1, . . . , TN

appear in Sn infinitely many times. This has recently been extended in [L],
where the Banach space X remains reflexive but the smoothness condition
is replaced by the weaker assumption that for every X ∋ x 6= 0 the set

{x∗ ∈ X∗ : ‖x∗‖ = 1 and x∗(x) = ‖x‖}

is norm compact. In [L] it is proved that unrestricted sequences Sn(x) con-
verge weakly to a limit Q(x, r), which is a common fixed point depending
on r however.

Given x ∈ X and F ⊆ {1, . . . , N} we denote by OF (x) the weak orbit
(i.e. OF (x) = {T (x) : T ∈ SF }). A vector x ∈ X is called F -reversible if
for every y ∈ OF (x) we also have x ∈ OF (y). The set of all F -reversible
vectors is denoted by Xr,F . We start with the following:

Lemma 1. For every finite collection of (W′) linear contractions T1, . . .

. . . , TN on a reflexive Banach space X and any set F ⊆ {1, . . . , n} we have

Xr,F = XF .

P r o o f. The inclusion XF ⊆ Xr,F is obvious. Now suppose that x ∈
Xr,F . Choose y ∈ OF (x) which is the weak limit of Sn(x) = Trn ◦. . .◦Tr1(x)
for some r∈RF . Because x is reversible, it can be recovered from y. Namely,
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x = w-limn→∞ Tn(x) = w-limn→∞ Tpn
n
◦ . . . ◦ Tpn

1
(y) for some sequences

(pnj )
n
j=1. Hence ‖x‖ ≤ limn→∞ ‖Tn(y)‖ ≤ ‖y‖ ≤ limn→∞ ‖Sn(x)‖ ≤ ‖x‖.

It follows from property (W′) that Trj (x) = x for all rj . Since r ∈ RF it
follows that x ∈ XF .

It follows directly from the above lemma and Theorem 4.10 of [DLG] that
if T1, . . . , TN are (W′) contractions on a reflexive Banach space X then for
every F ⊆ {1, . . . , N} the Banach space C(SF ) of all continuous functions
on the w.o.t. compact SF has a left invariant probability (mean), or in other
words SF is left amenable. Clearly left amenability of SF is equivalent to
right amenability of the adjoint semigroup S

∗
F .

Remark 1. The existence of right invariant means does not follow from
property (W). For instance if X = R

2 with the norm ‖(x1, x2)‖ = |x1| +
|x2|, then the operators Tj((x1, x2)) =

(

x1 +
1

j+1
x2, 0

)

, where j = 1, 2, are
contractive projections. It is easy to verify that T1 and T2 satisfy condition
(W). On the other hand T1 ◦ T2 = T2 6= T1. Therefore C(S) has no right
invariant mean (see [DLG], Theorem 4.9).

The idea of the next result comes from [L] (see also Proposition 1 in
[DKR]).

Lemma 2. Let T = T1 be a single (W) contraction on a reflexive Banach

space X. Then the semigroup S = {Tn : n ≥ 1} has property (W). As a

result , for every x ∈ X the limit w-limn→∞ Tn(x) exists and is a fixed point.

P r o o f. Let xn be a bounded sequence of vectors from X and kn ≥ 0 be
such that ‖xn‖ − ‖T kn(xn)‖ → 0. Suppose that

w-lim
n→∞

xn = u 6= v = w-lim
n→∞

T kn(xn).

We have ‖xn‖ − ‖T kn(xn)‖ ≥ ‖xn‖ − ‖T (xn)‖ → 0. Since T is a (W)
contraction it follows that w-limn→∞(xn−T (xn)) = 0. This gives T (u) = u.
Similarly ‖xn‖ − ‖T kn(xn)‖ ≥ ‖T kn−1(xn)‖ − ‖T kn(xn)‖ → 0. Therefore

w-lim
n→∞

(T kn−1(xn)− T kn(xn)) = 0.

Applying T to the last limit we get

w-lim
n→∞

(T kn(xn)− T kn+1(xn)) = v − T (v) = 0

so that both u, v ∈ X{1}. Now let λ ∈ X∗ with ‖λ‖ = 1 be such that
λ(u − v) = ‖u − v‖. We notice that the set C∗

u,v = {λ ∈ X∗ : ‖λ‖ ≤ 1
and λ(u − v) = ‖u − v‖} is convex, weakly compact and T ∗-invariant. By
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the mean ergodic theorem the Cesàro means

AK(λ) =
1

K

K−1
∑

k=0

T ∗k(λ) → λ∗

(in norm) and the limit functional λ∗ ∈ C∗
u,v is T ∗-invariant. We get

λ∗(u) = w-lim
n→∞

〈xn, λ
∗〉 = w-lim

n→∞
〈xn, T

∗kn(λ∗)〉

= w-lim
n→∞

〈T kn(xn), λ
∗〉 = λ∗(v)

contradicting λ∗(u− v) = ‖u− v‖ 6= 0. Hence S has property (W).
We have already proved that the sequence Tn(x) has only one cluster

point (for the weak topology). We conclude that w-limn→∞ Tn(x) exists
and is a fixed point.

Now we are in a position to formulate the main result of the paper. Some
elements of our proof come from [L] and [DKR].

Theorem 1. Let T1, . . . , TN be a finite collection of (W) contractions on
a reflexive Banach space X. Then the following conditions are equivalent :

(a) For every F ⊆ {1, . . . , N} the semigroup SF has an invariant mean.

(b) For every F ⊆ {1, . . . , N} the semigroup SF has a right invariant

mean.

(c) For every F ⊆ {1, . . . , N} the space X∗
F separates XF .

(d) For every F ⊆ {1, . . . , N} the semigroup SF has property (W), un-
restricted sequences Sn(x) = Trn ◦ . . . ◦ Tr1(x), where r ∈ RF , converge
weakly to QF (x) ∈ XF , and the limit QF (x) does not depend on the se-

quence r ∈ RF .

(d′) For every F ⊆ {1, . . . , N} and any r ∈ RF unrestricted sequences

Sn(x) = Trn ◦ . . . ◦ Tr1(x) converge weakly to QF (x) ∈ XF and the limit

QF (x) does not depend on the sequence r ∈ RF .

(e) For every F ⊆ {1, . . . , N} the Banach space X can be represented as

a direct sum X = X0,F ⊕XF , where X0,F consists of those x ∈ X such that

w-limn→∞ Sn(x) = 0 for every r ∈ RF .

(f) For every F ⊆ {1, . . . , N} the convex hull convOF (x) contains ex-

actly one SF -fixed point.

P r o o f. (a)⇒(b) is obvious.
(b)⇒(c). Let u 6= v be arbitrary vectors in XF . We choose a normalized

λ0 ∈ X∗ such that 〈u− v, λ0〉 = ‖u− v‖ 6= 0. Clearly

〈u− v, λ0〉 = 〈T (u− v), λ0〉 = 〈u− v, T ∗(λ0)〉 = const 6= 0

for all T ∗ ∈ S
∗
F . We show that the set

{λ ∈ X∗ : ‖λ‖ = 1, 〈u− v, λ〉 = ‖u− v‖} = C∗
u,v
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is S
∗
F -invariant and contains a S

∗
F -invariant vector. In fact, if µ is a left

invariant probability measure on S
∗
F then define

(1) λ∗(x) =
\
T ∗λ0(x) dµ(T

∗),

where x ∈ X. Notice that S
∗
F ∋ T ∗ 7→ fx(T

∗) = T ∗λ0(x) = 〈x, T ∗(λ0)〉 is
w.o.t. continuous. The linear functional defined by (1) is continuous. By
invariance of u and v and convexity of C∗

u,v we also have λ∗ ∈ C∗
u,v. It

remains to verify that λ∗ is S
∗
F -invariant. For this choose S∗ ∈ S

∗
F and

x ∈ X. We have

S∗(λ∗)(x) =
\
S∗ ◦ T ∗(λ0)(x) dµ(T

∗) =
\
fx(S

∗ ◦ T ∗) dµ(T ∗)

=
\
fx(T

∗)dµ(T ∗) = λ∗(x).

Hence λ∗ is S∗
F -invariant.

(c)⇒(d). We proceed by induction. By Lemma 2 all semigroups SF ,
where F = {m} is a singleton, have property (W) and unrestricted se-
quences Sn(x) = Tn

m(x) converge to a unique fixed point which is contained
in O{m}(x). Now assume that (d) holds for all F ⊆ {1, . . . , N} with #F ≤ j.
Consider an arbitrary F with #F = j+1. Let ‖xn‖−‖Wn(xn)‖ → 0, where
Wn are F -words. Suppose that

(2) w-lim
n→∞

xn = u 6= v = w-lim
n→∞

Wn(xn).

By the same argument in Lemma 2 of [L] we conclude that u and v belong
to XF . Now we choose λ ∈ X∗

F such that 〈u− v, λ〉 6= 0. But

〈u, λ〉 = lim
n→∞

〈xn, λ〉 = lim
n→∞

〈xn,W
∗
n(λ)〉

= 〈Wn(xn), λ〉 = 〈v, λ〉.

In particular (2) fails and SF has the (W) property. By induction all semi-
groups SF have property (W).

Now let x ∈ X, r ∈ RF , and suppose xnj
= Snj

(x) converges weakly
to u and xmj

= Smj
(x) converges weakly to v. We may assume that Wj =

Trmj
◦ . . . ◦ Trnj+1

is F -complete (i.e. all indices from F appear in the

interval rnj+1, rnj+2, . . . , rmj
). Clearly limj→∞(‖xnj

‖ − ‖Wj(xnj
)‖) = 0.

By property (W) we get u− v = 0. Hence Sn(x) converges weakly. Clearly
w-limn→∞ Sn(x) ∈ XF .

Suppose that for different r1, r2 ∈ RF we have

w-lim
n→∞

Tr1n
◦ . . . ◦ Tr11

(x) = u 6= v = w-lim
n→∞

Tr2n
◦ . . . ◦ Tr21

(x).

It follows from (c) that u and v can be separated by a S
∗
F -invariant func-

tional, contradicting the fact that u and v are weak limits of sequences
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coming from the same vector x. We conclude that

w-lim
n→∞

Trn ◦ . . . ◦ Tr1(x) = QF (x)

does not depend on the particular sequence r ∈ RF .

(d)⇒(d′) is obvious.

(d′)⇒(a). We have Tj ◦ QF = QF as range(QF ) ⊆ XF . On the other
hand, the weak limit of Sn(x) does not depend on the starting operator Tr1 ,
hence QF ◦ Tj = QF for all j ∈ F . By a continuity argument the identities
Tj ◦QF = QF ◦Tj = QF , where j ∈ F , easily extend to the whole semigroup
SF , that is, S ◦QF = QF ◦ S = QF for all S ∈ SF . Clearly the mapping
C(SF ) ∋ f 7→ f(QF ) defines an invariant mean.

(d′)⇒(e). Given F and x ∈ X consider x0 = x−QF (x). If r ∈ RF then

Sn(x−QF (x)) = Sn(x)− Sn ◦QF (x)

= Sn(x)−QF (x) → 0 weakly.

Hence x = (x−QF (x)) +QF (x) = x0 + x1, where x0 ∈ X0,F and x1 ∈ XF .
Obviously X0,F ∩XF = {0}.

(e)⇒(d′). Every x ∈ X may be decomposed as x = x0,F + x1,F , where
x0,F ∈ X0,F and x1,F ∈ XF . Regardless of the order in r ∈ RF the limit
w-limn→∞ Sn(x) = x1,F exists and belongs to XF .

(d)+(c)⇒(f). For every x∈ X, QF (x)∈ convOF (x) is a SF -fixed point.
Suppose that u ∈ convOF (x) is another SF -fixed point. By (c) we choose
λ ∈ X∗

F such that 〈u − QF (x), λ〉 6= 0. Let Wn ∈ conv(SF ) be a sequence
such that w-limn→∞ Wn(x) = u. Then

〈u−QF (x), λ〉 = lim
n→∞

〈Wn(x)−QF (x), λ〉

= 〈x, (W ∗
n −Q∗

F )(λ)〉 = 〈x, 0〉 = 0

contradicting the assumption that u and QF (x) are different.

(f)⇒(c). Let u 6= v be two different SF -fixed points. We choose λ ∈ X∗

with ‖λ‖ = 1 such that 〈u− v, λ〉 = ‖u− v‖ > 0 and let C∗
u,v be as before.

Clearly the set C∗
u,v is convS∗

F -invariant. Combining Theorems 4.9, 7.2 and

7.4 from [DLG] we deduce that convSF contains a unique projection E. We
infer that E∗ is a unique projection in convS∗

F . By the same results of [DLG]
we find that the orbit convS∗

F (λ) contains exactly one convS∗
F -fixed point

λ∗, which obviously belongs to C∗
u,v. It follows that X

∗
F separates XF .

Remark 2. Let X,T1, T2 be as in Remark 1. We introduce a third con-
traction T3 = 1

2
Id. Clearly ‖Sn‖ → 0 as long as T3 appears in Sn infinitely

many times. In particular (d′) of Theorem 1 (hence all (a)–(f)) holds if
F = {1, 2, 3}. On the other hand it follows from Remark 1 that conditions
(a)–(f) fail if F = {1, 2}.
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The next two corollaries should be compared with the corresponding
results in [DKR] (Theorem 1) and [L] (Theorem 6).

Corollary 1. Let T1, . . . , TN be (W) contractions on a smooth reflexive

Banach space X. Then (a)–(f) of Theorem 1 hold.

P r o o f. Let F ⊆{1, . . . , N} be arbitrary. By Lemma 1 the Banach space
C(SF ) has a left invariant mean. It follows from the smoothness ofX (apply
Corollary 4.13 and Theorem 4.9 of [DLG]) that C(SF ) has a right invariant
mean. Applying Corollary 2.9 of [DLG], we conclude that C(SF ) has an
invariant mean.

Corollary 2. Let T1, . . . , TN be (W) contractions on a reflexive Banach

space X. If T ∗
1 , . . . , T

∗
N satisfy condition (W′) then (a)–(f) of Theorem 1

hold.

P r o o f. By Lemma 1 both C(SF ) and C(S∗
F ) have a left invariant mean,

for every F ⊆ {1, . . . , N}. In particular, C(SF ) also has a right invariant
mean. By Corollary 2.9 of [DLG] the Banach space C(SF ) has an invariant
mean.
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