COLLOQUIUM MATHEMATICUM

VOL. 86 2000 NO. 2

SOME SPECTRAL RESULTS ON LQ(Hn) RELATED TO
THE ACTION OF U(p,q)

BY

T. GODOY axo L. SAAL (CORDOBA)

Abstract. Let Hy be the (2n + 1)-dimensional Heisenberg group, let p,q be two
non-negative integers satisfying p + ¢ = n and let G be the semidirect product of U(p, q)
and Hp. So L2 (Hn) has a natural structure of G-module. We obtain a decomposition of
L*(Hy) as a direct integral of irreducible representations of G. On the other hand, we
give an explicit description of the joint spectrum o (L,4T") in L?(Hy) where

n

P
SNXF+Y) - > (XF+YD,
j=1 j=p+1

L

and where {X1,Y7,..., Xn, Yn, T} denotes the standard basis of the Lie algebra of Hyp.
Finally, we obtain a spectral characterization of the bounded operators on L? (Hpn) that
commute with the action of G.

1. Introduction. Let p,q a pair of non-negative integers such that
p+ g =n. Consider the Heisenberg group H,, = C" x R with group law
(z,8)(z/, 1) = (z+ 2/, t + ' — £ Im B(z,2’)) where B(z,w) = Z§:1 2jW; —
Z?=p+1 zjwj. For z = (x1,...,2,) € R", we write z = (2/,2") with
' € RP, 2" € R4. So, R?" can be identified with C" via the map

W(x/,xl/’y/’y/l) — (1,_/ + Z'y/’x/l _ iy”), x/’y/ c Rp’ xl/,y// c Rq.
This map identifies the form — Im B(z, w) with the standard symplectic form
on R2(P+9)  Moreover, (z,y,t) — (¥(x,y),t) provides a global coordinate
system on H,, and the vector fields

1 o0 0 1 0 o0 . 0

- L0 0y L0 9 4 7=2
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satisfy [X;,Y;] =T, [X;,T] = [Y;,T] =0, 1 < j < n. Thus H, can be
viewed as the usual Heisenberg group R™ x R™ x R via the isomorphism
(z,y,t) — (¥(x,y),t). From now on, we will use freely this identification.
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We note that U(p, q) acts by automorphisms on H,, via the action

(1.1) g-(z,t) = (92,1), g€U(p,q), (21) € Hy.

Observe that the above group law is not the usual one, but it is adapted to
the action of U(p,q), ¢ =n — p.

In [St-2], R. Strichartz proposed to define harmonic analysis on H™ to
be the joint spectral theory associated with the differential operators L
and 7T where Lo = Y 7_, (X7 4+ Y?). The relevance of the operators Lo and
1T is due to the fact that they are the generators of the algebra of the left
invariant differential operators which are invariant under the natural action
of U(n) on Hy,.

Let L=3"_|(X;+Y7) =371 (X7+Y7?). Since L and iT generate
the algebra of left invariant and U (p, ¢)-invariant differential operators, it
is a natural question to look for a spectral theory on L?(H,,) related to the
operators L and i¢T. In [G-S] we prove that there exist tempered U(p, q)-

invariant distributions Sy i, A € R — {0}, k € Z, satisfying
(1.2) LS)\,k = —’)\’(2]{ +p— q)S;Hk, Z‘TS)\Vk = )\S)\,k
and such that for f € S(R"),

[ee)

F=Y"\ fSaulAmdx

k€Z —oo

Moreover, the distributions S} ;, are explicitly computed and it is proved that
the solution space in S’(H,, )V ™% of the system (1.2) is one-dimensional (see
also [F-2] and [H-T]).

On the other hand, let G = U(p, q) x H,, be the semidirect product of
Ul(p,q) with H,, with group law (g, z,t)(¢’,2',t') = (94, (2,t) - (g2’,t")) for
9,9 €U(p,q) and (z,t), (2',t') € H,,. Then G acts on H,, by (g, z,t)(z',t') =
(z,t)(g2',t"). For f: H, — C and (g, 2,t) € G, we set

(1.3) olg, 2, ) f(', 1) = (9,2, )71 (, 1))

Thus o defines a unitary representation of G on L?(H,,) that, restricted to
H,, C G, agrees with the left regular representation of H,, on L?(H,).

Our aim in this paper is to give an explicit description of the joint spec-
trum in L?(H,,) of L and iT and to obtain the decomposition of L?(H,,) as
a direct integral of irreducible representations of G. The last question was
solved in [St-2], for p = n, ¢ = 0, using the weight theory for representations
of compact Lie groups. In order to study the general case, we will follow a
different approach, using the results in [G-S] instead of weights. Finally, we
state a spectral characterization of the bounded operators on L?(H,,) that
commute with the action p.



SPECTRAL RESULTS 179

Acknowledgments. It is a pleasure to express our thanks to Fulvio
Ricci and Jorge Vargas for many useful conversations.

2. Preliminaries. Let us consider, for A € R — {0}, the Schrodinger
representation of H, = R?" x R on L?(R") defined by

(o0 0u(€) = xp | i (A -+sign()0V (e, + G o) )| ate + VW),

For u,v € L?(R"), let Ej(u,v) be the matrix entry associated with )
corresponding to the vectors u, v given by E) (u,v)(z,y,t) = (mx(z,y, t)u,v).

Also, for a = (aq,...,a,) € (NU{0})™, let h, be the Hermite function
defined by

ha(¢) = (2latym) /2 1 T Ha, ()
Jj=1
with |o| = a1 + ...+ oy, ol = a1!.. . a,! and where
k g2 dk 2
Hy(s) = (=1)%€* —5(e™")

is the kth Hermite polynomial. For (z,¢) € C™" x R (see, for example, [F-1}),
we can write F(hqa,hq)(z,t) in terms of Laguerre polynomials as

I TVRRINTR P 1
) | A C
]:

We set ||af| = a1+...+ap—(apyr1+...+a,). Thus {h,} is an orthonormal
basis of L?(R") satisfying

LEx(ha;ha) = =N 2llall +p = @) Ex(ha; ha),

iTEx(has he) = AEx(has ha ).

We also set, for f € L(H,),

m(f) = | flay (@, y,t) " dodydt.
Hy

Let R* = R— {0} and let us denote by HS(L?(R™)) the space of Hilbert—
Schmidt operators on L?(R™). Let £2(R*) be the Hilbert space of functions
@ : R* — HS(L?(R™)) such that A — (@(\)u,v) is measurable for each u,v €
L2(R™) and = |®(N)[|Eg|A["dX = [|®]| < co. The Plancherel Theorem
asserts (see e.g. [T]) that the Fourier transform f — (2m)~(*+D/27,(f),
initially defined, say, in S(H,), extends to an isometry from L?(H,) onto
L2(R*). Moreover, for f € S(H,) we have the inversion formula

1
(2m)n+l

(2.1)

o0

f(z,y,t) = | tr(ma(f)ma(@, v, 1) A" dA.
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Since, in this case, >, {7 |f * Ex(ha,ha)||A|"dX < 0o, a computation
shows that the inversion formula reads

22 fl@y) =gy n+1Z X > f# Ex(has ha)| A" dA.

kEZ —oo ||a||=k
For k € Z, A € R — {0} let S\ ; be defined by

(Snof) = e 2 (Balhacha)- ) € (),

llell=k

Then Sy is a well defined element in S’(H,,); moreover, Sy can be ex-
plicitly computed and it is the unique (up to a constant) tempered and
U(p, q)-invariant solution of the system (1.2) (see e.g. [G-S]). Also, (2.2)
gives the decomposition

(2.3) F=> | FxSaxlA"d\,  f e S(H,).

k€Z —oo
We will also need to consider, for a fixed X # 0, the quotient group H, =
H, /N where N = {0} x (2n/X)Z. For (z,y,t) € H,, let [z,y,t] be its
projection on H,. Note that for 4 = Am, m € Z — {0}, 7, induces in a
natural way a unitary representation 7, of H,, with matrix entries E (u v)

given by B, (u,v)([z,y,1]) = By (u, v)(2,y.1).

Moreover, each irreducible unitary representation of H, is unitarily
equivalent to one and only one of the following representations:

(1) the representations 7, corresponding to u = Am, m € Z,
(2) the one-dimensional representations o, 4(z,y,t) = @@+ (a,b) €
R™ x R™.
Now, the Plancherel inversion formula for H, says that, for f € S(H,),
(2.4)  (2n)" T f(x,y,t Z Z Z [ * Exm(ha, ha )|m|”—{—<l5( x, —y)
m#£0 kEZ ||a||=k
with @(a,b) = 04,(f). Moreover,
Cr sy = 3 (Dl + | [oas(f)? dadb.
meZ—{0} R” xR"

The proofs of these facts follow the same lines as those related to H,
(see e.g. [T)). B
For k,m € Z and f € S(H,), we set

<§/\m,k7f> = (27{_)%“ Z <E/\m(houha)7f>-

llell=F
Thus, as in [G-S], Sxm.kx € S'(H,).
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3. Some spectral facts. Let H, be the reduced Heisenberg group,
associated with a fixed ), defined as above. Let G = U(p,q) x H,, be the
semidirect product of U(p,q) and H,, so ¢ projects to a unitary represen-
tation g of G on L?(H,,). Also, L and T can be viewed, in a natural way, as
differential operators on H,,.

Let P, : L*(R") — L?(R"), k € Z, be the orthogonal projection onto
the closed subspace of L*(R") spanned by {hq}|jaj=k- For each k € Z,
the Plancherel theorem for H,, implies that there exists a unique bounded
operator g : L?(H,) — L?(H,) defined by the conditions 7ypr(f) =
P (f), Tamer(f) = 0 for m # 1, and o, 0k (f) = 0 for all a,b € R™. By
the Plancherel theorem again it is immediately seen that ? = k, P = Pk
and so gy, is an orthogonal projection. Moreover, for f € S(H,),w € H,,
the inversion formula gives

o f(w) = tr(PemA(f)ma(w) = Y (f * Ex(ha, ha)) (W),

llell=F

Thus

(3.1) ouf = f* Sk

and so f* Sy, € L2(H,).
Since L(f*Ex(ha,ha)) = f*LE(hg, hy) in S’(H,), and recalling (2.1),
we see that h € pi(S(H,)) implies Lh = —|\|(2k +p — q¢)h and iTh = \h.
Also, if f € L2(H,) and k # k', then 7z, (pr @rf) = 0 for m # 1 and
ok ok f) = Pe Pymaf = 0. Thus, by the Plancherel theorem, pg o = 0
for k # K.

PROPOSITION 3.2. pr(L?(H,,)) is a g-irreducible module.

Proof. Since pif = f+Syx for f € S(H,,) and S, 1 is U(p, g)-invariant,
it follows that g is a p-morphism. Now, we proceed by contradiction.

Assume that there exists a g-invariant, non-zero and closed subspace W of
or(L*(Hy)). Let P: o (L*(Hy)) — W be the orthogonal projection on W.

Then P and Py are G-morphisms. Moreover, Ppy, : L?(H,) — L?(H,) is
a bounded operator that commutes with left translations, and hence there
exists @ € S'(H,,) such that Ppyf = f @ for f € S(H,,). Since Py, also
commutes with the action of U(p, q), we conclude that @ is U(p, ¢)-invariant.

Furthermore, L® = —|\|(2k+p—q)® and iT® = \®. Indeed, for f € S(H,,),
(f; L@) = (f  L®)(0) = L(f * 2)(0)
= A2k +p — @) (f * 2)(0) = —[A[(2k +p — 9)(f, D).

The computation of iT'® is anali)gous. Thus @ = c§>\7k for some ¢ € R—{0},
so Ppy = pr and then oy (L*(H,)) CW. m
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For f € S(H,), a computation gives
f * E)\(homha) - Z<f7E/\(houhB)>E>\(houhﬁ)

B
and so
(3.3) FxSak= > Y (f Ex(ha,hg))Ex(ha,hp).
leall=k 8

In [St-1] it is proved that {Ex(ha,hs)(+,0)}a.s is an orthonormal set in
L2(R™ x R™). So, for ||a| = k, we have E(ha,hg) = Ex(ha,hg)* Sy and
then, by (3.1), Ex(ha,hsg) € pr(L?(H,)). On the other hand, (3.1) also
says that, for f € S(H,), pr(f) belongs to the closed subspace spanned
by {Ex(ha,hg) : |la|| = k, 8 arbitrary}. Thus {Ex(ha,hg) : |af = F,
3 arbitrary} is an orthonormal basis of g (L?(H,,)).

Following [St-2], we consider, for each A € R*, the Hilbert space Hy of
functions f : H, — C such that f(z,y,t) = e MF(x,y) with F €
L*(R™ x R™) provided with the norm || f|| = ||f(-,0)||2(r» xrn). Note that
each Ey(hq,hg)€ Hx. We set Hy = ({Ex(ha,hp)} : ||a||=Fk, B arbitrary),

the closure taken in H,. Since

Q(ga €,Y, t)EA(hOH hﬁ)(x/’ y/’ t,) = ?([g’ z,Y, t])EA(hOH hﬁ)([x/’ y/’ t,])

where [g, z,y,t] denotes the projection of (g, z,y,t) on G, and since

Ex(ha,hp)(x,y,t) = Ex(ha, hg)([z,y,1]),
we see that (H) x, 0) is a unitary representation of G.

For f € S(Hp), since 3 ayor S |(fs Balhas B))2 = [ Pma(F)]I%, the
Plancherel identity says that

[ee]

(3-4) @) S e,y = D Y I * Sallf, A" dA

k€Z —
Moreover, the following analogue of (3.3) holds:
f * S/\,k == Z Z<f7 E)\(hou hﬂ)>E>\(hOm hﬁ)v
lall=k B
thus f* S\, € Hy for a.e. A € R*.

Let @ : R* x Z — U\ kyerxz i De such that @(\, k) € Hy, for ae.
A eR. So

D\ k) = Z ZCA(aaIB)EA(hth)

llell=k 8

with 370 2x 225 lea (e, B)|? < oo for a.e. AeR. We say that @ is measurable
if for every a,f the map A\ — cy(a, ) is a measurable function. Let us
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consider the direct integral of Hilbert spaces
o0
YoV HuAan,
k€EZ —oo
i.e., the space of measurable functions @ as above satisfying
o0

S 11RO R, A < ox.

k€eZ —o

We have

THEOREM 3.5. Each Hy j, is an irreducible G-module, H) 2 Hy 1 if
(N k) # (N, k') and (L?(H,),0) is the direct integral of irreducible repre-

sentations
o0

L*(H,) =Y | HyplA"dA.
k€Z —oo

Proof. Note that if f € Hy then f is constant on each coset [z,y,t] €
H, and so we can define f : H, — C by f([z,y,t]) = f(z,y,t). We
consider the map Ky : Hyp — or(L?(H,)) given by Kyif(z,y,t) =
f([x,y,t]). Then Ky 0(0) = 2([0]) K1, 0 € G. Since Ky ; is a bijection and
or(L?(H,)) is G-irreducible, we see that H) j is irreducible. Furthermore,
(Hxk, 0\H, ) is a primary H,-module. Indeed, for fixed «, the map hg —
E\(ha, hg) extends to an injective H,-morphism between (my, L*(R")) and
(olm,,, Hxr)- So, for A # XN and k, k' € Z, Hy j, 2 Hy ) as G-modules. In
order to see that Hy , 2 Hy j for k # k', suppose that U : Hy ,, — Hy r isa
(bounded) G-isomorphism. Then KNk/UK/\*,,lek : L2(H,) — o (L*(H,))
is a bounded operator on L?(H,) and a G-morphism. We argue as in the
proof of Proposition 3.2 to conclude that KNk/UK/\i,lek = cpy for some
constant c¢. Since g pr = 0 we obtain U = 0.

Finally, we note that by (3.4), the mapping U : f — f x Sy ini-
tally defined on S(H,) extends, up to a constant, to an isometry from
L?(H,) into the direct integral H = Y, ., {~_  Hj x|A|" d\. On the other
hand, for @ € H we can write ®(\, k) = 3=k, s A (@ B)Ex(ha, hg) with
D llal=k, 8 lea(a, B)]? < oo for a.e. A € R. Let V(@) € L?(H,,) be defined by
(mA(V(®))ha, hg) = cx(e, B). Thus V is, up to a constant, an isometry from
H into L*(H,) and VU = 1. Since o(g)(U(f)(\, k) = (U(e(9)()(\, k),
the theorem follows. m

Our next step is to describe the joint spectrum of L and T in L?(R"™).
This joint spectrum o(L,iT) is defined as the complement of the pairs
(u,A) € C2 for which there exist bounded operators A, B on L?(H,) such
that A(L — pl) 4+ B(iT — \I) = 1.
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We recall the orthogonal decomposition

(3.6) L(Hy) = € (Ker(L—imT) N L*(H,)),
men+27Z
the kernels taken in the distribution sense. Moreover, if for m € n + 2Z,
we set ki(m) = (—m + ¢ — p)/2 and ka(m) = (m + ¢ — p)/2, then (see
[G-S]) there exist orthogonal projections Py, (m), Pi,(m) : L?(H,) — L*(H,)
given, for f € S(H,), by Py, (m)f = Sgof * ) ey (m) A" AN and Pr, )y f =
17 f % S ko) A" dA With R(Py, (1)) L R(Pyy(m)) and satisfying
Ker(L —im T) = R(Pk1 (m)) O] R(Pk2(m))
Now we set, for e = £1 and k € Z,
Rye ={(—0(2k +p—q),c0) : 0 > 0}.

We also put Ry = {(0,u) : u € R}.

THEOREM 3.7. 0(L,iT) = RoUUpez con Bise-

Proof. If (A, u) € C?, X\ # 0 and p # m for all m € n+2Z, then taking

account of (3.6), we can define bounded operators A, B : L*(H,,) — L*(H,)
by

Af =

—-m .
)xm—,uf’ Bf_)\m—,uf for f € Ker(L —imT).

So, we have A(L—pul)+B(iT-A)=1. Then o(L,iT) C RoUlUyey c—s1 B
Now we will see that every point (mMg,Ag) with m € n + 2Z and
Ao # 0 belongs to o(L,iT"). We consider first the case A\g > 0 and

ki(m) > 0. Assume, by contradiction, that there exist bounded operators
A, B on L?(H,) such that

(3.8) A(L — mAol) + B(iT — MoI) = I.

Let ¢. be an approximation to the identity centered at Mg, i.e. @-(A) =
e to(eH (A= Xg)) with ¢ € C®(R), ¢ > 0, { ¢ =1, p(0) > 0 and such that
supp(y) C (—1,1). We set

e o]

fe(zt) = | (N Er(ha, ha)(2,) dX

where a = (k1(m),0,...,0), thus ||af| = ki1(m) and Ey(ha, ha)(z,t) =
e’i/\te’“\"2‘2/4L21(m)(|)\||zl|2/2). In order to see that f.€ L%(H,), we set
Fe(z,t) = pe (e MEALE (A1 /2).

Then f.(z,t) = FE(Z,%\), where FE(Z,%\) denotes the Fourier transform with
respect to the second variable evaluated at t. The Plancherel theorem in
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R27+1 =2 C™ x R says that
I fellzz(a,) = 1 F(€ M) |2 rent1,de an)-

Now, taking into account that, for ¢ < %)\5 1 . has a compact support
contained in (0,00) and using the usual formulas for the euclidean Fourier
transform of the product of a polynomial by a Gaussian function, we find
that f. € L2(H,).

Moreover, by (2.1) and as (L — mXAg)f- = mg. and (iT — A\o!l)fe = ge
with

(3.9) 9:(zt) = | (A= 20)@c (V) Ex(ha, ha)(2, 1) d),

— 00

we obtain A(L —mMoI)f. + B(iT — XoI) fe = (mA+ B)g. and so (3.8) gives
fe = (mA+ B)g.. Since ¢ is an approximation to the identity, it follows
that lim._o fo(2,t) = Ex,(ha, ha)(z,t) for each (z,t) € H,. Now, Fatou’s
Lemma gives

(310) 1 Bxy (e o)l a1,y < ieninf |2 2,

< llmA + Bllop lim it lgel| 2,

In order to obtain a contradiction we note that g.(z,t) = G.(z,t) with
(3.11) Ge(z,t) = (A = Ao)pe(N)e” PIEALY Ly (I]]211%/2).
Also,

19ellz2 () = [IG= (& M2 @ent1,ag an)-

Since lim. 0 [(A = Xo)@e(A)|lL1(m,an)y = 0, a computation shows that
lim. 0 ||ge |22 (#,,) = 0. Taking account of (3.10) we obtain a contradiction,
since ||Ex, (ha, ha)|lz2(#,) = 00. This ends the proof for the case Ay > 0 and
k1(m) > 0. The argument is the same for the other cases with A\g # 0. The
case A\g = 0 follows by closure. m

Finally we state

THEOREM 3.12. Let A be a bounded operator on L?(H,) that commutes
with 0. Then there exists m : R x Z — C such that for f € S(H,),

Afyet) = 37 | mOR) # San) @, AP A
k€Z —oo
with ||Al] = ||m||ec. Conversely, if m is a measurable and bounded function

on the joint spectrum o(L,iT), then the above integral operator extends to
a bounded operator on L*(H,) that commutes with .
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Proof. We consider, for f € S(H,,), the integral decomposition given

by (2.3):
o0
Flayt)=>" | fxSar(zy.t)N"dx
k€EZ —oo
By the Schwartz kernel theorem we know that Af = f * K for some K €
S'(Hp,). Since A commutes with the action g, we see that K is an U(p, q)-
invariant distribution. Also, by the properties of the Fourier transform, we
have mx(Af) = ma(f)K ) for a.e. A, where each K is a bounded operator on
L2(R™) (see [S], p. 571). Moreover esssup, ||Ky|| < oo. Since K commutes
with the metaplectic representation w restricted to SU(p, q) we deduce that
K\ Py is a multiple my I where I} is the identity on Hy = Py(L*(R™)).
Indeed, we recall that, for k € Z, Hy is the closed subspace of L?(R™)
spanned by {hq}|a|=x and that each (Hy,w) is an irreducible SU(p, q)-
module (see [B-W], Ch. VIII). Also, since esssup, ||[K\|| < oo, we have
m € L*(o(L,iT)). Thus it is immediate to see that
| tr(ma(Af)ma(z, g, )A" dA < oo
— 00
for f € S(H,,) and (x,y,t) € H,. From this, the inversion formula says that,
for f € S(H,),
Af(y,t) =Y | mOB)(f * Saw) (@ y. )| A" dA

keZ —oo

with supyer_{oy, kez M\, k)| < oo. Conversely, if m is a measurable and
bounded function on the joint spectrum o (L, iT’), each operator of this form
extends to a bounded operator on L?(H,,) that commutes with o. m
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