TAME TRIANGULAR MATRIX ALGEBRAS

BY
ZBIGNIEW LESZCZYŃSKI and ANDRZEJ SKOWROŃSKI (TORUŃ)

Abstract

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra $T_{2}(A)$ of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which $T_{2}(A)$ is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Introduction. The class of finite-dimensional algebras (associative, with an identity) over an algebraically closed field K may be divided into two disjoint classes [19] (see also [13]). One class consists of tame algebras for which the indecomposable modules occur, in each dimension, in a finite number of discrete and a finite number of one-parameter families. The second class is formed by the wild algebras whose representation theory is as complicated as the study of finite-dimensional vector spaces together with two noncommuting endomorphisms, for which the classification is a well known difficult problem. Hence we can realistically hope to describe modules only over tame algebras.

For a finite-dimensional algebra A over an algebraically closed field K we denote by $T_{2}(A)=\left(\begin{array}{cc}A & A \\ 0 & A\end{array}\right)$ the algebra of 2×2 upper triangular matrices over A. It is well known that the category $\bmod T_{2}(A)$ of finite-dimensional (over K) modules over $T_{2}(A)$ is equivalent to the category whose objects are A-homomorphisms $f: X \rightarrow Y$ between finite-dimensional A-modules X and Y, and morphisms are pairs of homomorphisms making the obvious squares commutative. We are concerned with the problem of deciding when $T_{2}(A)$ is tame. Certain classes of tame triangular matrix algebras $T_{2}(A)$ have been investigated in [3], [10], [11], [23], [28], [29], [31], [33], [40], [41]. In particular, it has been proved in [41] that if $T_{2}(A)$ is tame then A is of finite representation type and admits a simply connected Galois covering, and consequently, $T_{2}(A)$ also admits a simply connected Galois covering. Moreover, it follows from [3] that, for A of finite representation type, the tameness of $T_{2}(A)$ is equivalent to the tameness of the Auslander algebra

2000 Mathematics Subject Classification: 16G20, 16G60, 16G70.
Supported by the Polish Scientific Grant KBN No. 2P03A 01214 and Foundation for Polish Science.
$\mathcal{A}(A)$ of A (see [4]), that is, the algebra of the form $\operatorname{End}_{A}\left(M_{1} \oplus \ldots \oplus M_{n}\right)$ for a fixed set M_{1}, \ldots, M_{n} of representatives of isoclasses of indecomposable A-modules. We also mention that the representation theory of triangular matrix algebras is related to the representation theory of tensor products of algebras (see [30]).

The main aim of this paper is to give a complete description of all finitedimensional algebras A over an algebraically closed field for which the algebra $T_{2}(A)$ is tame. Moreover, criteria for the tameness of $T_{2}(A)$ in terms of its simply connected Galois covering are also established. As a consequence we also obtain complete characterizations of triangular matrix algebras $T_{2}(A)$ which are of polynomial growth (respectively, domestic, of finite representation type). Therefore our main results solve completely the representation type problem of algebras $T_{2}(A)$, raised almost 30 years ago in [10], [11]. Some results presented in this paper have been announced in [32].

The paper is organized as follows. In Section 1 we present our main results and recall the related background. In Sections 2-5 we define some families of simply connected algebras A for which the triangular matrix algebras $T_{2}(A)$ are respectively wild, of nonpolynomial growth, nondomestic, of infinite representation type, playing a crucial role in the proofs of our main results. In Section 6 we introduce a family of algebras A of finite representation type and show that their triangular matrix algebras $T_{2}(A)$ are tame. In Section 7 we show that all simply connected algebras A with tame weakly sincere algebras $T_{2}(A)$ are factor algebras of algebras introduced in Section 6. The final Section 8 is devoted to the proofs of our main results.

For basic background from the representation theory of algebras we refer to [4], [20], and [38]. Moreover, we refer to [9], [15], [17], [21], [47] for basic results on Galois covering techniques in the representation theory of algebras, and to [37], [38] and [39] for the vector space category methods.

1. The main results and related background. Throughout the paper K will denote a fixed algebraically closed field. By an algebra is meant an associative finite-dimensional K-algebra with identity, which we shall assume (without loss of generality) to be basic and connected. For such an algebra A, there exists an isomorphism $A \cong K Q / I$, where $K Q$ is the path algebra of the Gabriel quiver $Q=Q_{A}$ of A and I is an admissible ideal of $K Q$, generated by a (finite) system of forms $\sum_{1 \leq j \leq t} \lambda_{j} \alpha_{m_{j}, j} \ldots \alpha_{1, j}$ (called K-linear relations), where $\lambda_{1}, \ldots, \lambda_{t}$ are elements of K and $\alpha_{m_{j}, j}, \ldots, \alpha_{1, j}$, $1 \leq j \leq t$, are paths of length ≥ 2 in Q with a common source and common end. Denote by Q_{0} the set of vertices of Q, by Q_{1} the set of arrows of Q, and by $s, e: Q_{1} \rightarrow Q_{0}$ the maps which assign to each arrow $\alpha \in Q_{1}$ its source $s(\alpha)$ and its end $e(\alpha)$. The category $\bmod A$ of all finite-dimensional (over K) left A-modules is equivalent to the category $\operatorname{rep}_{K}(Q, I)$ of all finite-
dimensional K-linear representations $V=\left(V_{i}, \varphi_{\alpha}\right)_{i \in Q_{0}, \alpha \in Q_{1}}$ of Q, where V_{i}, $i \in Q_{0}$, are finite-dimensional K-vector spaces and $\varphi_{\alpha}: V_{s(\alpha)} \rightarrow V_{e(\alpha)}, \alpha \in$ Q_{1}, are K-linear maps satisfying the equalities $\sum_{1 \leq j \leq t} \lambda_{j} \varphi_{\alpha_{m_{j}, j}} \ldots \varphi_{\alpha_{1, j}}=$ 0 for all K-linear relations $\sum_{1 \leq j \leq t} \lambda_{j} \varphi_{\alpha_{m_{j}, j}} \ldots \varphi_{\alpha_{1, j}} \in I$ (see [20, Section 4]). We shall identify $\bmod A$ with $\operatorname{rep}_{K}(Q, I)$ and call finite-dimensional left A-modules briefly A-modules.

Let $A=K Q / I$ be an algebra. Following [41] (see also [30]) the triangular matrix algebra $T_{2}(A)$ has the presentation $T_{2}(A)=K Q^{(2)} / I^{(2)}$, where the set $Q_{0}^{(2)}$ of vertices of $Q^{(2)}$ consists of x and x^{*} for $x \in Q_{0}$, the set $Q_{1}^{(2)}$ of arrows of $Q^{(2)}$ consists of α, α^{*} for $\alpha \in Q_{1}$, and additional arrows γ_{x} : $x^{*} \rightarrow x$ for $x \in Q_{0}$, and the ideal $I^{(2)}$ of $K Q^{(2)}$ is generated by the K-linear relations $\varrho=\sum \lambda_{j} \alpha_{m_{j}, j} \ldots \alpha_{1, j}$ and $\varrho^{*}=\sum \lambda_{j} \alpha_{m_{j}, j}^{*} \ldots \alpha_{1, j}^{*}$ for all K-linear relations $\varrho=\sum \lambda_{j} \alpha_{m_{j}, j} \ldots \alpha_{1, j}$ generating the ideal I, and the differences $\gamma_{e(\alpha)} \alpha^{*}-\alpha \gamma_{s(\alpha)}$ for all $\alpha \in Q_{1}$.

An algebra $A=K Q / I$ may be equivalently considered as a K-category whose objects are the vertices of Q, and the set of morphisms $A(x, y)$ from x to y is the quotient of the K-space $K Q(x, y)$, formed by the K-linear combinations of paths in Q from x to y, by the subspace $I(x, y)=K Q(x, y) \cap$ I. An algebra A with Q_{A} having no oriented cycle is called triangular. A full subcategory C of A is said to be convex if any path in Q_{A} with source and target in Q_{C} lies entirely in Q_{C}. Finally, a triangular algebra (respectively, triangular locally bounded category [9]) is called simply connected [1] if, for any presentation $A \cong K A / I$ of A as a bound quiver algebra (respectively, bound quiver category), the fundamental group $\pi_{1}(Q, I)$ of (Q, I) is trivial.

Let A be an algebra and $K[x]$ the polynomial algebra in one variable. Recall that following Drozd [19] an algebra A is called of tame representation type (briefly, tame) if, for any dimension d, there exist a finite number of A - $K[x]$-bimodules $M_{i}, 1 \leq i \leq n_{d}$, which are finitely generated and free as right $K[x]$-modules, and all but finitely many isoclasses of indecomposable A-modules of dimension d are of the form $M_{i} \otimes_{K[x]} K[x] /(x-\lambda)$ for some $\lambda \in K$ and some i. Let $\mu_{A}(d)$ be the least number of A - $K[x]$-bimodules satisfying the above condition for d. Then A is said to be of polynomial growth [42] (respectively, domestic [37], [43], [14]) if there is a positive integer m such that $\mu_{A}(d) \leq d^{m}$ (respectively, $\mu_{A}(d) \leq m$) for all $d \geq 1$. Finally, A is said to be of finite representation type if there are only finitely many isoclasses of indecomposable A-modules. From the validity of the second Brauer-Trall conjecture (see [5]) we know that A is of finite representation type if and only if $\mu_{A}(d)=0$ for all $d \geq 1$. We also refer to [14] and [16] for equivalent definitions of tameness.

Let $A=K Q / I$ be a triangular algebra. The Tits quadratic form q_{A} of A is the integral quadratic form on the Grothendieck group $K_{0}(A)=\mathbb{Z}^{Q_{0}}$
of A, defined for $\mathbf{x}=\left(x_{i}\right)_{i \in Q_{0}} \in K_{0}(A)$ as follows:

$$
q_{A}(\mathbf{x})=\sum_{i \in Q_{0}} x_{i}^{2}-\sum_{\alpha \in Q_{1}} x_{s(\alpha)} x_{e(\alpha)}+\sum_{i, j \in Q_{0}} r_{i j} x_{i} x_{j}
$$

where $r_{i j}$ is the cardinality of $\mathcal{R} \cap I(i, j)$ for a minimal (finite) set $\mathcal{R} \subset$ $\bigcup_{i, j \in Q_{0}} I(i, j)$ of K-linear relations generating the ideal I (see [6]). It is well known (see [36]) that if A is tame then q_{A} is weakly nonnegative, that is, $q_{A}(\mathbf{x}) \geq 0$ for any x in $K_{0}(A)$ with nonnegative coordinates.

Consider the Euclidean graphs

$$
(m+1 \text { vertices, } m \geq 1)
$$

$$
(n+1 \text { vertices, } n \geq 4)
$$

and the extended Euclidean graphs

Let $H=K \Delta$ be the path algebra of a quiver Δ (without oriented cycles) whose underlying graph $\bar{\Delta}$ is one of the above Euclidean or extended Euclidean graphs, and T be a preprojective tilting H-module, that is, $\operatorname{Ext}_{H}^{1}(T, T)=0$ and T is a direct sum of $\left|\Delta_{0}\right|$ pairwise nonisomorphic H-modules lying in different TrD-orbits of indecomposable projective H modules. Then $C=\operatorname{End}_{H}(T)$ is said to be a concealed algebra of type $\bar{\Delta}$. It is known that gl.dim $C \leq 2$, the opposite algebra $C^{\text {op }}$ of C is also a concealed algebra of type $\bar{\Delta}$, and C has the same representation type as H. In particular (see [25], [35]), the Tits form q_{C} of C is weakly nonnegative if and only if C is of Euclidean type. Moreover, concealed algebras of Euclidean type (respectively, extended Euclidean type) are of infinite representation type (respectively, wild).

The concealed algebras of type $\bar{\Delta}=\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}$ (respectively, $\bar{\Delta}=T_{5}$, $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\widetilde{\mathbb{E}}}_{7}, \widetilde{\widetilde{\mathbb{E}}}_{8}$) are (strongly) simply connected and have been classified completely in [7], [22] (respectively, [27], [48], [49]). Moreover, every concealed algebra of type $\widetilde{\mathbb{A}}_{m}$ is the path algebra of a quiver of type $\widetilde{\mathbb{A}}_{m}$ (see [22]). Finally, it has been noted in [48] that every concealed algebra of type $\widetilde{\mathbb{A}}_{m}$ is either the path algebra of a quiver of type $\widetilde{\mathbb{A}}_{m}$ or isomorphic to the bound quiver algebra given by a quiver of the form

and the ideal generated by $\alpha \beta-\gamma \sigma$, where $\bullet-\bullet$ means $\bullet \longrightarrow \bullet$ or $\bullet \longleftarrow \bullet$.
Following Ringel [38], by a tubular algebra we mean a tubular extension of a concealed algebra of Euclidean type (tame concealed algebra) of tubular
type $(2,2,2,2),(3,3,3),(2,4,4)$ or $(2,3,6)$. It is known that if A is a tubular algebra then:
(1) A is nondomestic of polynomial growth,
(2) gl.dim $A=2$,
(3) A is simply connected,
(4) the opposite algebra $A^{\text {op }}$ is also tubular
(see $[38,(5.2)]$ and $[43,(3.6)]$).
In the representation theory of tame simply connected algebras an important role is played by polynomial growth critical algebras introduced and investigated by R. Nörenberg and A. Skowroński in [34]. Recall that by a polynomial growth critical algebra (briefly pg-critical algebra) is meant an algebra satisfying the following conditions:
(i) A is one of the matrix algebras

$$
B[X]=\left[\begin{array}{cc}
B & X \\
0 & K
\end{array}\right], \quad B[Y, t]=\left[\begin{array}{ccccccc}
B & 0 & 0 & 0 & \cdots & 0 & Y \\
& K & 0 & K & \cdots & K & K \\
& & K & K & \cdots & K & K \\
& & & & \ddots & \vdots & \vdots \\
& 0 & & & & K & K \\
& 0 & & & & K
\end{array}\right]
$$

where B is a representation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{D}}_{n}$, $n \geq 4$, with a complete slice in the preinjective component of its AuslanderReiten quiver, X (respectively, Y) is an indecomposable regular B-module of regular length 2 (respectively, regular length 1) lying in a tube with $n-2$ rays, and $t+1(t \geq 2)$ is the number of isoclasses of simple $B[Y, t]$-modules which are not B-modules.
(ii) Every proper convex subcategory of A is of polynomial growth.

The $p g$-critical algebras have been classified by quivers and relations in [34]. There are 31 frames of such algebras. In particular, if A is a $p g$ critical algebra then:
(1) A is tame minimal of nonpolynomial growth,
(2) gl.dim $A=2$,
(3) A is simply connected,
(4) the opposite algebra A^{op} is also $p g$-critical.

Assume $A=K Q / I$ is an algebra such that the triangular matrix algebra $T_{2}(A)$ is tame. Then, by [41], A is of finite representation type and standard [9]. In particular, A admits a Galois covering $F: \widetilde{A} \rightarrow \widetilde{A} / G=A$, where $\widetilde{A}=K \widetilde{Q} / \widetilde{I}$ is a simply connected locally bounded K-category and
G is the fundamental group $\pi_{1}(Q, I)$, which is moreover a finitely generated free group. Clearly, $\widetilde{A}=A$ if A is simply connected. Since A is standard, applying [12] we may assume that I is generated by paths $\alpha_{m} \ldots \alpha_{1}$ (zero-relations) and differences $\beta_{r} \ldots \beta_{1}-\gamma_{s} \ldots \gamma_{1}$ of paths with a common source and common end (commutativity relations). Therefore, in our considerations we may restrict to the algebras A of finite representation type having such a nice bound quiver presentation. Then in the bound quiver presentation $T_{2}(A)=K Q^{(2)} / I^{(2)}$ of $T_{2}(A)$ described before, the ideal $I^{(2)}$ is also generated by paths and differences of paths. Moreover, the fundamental groups $\pi_{1}\left(Q^{(2)}, I^{(2)}\right)$ and $\pi_{1}(Q, I)$ are isomorphic, and the Galois covering $F: \widetilde{A} \rightarrow \widetilde{A} / G=A$ with $G=\pi_{1}(Q, I)$ induces a Galois cover$\operatorname{ing} F^{(2)}: \widetilde{T_{2}(A)} \rightarrow \widetilde{T_{2}(A)} / G=T_{2}(A)$, where $\widetilde{T_{2}(A)}=T_{2}(\widetilde{A})=K \widetilde{Q}^{(2)} / \widetilde{I}^{(2)}$ is simply connected. Finally, we note that nonstandard algebras of finite representation type can only occur in characteristic 2 (see [5]).

Below we shall present the families (W), (NPG), (ND), (IT) of standard algebras Λ of finite representation type and show later that the corresponding triangular matrix algebras $T_{2}(\Lambda)$ are wild, not of polynomial growth, nondomestic, of infinite representation type, respectively.

Our main results are the following five theorems.
Theorem 1. Let A be a standard algebra of finite representation type. The following conditions are equivalent:
(i) $T_{2}(A)$ is tame.
(ii) The Tits form q_{B} of any finite convex subcategory B of $T_{2}(\widetilde{A})$ is weakly nonnegative.
(iii) $T_{2}(\widetilde{A})$ does not contain a finite convex subcategory which is concealed of type $\widetilde{\mathbb{A}}_{m}, m \geq 1, T_{5}, \widetilde{\mathbb{D}}_{n}, n \geq 4, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.
(iv) \widetilde{A} does not contain a finite convex subcategory Λ such that one of the algebras from the family (W) is a factor algebra of Λ or $\Lambda^{\text {op }}$.

Theorem 2. Let A be a standard algebra of finite representation type. The following conditions are equivalent:
(i) $T_{2}(A)$ is of polynomial growth.
(ii) $T_{2}(\widetilde{A})$ does not contain a finite convex subcategory which is pgcritical or concealed of type $\widetilde{\mathbb{A}}_{m}, m \geq 1, T_{5}, \widetilde{\widetilde{\mathbb{D}}}_{n}, n \geq 4, \widetilde{\widetilde{\mathbb{E}}}_{6}, \widetilde{\widetilde{\mathbb{E}}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.
(iii) \widetilde{A} does not contain a finite convex subcategory Λ such that one of the algebras from the families (W) and (NPG) is a factor algebra of Λ or $\Lambda^{\text {op }}$.

Theorem 3. Let A be a standard algebra of finite representation type. The following conditions are equivalent:
(i) $T_{2}(A)$ is domestic.
(ii) $T_{2}(\widetilde{A})$ does not contain a finite convex subcategory which is tubular, pg-critical or concealed of type $\widetilde{\widetilde{\mathbb{A}}}_{m}, m \geq 1, T_{5}, \widetilde{\mathbb{D}}_{n}, n \geq 4, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.
(iii) \widetilde{A} does not contain a finite convex subcategory Λ such that one of the algebras from the families (W) and (ND) is a factor algebra of Λ or Λ^{op}.

Theorem 4. Let A be a standard algebra of finite representation type. The following conditions are equivalent:
(i) $T_{2}(A)$ is of finite representation type.
(ii) $T_{2}(\widetilde{A})$ does not contain a finite convex subcategory which is concealed of type $\widetilde{\mathbb{A}}_{m}, m \geq 1, \widetilde{\mathbb{D}}_{n}, n \geq 4, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.
(iii) \widetilde{A} does not contain a finite convex subcategory Λ such that one of the algebras from the family (IT) is a factor algebra of Λ or Λ^{op}.

In the course of our proofs we also establish the following fact.
Theorem 5. Let A be an algebra such that $T_{2}(A)$ is of polynomial growth. Then the push-down functor

$$
F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)
$$

associated with the Galois covering $F^{(2)}: T_{2}(\widetilde{A}) \rightarrow T_{2}(A)$, is a Galois covering of module categories (in the sense of [9]). In particular, the AuslanderReiten quiver $\Gamma_{T_{2}(A)}$ of $T_{2}(A)$ is the orbit quiver $\Gamma_{T_{2}(\widetilde{A})} / G$ of the AuslanderReiten quiver $\Gamma_{T_{2}(\widetilde{A})}$ with respect to the action of the fundamental group $G=\Pi_{1}(Q, I)=\pi_{1}\left(Q^{(2)}, I^{(2)}\right)$.

In a forthcoming paper we shall prove that for an algebra A, the algebra $T_{2}(A)$ is of polynomial growth (respectively, domestic) if and only if the infinite radical $\operatorname{rad}^{\infty}\left(\bmod T_{2}(A)\right)$ of $\bmod T_{2}(A)$ is locally nilpotent (respectively, nilpotent). We refer to [26], [45] and [46] for basic definitions and results in this direction.

As we have already pointed out, if A is an algebra of finite representation type, then the algebra $T_{2}(A)$ has the same representation type as the Auslander algebra $\mathcal{A}(A)$ of A (by a discussion in [3]). Therefore, the above theorems also give complete characterizations of the Auslander algebras of tame representation type, polynomial growth, domestic, of finite representation type, respectively (see [32]). We mention that the Auslander algebras of finite representation type have already been characterized (in different terms) by Igusa-Platzeck-Todorov-Zacharia [24].

In the present paper we shall use the following notation. For a bound quiver (Q, I) :
(i) an unoriented edge $\bullet \longrightarrow \bullet$ means $\bullet \longrightarrow \bullet$ or $\bullet \longleftarrow \bullet$.
(ii)

means that $\alpha_{r+1} \ldots \alpha_{1}-\beta_{s+1} \ldots \beta_{1} \in I$ but $\alpha_{r+1} \ldots \alpha_{1} \notin I, \beta_{s+1} \ldots \beta_{1} \notin I$.
(iii)

$$
\bullet \stackrel{\alpha_{1}}{\longrightarrow} \bullet \xrightarrow{\alpha_{2}} \bullet-\cdots \rightarrow \xrightarrow{\stackrel{\alpha_{n}}{\bullet} \bullet} \quad n \geq 2
$$

means that $\alpha_{n} \ldots \alpha_{1} \in I$ but $\alpha_{n} \ldots \alpha_{2} \notin I, \alpha_{n-1} \ldots \alpha_{1} \notin I$.
2. Wild triangular algebras. Consider the following family (W) of bound quiver algebras $K Q / I$ given by the bound quivers (Q, I) :

$$
\begin{equation*}
r, s \geq 1, r+s \geq 3 \tag{1}
\end{equation*}
$$

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(22)

(23)

(21)

(24)

(25)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(38)

(40)

(42)

(44)

(46)

(48)

(50)

(52)

(54)

(56)

(58)

(47)

(53)

(55)

(57)

(37)

(39)

(41)

(43)

(45)

(49)

(51)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(70)

(71)

(72)

(73)

(76)

We shall denote by ($\mathrm{W} n$) the nth quiver from the above family (W).
Proposition 1. Let A be a simply connected algebra of finite representation type. Assume that A admits a factor algebra B such that B or $B^{\text {op }}$ is the bound quiver algebra of one of the bound quivers (W1)-(W81). Then
$T_{2}(A)$ contains a convex subcategory which is concealed of type $\widetilde{\mathbb{A}}_{m}, m \geq 1$, $T_{5}, \widetilde{\mathbb{D}}_{n}, n \geq 4, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.

Proof. This is a direct but tedious checking. We shall illustrate it by a few examples.

Let $A=B=K Q / I$ where (Q, I) is of type (W1), say with $r \geq 2$, $s \geq 1$. Then invoking the bound quiver presentation $T_{2}(A)=K Q^{(2)} / I^{(2)}$ of $T_{2}(A)$ described in Section 1, we easily observe that $T_{2}(A)$ has a convex subcategory given by the bound quiver

of a concealed algebra of type $\widetilde{\widetilde{\mathbb{A}}}_{r+s+3}$.
Let $A=B$ be the path algebra of a quiver Q of type $\widetilde{\mathbb{D}}_{4}$. Then obviously $T_{2}(A)$ contains a convex subcategory which is the path algebra of the corresponding tree of type T_{5}.

Let $A=B=K Q / I$ where (Q, I) is of the form (W81). Then $T_{2}(A)$ contains a convex subcategory given by the bound quiver

which is a concealed algebra type $\widetilde{\mathbb{E}}_{8}$ (see for example [48]).
Assume now that A admits a proper factor algebra B given by the bound quiver (W3). We may assume $Q_{A}=Q_{B}$. Since A is simply connected and of finite representation type we conclude that A is given by one of the bound quivers

or

Hence, A contains a convex bound subquiver of one of the forms

of type (W2) or (W13), respectively. Therefore, $T_{2}(A)$ contains a convex subcategory given by one of the bound quivers

or

and so a concealed algebra of type $\widetilde{\mathbb{A}}_{5}$ or $\widetilde{\mathbb{E}}_{6}$, respectively.
Finally, assume that A admits a proper factor algebra B given by the bound quiver (W81) and again that $Q_{A}=Q_{B}$. Then A is the path algebra of one of the quivers
$\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longleftarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ or $\bullet \longleftarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longleftarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$
of type (W73), and then A contains a convex subcategory given by the convex subquiver
$\bullet \longrightarrow \bullet \longrightarrow \bullet \longleftarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$
Then $T_{2}(A)$ contains a convex subcategory given by the bound quiver

which is a concealed algebra of type $\widetilde{\widetilde{\mathbb{D}}}_{8}$.
3. Nonpolynomial growth triangular matrix algebras. Consider the family (NPG) of bound quiver algebras $K Q / I$ given by the bound quivers (Q, I) of the form

and satisfying the following conditions:
(α) for $i=0$ and $i=n, G_{i}$ or G_{i}^{op} is one of the quivers

with $a=a_{1}$ and $a=a_{n}$, respectively,
(β) if $n \geq 2$, then for $1 \leq i \leq n-1, G_{i}$ or $G_{i}^{\text {op }}$ is one of the quivers
$a_{i} \longleftarrow \bullet \longleftarrow \bullet \longrightarrow a_{i+1} \quad a_{i} \longleftarrow \bullet \longrightarrow \bullet \longrightarrow a_{i+1} \quad a_{i} \longleftarrow \bullet \longrightarrow a_{i+1}$
(γ) for $1 \leq i \leq n$, the vertex a_{i} is a source (respectively, target) of G_{i-1} if and only if a_{i} is a target (respectively, source) of G_{i},
(δ) the composition of any two arrows in Q having $a_{i}, 1 \leq i \leq n$, as a common vertex belongs to I,
(σ) either at least one of $G_{0}, G_{0}^{\mathrm{op}}, G_{n}, G_{n}^{\mathrm{op}}$ has one of the forms

or $n \geq 2$ and, for some $1 \leq i \leq n-1, G_{i}$ or $G_{i}^{\text {op }}$ has one of the forms

$$
a_{i} \longleftarrow \bullet \longleftarrow \bullet \longrightarrow \bullet \longrightarrow a_{i+1} \longleftarrow a_{i} \longleftarrow \bullet \backsim \bullet \longrightarrow a_{i+1}
$$

Proposition 2. Let A be a simply connected algebra of finite representation type satisfying the following conditions:
(i) A admits a factor algebra B such that B or $B^{\text {op }}$ is the bound quiver algebra of one of the bound quivers from the family (NPG).
(ii) A has no factor algebra given by one of the bound quivers from the family (W).

Then $T_{2}(A)$ contains a convex $p g$-critical subcategory. In particular, $T_{2}(A)$ is not of polynomial growth.

Proof. This follows by direct analysis of all possible shapes of bound quiver algebras from the family (NPG) and inspection of the list of all $p g$ critical algebras given in [34, Theorem 3.2]. We illustrate it by one of the typical cases. Let $n=3$ and A be the bound quiver algebra from the list (NPG) given by the quivers

$G_{2}: \quad a_{2} \longleftarrow \bullet \longrightarrow \bullet a_{3}$

$G_{3}: \quad a_{3} \longrightarrow \bullet \longleftarrow \bullet \longleftarrow \bullet$

Then A is given by

and $T_{2}(A)$ contains a convex subcategory given by the bound quiver

which is $p g$-critical (see the frame (3) in [34, Theorem 3.2]).
4. Nondomestic triangular matrix algebras. Consider the family (ND) of bound quiver algebras $K Q / I$ given by the following quivers:
(1)

(2)

(3)

(5)

(6)

(7)

(9)

(10)

$$
\begin{equation*}
Q \text { is of the form } \tag{12}
\end{equation*}
$$

and the following conditions are satisfied:
(α) for $i=0$ and $i=n, G_{i}$ or G_{i}^{op} is one of the quivers

with $a=a_{1}$ and $a=a_{n}$, respectively,
(β) if $n \geq 2$, then for $1 \leq i \leq n-1, G_{i}$ or G_{i}^{op} is one of the quivers

$$
a_{i} \longleftarrow \bullet \longrightarrow a_{i+1}
$$

(γ) for $1 \leq i \leq n$, the vertex a_{i} is a source (respectively, target) of G_{i-1} if and only if a_{i} is a target (respectively, source) of G_{i},
(σ) the composition of any two arrows in Q having $a_{i}, 1 \leq i \leq n$, as a common vertex belongs to I.

Note that bound quiver algebras of type (12) are special cases of algebras from the list (NPG).

Proposition 3. Let A be a simply connected algebra of finite representation type satisfying the following conditions:
(i) A admits a factor algebra B such that B or $B^{\text {op }}$ is the bound quiver algebra of one of the bound quivers (1)-(12) in (ND).
(ii) A has no factor algebra given by one of the bound quivers from the families (W) and (NPG).

Then $T_{2}(A)$ contains a convex tubular subcategory. In particular, $T_{2}(A)$ is nondomestic.

Proof. We shall prove the claim in two typical cases.
Let A be of type (1). Then $T_{2}(A)$ contains a convex subcategory B given by the bound quiver

Then B is a tubular extension of tubular type $(2,4,4)$ of the path algebra of the Euclidean quiver

of type $\widetilde{\mathbb{A}}_{6}$, and hence is a tubular algebra.
Let A be of type (9). Then $T_{2}(A)$ contains a convex subcategory D given by the bound quiver

Then D is the one-point extension of the path algebra H of the Euclidean quiver

of type $\widetilde{\mathbb{E}}_{8}$ by a simple regular module lying in the stable tube of rank 5 of the Auslander-Reiten quiver of A, and consequently D is a tubular algebra of tubular type $(2,3,6)$.

5. Triangular matrix algebras of infinite representation type.

 Consider the family (IT) of bound quiver algebras $K Q / I$ given by the following bound quivers (Q, I) :(1)

$$
r, s \geq 1
$$

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(16) Q is of the form

and the following conditions are satisfied:
(α) for $i=0$ and $i=n, G_{i}$ or $G_{i}^{\text {op }}$ is one of the the quivers

with $a=a_{1}$ and $a=a_{n}$, respectively,
(β) if $n \geq 2$, then for $1 \leq i \leq n-1, G_{i}$ or $G_{i}^{\text {op }}$ has the form

$$
a_{i} \longleftarrow \bullet \longrightarrow a_{i+1}
$$

(γ) for $1 \leq i \leq n$, the vertex a_{i} is a source (respectively, target) of G_{i-1} if and only if a_{i} is a target (respectively, source) of G_{i},
(σ) the composition of any two arrows in Q having $a_{i}, 1 \leq i \leq n$, as a common vertex belongs to I.

Proposition 4. Let A be a simply connected algebra of finite representation type satisfying the following conditions:
(i) A admits a factor algebra B such that B or $B^{\text {op }}$ is the bound quiver algebra of one of the bound quivers from the family (IT).
(ii) A has no factor algebra given by one of the bound quivers from the families (W), (NPG) or (ND).

Then $T_{2}(A)$ contains a convex subcategory which is concealed of type $\widetilde{\mathbb{A}}_{m}, m \geq 1, \widetilde{\mathbb{D}}_{n}, n \geq 4, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$. In particular, $T_{2}(A)$ is of infinite representation type.

Proof. We shall prove the claim in three typical cases.
Assume A is of type (1) with $r=2, s=3$. Then $T_{2}(A)$ contains a convex subcategory which is the path algebra of the quiver

of Euclidean type $\widetilde{\mathbb{A}}_{6}$.
Let A be of type (12). Then $T_{2}(A)$ contains a convex subcategory given by the bound quiver

which is concealed of type $\widetilde{\mathbb{E}}_{7}$ (see [7], [22]).
Finally, let A be of type (16) with $n=4$ and $G_{0}, G_{1}, G_{2}, G_{3}, G_{4}$ as follows:

$G_{3}: a_{2} \longleftarrow \bullet \longrightarrow \bullet a_{3} \quad G_{4}: \quad a_{3} \longrightarrow \bullet \longleftarrow \bullet \longleftarrow \bullet$
Then A is given by the quiver

and $T_{2}(A)$ contains a convex subcategory of the form

which is concealed of type $\widetilde{\mathbb{D}}_{17}$.
6. Tame triangular matrix algebras. Consider the family (T) of bound quiver algebras $K Q / I$ given by the following quivers:
(1)

(2)

(3)

(4)

(6)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19) $\bullet \longrightarrow \bullet \underset{ }{\longrightarrow} \bullet \stackrel{\downarrow}{\bullet} \stackrel{\leftarrow}{ } \quad \therefore$
(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29) \qquad
(30)

(31) $\stackrel{. \cdots \cdots \cdots}{\longrightarrow} \bullet \bullet \bullet \longrightarrow \bullet \longrightarrow \bullet$
(33)
$\bullet \longrightarrow \bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$
(32)
$\bullet \longrightarrow \bullet \longleftarrow \bullet \longleftarrow \bullet \longrightarrow \bullet$
(34)

(35)

(37)

(38)

(39)

(40)

(41)

(42)

(43) Let \mathcal{A}, \mathcal{B} and \mathcal{C} be the following families of bound quivers:
$\mathcal{A}:$

$\mathcal{B}:$

\mathcal{C} :

Then (Q, I) is a bound quiver of the form

satisfying the following conditions:
(α) for $i=0$ and $i=n, G_{i}$ or G_{i}^{op} is one of the bound quivers from $\mathcal{A} \cup \mathcal{C}$,
(β) if $n \geq 2$ then, for $1 \leq i \leq n-1, G_{i}$ or $G_{i}^{\text {op }}$ is one of the bound quivers from $\mathcal{A} \cup \mathcal{B}$,
(γ) for $1 \leq i \leq n$ the vertex a_{i} is a source (respectively, target) of G_{i-1} if and only if a_{i} is a target (respectively, source) of G_{i},
(δ) the composition of any two arrows in Q having $a_{i}, 1 \leq i \leq n$, as a common vertex belongs to I.
(44) (Q, I) is a bound quiver of the form

with $n \geq 1, a_{n}=a_{0}$, and satisfying the following conditions:
(α) for each $0 \leq i \leq n-1, G_{i}$ or $G_{i}^{\text {op }}$ is one of the bound quivers from $\mathcal{A} \cup \mathcal{B}$,
(β) for $1 \leq i \leq n$, the vertex a_{i} is a source (respectively, target) of G_{i-1} if and only if a_{i} is a target (respectively, source) of G_{i} (where $G_{n}=G_{0}$),
(γ) the composition of any two arrows in Q having $a_{i}, 1 \leq i \leq n$, as a common vertex belongs to I.

We note that (Q, I) contains exactly one (nonoriented) cycle.
We shall write ($\mathrm{T} n$) for the nth quiver from the above family (T).
Proposition 5. Let A be a bound quiver algebra from the family (T1)(T43). Then $T_{2}(A)$ is of polynomial growth, provided A is not of type (T43) having a factor algebra from the family (NPG). Moreover, $T_{2}(A)$ is domestic (respectively, of finite type) if and only if A has no factor algebra Λ such that Λ or $\Lambda^{\text {op }}$ is from the family (ND) (respectively, (IT)).

Proof. Observe that $T_{2}(A)$ is simply connected, and in fact both $T_{2}(A)$ and $T_{2}(A)^{\mathrm{op}}$ satisfy the separation property (see [44], [46]). Moreover, $T_{2}(A)$ is strongly simply connected if and only if A does not contain a convex
subcategory given by a commutative square

or equivalently, A is the bound quiver algebra of a bound tree. In particular, it is the case for all algebras of types (T7)-(T42). Clearly, if $T_{2}(A)$ is of polynomial growth then A has no factor algebra Λ from the family (NPG), because otherwise $T_{2}(\Lambda)$ is a factor algebra of $T_{2}(A)$, which contradicts Proposition 2. Hence the necessity part follows. Consequently, a direct checking shows that $T_{2}(A)$ contains a convex $p g$-critical subcategory if and only if A is of type (T43) and admits a factor algebra Λ with Λ or $\Lambda^{\text {op }}$ from the family (NPG). Further, it is easy to check that $T_{2}(A)$ does not contain a convex subcategory which is concealed of one of the types $\widetilde{\mathbb{A}}_{m}$, $T_{5}, \widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$. Applying now [46, Theorem 4.1] (and its proof) we conclude that $T_{2}(A)$ is a polynomial growth simply connected algebra (even a multicoil algebra with directed component quiver) provided A is not of type (T43) having a factor algebra Λ with Λ or $\Lambda^{\text {op }}$ from the family (NPG). Finally, we easily check that A has no factor algebra Λ with Λ or $\Lambda^{\text {op }}$ from the family (ND) (respectively, (IT)) if and only if $T_{2}(A)$ does not contain a convex subcategory B which is tubular (respectively, concealed of type $\widetilde{\mathbb{A}}_{m}$, $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$), or equivalently $T_{2}(A)$ is domestic (by [46, Corollary 4.3] and its proof) (respectively, $T_{2}(A)$ is of finite representation type, by [8]). This finishes the proof.

Our next aim is to prove that, for any algebra A of type (T43) or (T44), the algebra $T_{2}(A)$ is tame. We need a reduction lemma and the following concept.

For a bound quiver algebra $A=K Q / I$, we say that an object x of A (vertex x of Q) is a node of A provided $\beta \alpha \in I$ for any two arrows $\alpha, \beta \in Q$ with $s(\beta)=x$ and $e(\alpha)=x$.

Consider the following two families of bound quiver algebras:

where S or $S^{\text {op }}$ is the bound quiver algebra of a bound quiver from the family $\mathcal{A} \cup \mathcal{C}$ in (T43), with $a=a_{i}$ or $a=a_{i+1}, a$ is a source (respectively, target) of S if and only if a is a target (respectively, source) of R, and a is
a node of B, and
(ii)
C :

where possibly $R_{1}=R_{2}, S$ or $S^{\text {op }}$ is the bound quiver algebra of a bound quiver from the family $\mathcal{A} \cup \mathcal{B}$ in (T43), with $b=a_{i}$ and $c=a_{i+1}, b$ and c are sources (respectively, targets) of S if and only if b and c are targets (respectively, sources) in R_{1} and R_{2}, and b and c are nodes of C.

Let Δ be the quiver $x \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow y$ of type \mathbb{A}_{7} and $\Lambda=K \Delta$. We now define new families of algebras using $B, C, \Lambda, \Lambda^{\mathrm{op}}$ as follows. For B, the algebra B^{\prime} is obtained from B by replacing S by Λ with $x=a$ if a is a source of S, or by replacing S by Λ^{op} with $x=a$ if a is a target of S, and again with a being a node of B^{\prime}. Similarly, for C, the algebra C^{\prime} is obtained from C by replacing S by Λ with $x=b$ and $y=c$ if a is a source of S, or by replacing S by Λ^{op} with $x=b$ and $y=c$ if a is a target S, and again with b and c being nodes of C^{\prime}. Then $T_{2}\left(B^{\prime}\right)$ contains a convex subcategory $B^{\prime \prime}$ of the form
(iii)

if a is a target of S, or of the form
(iv)

if a is a source of S. Similarly, $T_{2}\left(C^{\prime}\right)$ contains a convex subcategory $C^{\prime \prime}$ of the form
(v)

if b and c are targets of S, or of the form

if b and c are sources of S.

In the above notation we have the following
Lemma 1. Assume $B^{\prime \prime}$ (respectively, $C^{\prime \prime}$) is tame. Then $T_{2}(B)$ (respectively, $T_{2}(C)$) is tame.

Proof. This is done by case-by-case consideration of all possible shapes of the algebra S. We shall illustrate the procedure in two typical cases.

Consider the algebra B with S given by the bound quiver

from the family \mathcal{C}. Then $T_{2}(B)$ is of the form

Observe that $T_{2}(B)$ can be obtained from the algebra D of the form

by iterated one-point extensions creating the vertices $1^{*}, 2^{*}, 3^{*}$. Consider first the one-point extension $D[X]$ with extension vertex 1^{*}, where X is the unique indecomposable D-module of dimension vector

$$
\operatorname{dim} X={ }_{0}^{0} 1_{1}^{1} 1_{0} 0
$$

(having 0 at all the vertices of $T_{2}(R)$ except a and a^{*}). Then the AuslanderReiten quiver of D has a full translation subquiver of the form

Hence the vector space category $\operatorname{Hom}_{D}(X, \bmod D)$ is the additive category of the incidence category of the following partially ordered set of finite representation type:

Thus there are only finitely many isoclasses of indecomposable $D[X]$-modules whose dimension vector is nonzero at the vertex 1^{*}.

Next, we consider the one-point extension

$$
E=(D[X])[Y]
$$

with extension vertex 2^{*}, where Y is the unique indecomposable $D[X]$ module (in fact even a D-module) of dimension vector

$$
\operatorname{dim} Y=\begin{array}{cc}
0 & 0 \\
0 & 1_{0}^{0} \\
0 & 1 \\
1_{0}
\end{array}
$$

The Auslander-Reiten quiver of $D[X]$ contains a full translation subquiver of the form

hence the vector space category $\operatorname{Hom}_{D[X]}(Y, \bmod D[X])$ is the additive category of the category

(see $[37,(2.4)]$ for the corresponding notation). In particular, $D[X][Y]$ is a domestic (even one-parametric) extension of $D[X]$. Observe that the convex subcategory of $E=D[X][Y]$ given by the vertices $a, a^{*}, 1,1^{*}, 2,2^{*}, 3$ is a tilted algebra F of type $\widetilde{\mathbb{E}}_{6}$, obtained from the hereditary algebra H of type $\widetilde{\mathbb{A}}_{6}$, formed by the vertices $a^{*}, 1,1^{*}, 2,2^{*}, 3$, by one-point coextension using a simple regular module lying in a stable tube of rank one of the AuslanderReiten quiver of H. Moreover, since a is a target in S, we conclude that a is a source of R. Further, a is a node of B. This implies that for any indecomposable injective E-module $I_{E}(x)$, with x being an object of $T_{2}(R)$ different from a and a^{*}, the restriction of $I_{E}(x)$ to F is projective. In particular, we conclude that the preinjective component and $\mathbb{P}_{1}(K)$-family of coray tubes of the Auslander-Reiten quiver of F are full components of the Auslander-Reiten quiver of E, and moreover, are closed under successors in $\bmod E$.

Finally, observe that $T_{2}(B)$ is the one-point extension $E[Z]$, with extension vertex 3^{*}, where Z is the unique indecomposable injective module
$I_{F}(a)=I_{E}(a)$ in the tubular family of the Auslander-Reiten quiver of F. Therefore, invoking the above remarks, we conclude that the AuslanderReiten quiver of $T_{2}(B)$ has a preinjective component of Euclidean type $\widetilde{\mathbb{E}}_{6}$ and a $\mathbb{P}_{1}(K)$-family of tubes, one of them containing the projective-injective module $I_{T_{2}(R)}(a)=I_{T_{2}(S)}(a)=P_{T_{2}(S)}\left(3^{*}\right)=P_{T_{2}(R)}\left(3^{*}\right)$ and the remaining ones being stable tubes of the Auslander-Reiten quiver of H. As a consequence, we deduce that if M is an indecomposable $T_{2}(B)$-module whose support contains one of the vertices $1^{*}, 2^{*}$, or 3^{*}, then the support of M is contained in $T_{2}(S)$. Therefore, $T_{2}(B)$ is tame if and only if D is tame.

Further, taking the APR-cotilt of D (in the sense of [2]) with respect to the simple injective nonprojective module $S_{D}(3)$, we get an algebra Γ of the form

and D is tame provided Γ is tame. Taking now the APR-cotilt of Γ with respect to the simple injective nonprojective module $S_{\Gamma}(2)$, we obtain an algebra Ω of the form

and such that Ω tame implies Γ tame. We now observe that Ω can be obtained from a full subcategory of the category $B^{\prime \prime}$ of type (iii) by shrinking some arrows to identity (see [37, (1.2)]), and consequently, Ω is tame if $B^{\prime \prime}$ is tame (see also [16, Lemma 6] for the fact that a full subcategory of a tame algebra is also tame). Summing up the considerations above, we infer that if $B^{\prime \prime}$ is tame then $T_{2}(B)$ is tame.

Consider now the algebra C with S given by the bound quiver

from the family $\mathcal{B}^{\text {op }}$. Then $T_{2}(C)$ is of the form

Hence $T_{2}(C)$ can be obtained from the algebra D of the form

by iterated one-point extensions creating the vertices $1^{*}, 2^{*}, 3^{*}$.
Consider first the one-point extension $D[X]$ with extension vertex 1^{*}, where X is the unique indecomposable D-module of dimension vector $\operatorname{dim} X$ $={ }_{0}^{01} 0_{1} 0_{1}{ }_{1}^{10} 0$ (having 0 at all vertices of $T_{2}\left(R_{1}\right)$ and $T_{1}\left(R_{2}\right)$ except b, b^{*}, c, $\left.c^{*}\right)$. The Auslander-Reiten quiver of D has a full translation subquiver of the form

Hence the vector space category $\operatorname{Hom}_{D}(X, \bmod D)$ is the additive category of the incidence category of the following partially ordered set:

Consequently, $E=D[x]$ is a domestic (even one-parametric) extension of D, and the new one-parametric families of indecomposable E-modules are those from the $\mathbb{P}_{1}(K)$-family \mathcal{T} of stable tubes of the Auslander-Reiten quiver of the hereditary algebra H given by the quiver

of Euclidean type $\widetilde{\mathbb{D}}_{5}$.
Let F be the convex subcategory of $T_{2}(S)$ formed by the vertices b, b^{*}, $1,1^{*}, c, c^{*}, 2$ and 3 . Then F is a tubular coextension of H of tubular type $(2,3,4)$ given by two one-point coextensions of H by two simple regular modules lying in a stable tube of rank 2 of the tubular family \mathcal{T}. Since b and c are sources in $R_{1} \cup R_{2}$ and nodes in C, we deduce that for any indecomposable injective E-module $I_{E}(x)$ with x being an object of $T_{2}\left(R_{1}\right)$ or $T_{2}\left(R_{2}\right)$ different from b, b^{*}, c, c^{*}, the restriction of $I_{E}(x)$ to F is a preprojective F-module. This implies that the preinjective component and the $\mathbb{P}_{1}(K)$-family \mathcal{T}^{\prime} of coray tubes of the Auslander-Reiten quiver of F are full components of the Auslander-Reiten quiver of E, and moreover, are closed under successors in $\bmod E$.

Observe now that $T_{2}(C)$ is a tubular extension $E[Y][Z]$ of E by the unique two injective E-modules Y and Z lying in the family \mathcal{T}^{\prime}. Therefore, we deduce that the Auslander-Reiten quiver of $T_{2}(C)$ has a preinjective component of Euclidean type $\widetilde{\mathbb{E}}_{7}$ and a $\mathbb{P}_{1}(K)$-family $\mathcal{T}^{\prime \prime}$ of tubes; one of them contains two projective-injective modules $I_{T_{2}(C)}(b)=P_{T_{2}(C)}\left(3^{*}\right)$ and $I_{T_{2}(C)}(c)=P_{T_{2}(C)}\left(2^{*}\right)$, and the remaining ones are stable tubes of the Auslander-Reiten quiver of A.

In particular, we deduce that if M is an indecomposable $T_{2}(C)$-module whose support contains one of the vertices $1^{*}, 2^{*}$, or 3^{*}, then the support of M is contained in $T_{2}(S)$. Therefore, $T_{2}(C)$ is tame if and only if D is tame. Taking two APR-cotilts of D with respect to the simple injective nonprojective modules $S_{D}(2)$ and $S_{D}(3)$, we obtain an algebra Γ of the form

and if Γ is tame then so is D. Finally, we observe that Γ is a full subcategory of the category $C^{\prime \prime}$ of type (v). Hence, if $C^{\prime \prime}$ is tame then Γ is tame. Summing up our considerations we find that if $C^{\prime \prime}$ is tame then $T_{2}(C)$ is tame. This finishes the proof.

For each positive integer n, we denote by $B[n]$ the algebra given by the bound quiver

\cdot.

with $a=b$.

Lemma 2. For each positive integer n, the algebra $B[n]$ is tame (but not of polynomial growth).

Proof. Fix m. Let $H[n]$ be the convex subcategory (algebra) of $B[n]$ given by all vertices of $B[n]$ except $1, \ldots, 4 n$. Then $H[n]$ is the path algebra of a Euclidean quiver of type $\widetilde{\mathbb{A}}_{14 n-1}=\widetilde{\mathbb{A}}_{7 n, 7 n}$, and $B[n]$ is the biextension algebra

$$
\left[N_{1}, \ldots, N_{2 n}\right] H[n]\left[M_{1}, \ldots, M_{2 n}\right]=\left[\begin{array}{ccc}
K^{2 n} & 0 & 0 \\
M & H[n] & 0 \\
D(N) \otimes_{H[n]} M & D(N) & K^{2 n}
\end{array}\right]
$$

(in the sense of [18]), where $M=M_{1} \oplus \ldots \oplus M_{2 n}, N=N_{1} \oplus \ldots \oplus N_{2 n}, D(N)=$ $\operatorname{Hom}_{K}(N, K), M_{i}=\operatorname{rad} P_{H[n]}(2 i-1), N_{i}=I_{H[n]}(2 i) / \operatorname{soc} I_{H[n]}(2 i)$, for $1 \leq$ $i \leq 2 n$. Observe that $M_{1}, \ldots, M_{2 n}, N_{1}, \ldots, N_{2 n}$ are indecomposable regular $H[n]$-modules of regular length 2 lying in two stable tubes of rank $7 n$ in the Auslander-Reiten quiver of $H[n]$. Moreover, the modules $M_{1}, \ldots, M_{2 n}$ (respectively, $N_{1}, \ldots, N_{2 n}$) are Hom-orthogonal. Therefore, applying [18, Theorem A], we conclude that $B[n]=\left[N_{1}, \ldots, N_{2 n}\right] H[n]\left[m_{1}, \ldots, M_{2 n}\right]$ is tame. Finally, we note that $B[n]$ contains convex $p g$-critical subcategories, and hence is not of polynomial growth.

We are now able to prove the following fact.
Proposition 6. Let A be an algebra from one of the families (T43) or (T44). Then $T_{2}(A)$ is tame.

Proof. We replace each part $S=G_{i}$ from the families $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{A}^{\mathrm{op}}, \mathcal{B}^{\mathrm{op}}$, $\mathcal{C}^{\text {op }}$ in A by $\Lambda=K \Delta$, for Δ of the form $\bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$ or its opposite, according to the procedure described before Lemma 1, and obtain an algebra A^{\prime}. Then $T_{2}\left(A^{\prime}\right)$ contains a convex subcategory $A^{\prime \prime}$ obtained from $T_{2}\left(A^{\prime}\right)$ by replacing each $T_{2}(\Lambda)$ by

and each $T_{2}\left(\Lambda^{\mathrm{op}}\right)$ by

Moreover, applying Lemma 1, we infer that $T_{2}(A)$ is tame if $A^{\prime \prime}$ is tame. Finally, observe that there is a positive integer n such that $A^{\prime \prime}=B[n]$ if A is of type (T44), or $A^{\prime \prime}$ is a proper convex subcategory of $B[n]$ if A is of type
(T43). Applying Lemma 2, we conclude that $A^{\prime \prime}$ is tame. Therefore, $T_{2}(A)$ is also tame.
7. Weakly sincere triangular matrix algebras. For an algebra A, we say that the algebra $T_{2}(A)$ is weakly sincere if there exists an indecomposable $T_{2}(A)$-module M such that for every proper convex subcategory B of A the support of M is not contained in the convex subcategory $T_{2}(B)$. Clearly, if $T_{2}(A)$ is sincere then $T_{2}(A)$ is weakly sincere.

The main aim of this section is to prove the following fact.
Proposition 7. Let A be a simply connected algebra of finite representation type with $T_{2}(A)$ weakly sincere, and assume that neither A nor $A^{\text {op }}$ has a factor algebra from the family (W). Then A or $A^{\text {op }}$ is a factor algebra of one of the algebras from the family (T1)-(T43).

In order to prove the proposition we need some concepts and lemmas. Throughout this section we assume that $A=K Q / I$ is a bound quiver algebra satisfying the conditions of the above proposition. Since A is simply connected of finite representation type (hence standard), we may also assume that I is generated by paths or differences of paths with common sources and common ends. Moreover, Q has no oriented cycles. We start with the following two lemmas.

Lemma 3. Assume there is a K-linear relation $u-w \in I$, where u, w are two paths in Q with a common source a and a common end b. Then $u=\beta \alpha$ and $w=\sigma \gamma$ for a convex bound subquiver of (Q, I)

Proof. This follows from the fact that the bound quiver algebras (W1) and (W14) are not factor algebras of $A=K Q / I$.

Lemma 4. Assume the bound quiver algebra of the bound quiver

is a convex subcategory of A. Then one of the following cases holds:
(i) A or $A^{\text {op }}$ is a factor algebra of one of the algebras from the family (T1)-(T6).
(ii) A admits a convex subcategory given by the bound quiver

and $\alpha, \beta, \gamma, \sigma, \xi$ are the unique arrows starting or ending at the vertices a, b, c, d.
(iii)

and $\alpha, \beta, \gamma, \sigma$ are the unique arrows starting or ending at the vertices a, b, c, d.

Proof. This follows by a simple analysis of the neighbourhood of the commutative square formed by $\beta \alpha$ and $\sigma \gamma$ in (Q, I), invoking the facts that $T_{2}(A)$ is weakly sincere and neither A nor $A^{\text {op }}$ has a factor algebra from the family (W2)-(W11).

It will follow from our further analysis of (Q, I) that if A contains a convex subcategory of one of the forms (ii) or (iii), then A or $A^{\text {op }}$ is a factor algebra of an algebra of type (T43). As a consequence we will find that if Q is not a tree then A or $A^{\text {op }}$ is a factor algebra of one of the algebras (T1)-(T6) or (T43).

For two vertices x and y of Q, we set $x \leq y$ if there exists a path from x to y (including the trivial one for $x=y$) which does not belong to I. Then we may assign to each vertex x of Q two partially ordered sets

$$
x^{-}=\left\{y \in Q_{0} \mid y \leq x\right\} \quad \text { and } \quad x^{+}=\left\{y \in Q_{0} \mid x \leq y\right\}
$$

Recall that, for a finite partially ordered set S, its width $w(S)$ is the maximal number of pairwise incomparable vertices of S. For each vertex x of Q, consider also the full bound subquiver $N(x)$ of (Q, I) given by all vertices of x^{-}and x^{+}. Moreover, we put $w(x)=w\left(x^{-}\right)+w\left(x^{+}\right)$.

Lemma 5. Let x be a vertex of Q. Then $w(x) \leq 4$. Moreover, if $w(x)=4$ then A or A^{op} is a factor algebra of (T1) or is given by the bound quiver of one of the forms

or

where a and b are nodes.
Proof. Assume that $w(x) \geq 4$. We claim that then $w\left(x^{-}\right)=2$ and $w\left(x^{+}\right)=2$, and consequently $w(x)=4$. Indeed, suppose that $w\left(x^{-}\right) \geq 3$ or $w\left(x^{+}\right) \geq 3$. Then, invoking Lemmas 3 and 4 , we easily conclude that A or A^{op} has a factor algebra of one of the forms (W9)-(W11), a contradiction. Hence $w\left(x^{-}\right)=2=w\left(x^{+}\right)$. Assume now that x is the source and the end of two arrows. Since A and $A^{\text {op }}$ have no factor algebras of types (W8), (W10) and (W11), applying Lemma 4, we then infer that A is a factor algebra of (T1). Finally, assume (by symmetry) that there is only one arrow in Q starting at the vertex x. Using now the fact that algebras of types (W12), (W13) and (W23) are not factor algebras of A and A^{op}, we easily verify that A or $A^{\text {op }}$ must be one of the algebras given by the bound quivers presented in the lemma.

From now on we assume that $w(x) \leq 3$ for any vertex x of (Q, I).
Lemma 6. Assume there exists a vertex x of Q such that $w(x)=3$ and $N(x)$ is a quiver (without relations). Then A or A^{op} is a factor algebra of one of the algebras (T7)-(T10) or of an algebra of the form

Proof. This follows from Lemmas 3,4 and that Q is a tree and A contains a convex subcategory which is the path category of a Dynkin quiver of type \mathbb{D}_{4}. Then, since A and $A^{\text {op }}$ have no factor algebras from the family (W13)-(W23), a direct analysis shows that A or A^{op} is a factor algebra of one of the algebras presented in the lemma.

Lemma 7. Assume there exists a vertex x in Q such that $w(x)=3$ and the bound quiver $N(x)$ is bound by a zero-relation of length at least 3. Then A or A^{op} is a factor algebra of one of the algebras (T11)-(T18).

Proof. This follows from Lemmas 3,4 and 6 , and the fact that A and A^{op} have no factor algebras from the family (W39)-(W52).

We note that if $A=K Q / I$ satisfies the conditions of the above lemma then for each vertex y of Q with $w(y)=3$, the quiver $N(y)$ is bound by
at least two zero-relations, one of them of length at least 3 and another one of length 2 . Observe also that, if $w(x)=3$ and $N(x)$ is bound only by zero-relations of length 2 , then $N(x)$ is bound by at most two zero-relations.

Lemma 8. Assume there exists a vertex x in Q with $w(x)=3$, and, for each vertex y in Q with $w(y)=3$, the quiver $N(y)$ is bound only by two zero-relations of length 2 . Then A or $A^{\text {op }}$ is a factor algebra of one of the algebras (T19)-(T26), or is an algebra of the form

which is a factor algebra of the algebra presented in Lemma 4(ii).
Proof. This follows from Lemmas 3, 4, 6 and 7, and the fact that A and $A^{\text {op }}$ have no factor algebras from the family (W53)-(W72).

Lemma 9. Assume $w(x) \leq 2$ for any vertex x of Q, and there is a vertex y in Q with $N(y)$ bound by a zero-relation of length at least 3 . Then A or A^{op} is a factor algebra of one of the algebras (T27)-(T30).

Proof. This follows from the fact that A and $A^{\text {op }}$ have no factor algebras of the forms (W73)-(W78) and (W81).

Lemma 10. Assume $w(x) \leq 2$ for any vertex x of Q and each $N(x)$ is bound by at most one zero-relation of length 2 . Then A or $A^{\text {op }}$ has one of the following forms: (T31)-(T33) or

where a and b are nodes.
Proof. This follows from the weak sincerity of $T_{2}(A)$ and the fact that A and $A^{\text {op }}$ have no factor algebras of the forms (W73), (W79)-(W81).

Lemma 11. Assume there exists a vertex x in Q with $w(x)=3$, and $N(x)$ is bound only by one zero-relation of length 2, and for each vertex y in Q with $w(y)=3, N(y)$ is bound by at least one zero-relation. Then A or A^{op} is a factor algebra of one of the algebras (T34)-(T42), or has one of the forms

where a and b are nodes.
Proof. This follows by a tedious analysis invoking the above lemmas and the fact that A and $A^{\text {op }}$ have no factor algebras among (W24)-(W38).

Lemma 12. Assume that Q is not a tree, and neither A nor A^{op} is a factor algebra of one of the algebras (T1)-(T6). Then A or A^{op} is a factor algebra of an algebra of type (T43) whose quiver is not a tree.

Proof. This follows from the lemmas proved above.
The final lemma below completes our proof of Proposition 7.
Lemma 13. Assume Q is a tree, and neither A nor $A^{\text {op }}$ is a factor algebra of one of the algebras (T7)-(T42). Then A or A^{op} is a factor algebra of an algebra of type (T43) whose quiver is a tree.

Proof. This is a direct consequence of the lemmas proved above.
8. Proofs of the main results. Let $A=K Q / I$ be a standard algebra of finite representation type and $\widetilde{A} \rightarrow A=\widetilde{A} / G$ be its universal

Galois covering, with \widetilde{A} a simply connected locally bounded K-category and G a free group (see [9], [12]). Then the algebra $T_{2}(A)$ admits a universal Galois covering $F^{(2)}: T_{2}(\widetilde{A}) \rightarrow T_{2}(A)=T_{2}(\widetilde{A}) / G$ with $T_{2}(\widetilde{A})$ a simply connected locally bounded K-category, described in Section 1. Denote by $F_{\lambda}^{(2)}: \bmod T_{1}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ the associated push-down functor. Since G is a free group, the induced action of G on the isoclasses of finite-dimensional indecomposable $T_{2}(\widetilde{A})$-modules is free, and consequently $F_{\lambda}^{(2)}$ preserves the indecomposable modules and Auslander-Reiten sequences (see [21]). If $F_{\lambda}^{(2)}$ is dense then we obtain a Galois covering $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ of module categories (in the sense of [9], [21]). In particular, in this case, the Auslander-Reiten quiver $\Gamma_{T_{2}(A)}$ of $T_{2}(A)$ is the orbit quiver $\Gamma_{T_{2}(\widetilde{A})} / G$ of the Auslander-Reiten quiver $\Gamma_{T_{2}(\widetilde{A})}$ with respect to the induced action of G.

We say that an indecomposable locally finite-dimensional $T_{2}(\widetilde{A})$-module M is weakly G-periodic if its support $\operatorname{supp} M$ is infinite and the quotient category $(\operatorname{supp} M) / G_{M}$ is finite, where $G_{M}=\{g \in G \mid g M \cong M\}$. Note that then G_{M} is infinite. Since G is a free group, by [17, Proposition 2.4], we see that the push-down functor $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ is dense if and only if there is no weakly G-periodic module over $T_{2}(\widetilde{A})$.

Proof of Theorem 1. Assume $T_{2}(A)$ is tame. Then it follows from [15, Proposition 2] that $T_{2}(\widetilde{A})$ is tame. Hence every finite convex subcategory B of $T_{2}(\widetilde{A})$ is tame and consequently the Tits form q_{B} of B is weakly nonnegative (see [36]). Therefore (i) implies (ii). The implication (ii) \Rightarrow (iii) is a direct consequence of the fact that the Tits form of any concealed algebra of wild type is not weakly nonnegative (see [25, (6.2)]). Further, the implication (iii) \Rightarrow (iv) follows from Proposition 1. Therefore, it remains to show that (iv) implies (i).

Assume \widetilde{A} does not contain a finite convex subcategory Λ such that one of the algebras from the family (W) is a factor algebra of Λ or Λ^{op}. Take an indecomposable module M in $\bmod T_{2}(\widetilde{A})$. Since the category $T_{2}(\widetilde{A})$ is interval-finite in the sense of [12], the convex hull Λ of the support of M is also finite. But then there exists a finite convex subcategory B of \widetilde{A} such that $T_{2}(B)$ is weakly sincere and Λ is a convex subcategory of $T_{2}(B)$. In particular, M is an indecomposable $T_{2}(B)$-module. Clearly, neither B nor $B^{\text {op }}$ has a factor algebra from the family (W). Then, applying Proposition 7, we conclude that B or $B^{\text {op }}$ is a factor algebra of one of the algebras from the family (T1)-(T43). Therefore, by Propositions 5 and $6, T_{2}(B)$ is tame, and so also is Λ. Hence $T_{2}(\widetilde{A})$ is tame.

If the push-down functor $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ is dense then $T_{2}(A)$ is tame (see [15, Lemma 3]). Therefore, assume $F_{\lambda}^{(2)}$ is not dense.

Then there exists a weakly G-periodic $T_{2}(\widetilde{A})$-module Y. We need a technique developed in [17, Section 4]. Let $R=T_{2}(\widetilde{A})$. For a full subcategory C of R we denote by \widehat{C} the full subcategory of R formed by all objects y such that $R(x, y) \neq 0$ or $R(y, x) \neq 0$ for some object x from C. Clearly, if C is finite, then C is also finite because the category R is locally bounded. For an R module M we denote by $M \mid C$ the restriction of M to C. For $X, Y \in \operatorname{Mod} R$ we write $X \in Y$ whenever X is isomorphic to a direct summand of Y.

Fix a family $C_{n}, n \in \mathbb{N}$, of finite convex subcategories of R such that
(1) For each $n \in \mathbb{N}, C_{n+1}$ is the convex hull of \widehat{C}_{n} in R.
(2) $R=\bigcup_{n \in \mathbb{N}} C_{n}$.

Since R is connected, locally bounded and interval-finite, such a family exists. We shall identify a C_{n}-module Z with an R-module, by setting $M(x)=0$ for all objects x of R which are not in C_{n}. Let $m \in \mathbb{N}$ be the least number such that $Y \mid C_{m} \neq 0$. We define a family of modules $Y_{n} \in \operatorname{ind} C_{n}$, $n \in \mathbb{N}$, as follows. Put $Y_{n}=0$ for $n<m$ and let Y_{m} be an arbitrary indecomposable direct summand of $Y \mid C_{m}$. Then there exist $Y_{m+1} \in \operatorname{ind} C_{m+1}$ and a splittable monomorphism $\varphi_{m}: Y_{m} \rightarrow Y_{m+1} \mid C_{n}$ such that $Y_{m+1} \ominus\left(Y \mid C_{m+1}\right)$. Repeating this procedure we can find, for all $n \geq m, Y_{n} \in$ ind C_{n} and splittable monomorphisms $\varphi_{n}: Y_{n} \rightarrow Y_{n+1} \mid C_{n}$ such that $Y_{n} \ominus\left(Y \mid C_{n}\right)$. Thus we obtain a sequence $\left(Y, \varphi_{n}\right)_{n \in \mathbb{N}}$, called in [17] a fundamental R-sequence produced by Y. Since in our case C_{n} are convex subcategories of R, it is in fact a sequence of finite-dimensional indecomposable R-modules. The following facts are direct consequences of [17, (4.3)-(4.5)]:
(a) $Y=\lim _{\leftarrow} Y_{n}$.
(b) For each $n \in \mathbb{N}$, there exists $p \geq n$ such that $Y_{p}\left|C_{n} \cong Y\right| C_{n}$.
(c) For each $g \in G_{Y}$ and $n \in \mathbb{N}$, there exists $q \geq n$ such that $g C_{n} \subset C_{q}$ and ${ }^{g} Y_{n} \ominus\left(Y_{q} \mid g C_{n}\right)$.

For $n \geq m$, denote by D_{n} the support of Y_{n}. Clearly, D_{n} is contained in C_{n}. Moreover, since Y is indecomposable, infinite-dimensional, locally finite-dimensional, and C_{n+1} contains \widehat{C}_{n}, for each $n \in \mathbb{N}$, we deduce from [15, Lemma 2] that, for any $n \geq m, D_{n}$ is not contained in C_{n-1}. Let $s=2(m+11)$. Then each of the categories $D_{n}, n \geq s$, has at least 22 objects. Moreover, we know from the first part of our proof that, for each $n \geq s$, there exists a convex subcategory B_{n} of \widetilde{A} such that $T_{2}\left(B_{n}\right)$ is a weakly sincere convex subcategory of $R=T_{2}(\widetilde{A})$ and Y_{n} is an indecomposable $T_{2}\left(B_{n}\right)$-module. Further, it follows from Proposition 7 that B_{n} or $B_{n}^{\text {op }}$ is a factor algebra of an algebra from the family (T1)-(T43). Since $T_{2}\left(B_{n}\right)$, for $n \geq s$, has at least 22 objects, we conclude that B_{n} or $B_{n}^{\text {op }}$ is a factor algebra of an algebra from the family (T43).

Fix now an element $1 \neq g \in G_{Y}$. We know from (b) and (c) that for any $n \geq s$ there exists $r \geq n$ such that $g C_{n} \subset C_{r},{ }^{g} Y_{n} \in\left(Y_{r} \mid g C_{n}\right)$, and $Y_{r}\left|C_{n} \cong Y\right| C_{n}$. Moreover, $Y=\lim Y_{n}$. Then we conclude that there is a factor algebra B of an algebra of type (T44), whose quiver contains one (unoriented) cycle, such that the universal (simply connected) Galois cover \widetilde{B} of B is a convex subcategory \widetilde{A} and Y is an indecomposable $T_{2}(\widetilde{B})$ module. We also note that all but finitely many categories B_{n} have a factor algebra D with D or $D^{\text {op }}$ from the family (NPG), and consequently $T_{2}(\widetilde{A})$ is not of polynomial growth.

Observe now that in our proof that $T_{2}(A)$ is tame we may assume that $T_{2}(A)$ is weakly sincere. Under this assumption, applying Proposition 7 and invoking the shape of the algebras of type (T44) and the properties of the convex subcategories $C_{n}, n \in \mathbb{N}$, we conclude that $T_{2}(\widetilde{A})=R=\bigcup_{n \in \mathbb{N}} C_{n}=$ $T_{2}(\widetilde{B})$, and consequently $T_{2}(A)=T_{2}(B)$ is tame, by Proposition 6. Therefore (iv) implies (i), and this finishes the proof.

Proof of Theorem 2. It follows again from [15, Proposition 2] that $T_{2}(A)$ of polynomial growth implies $T_{2}(\widetilde{A})$ of polynomial growth. Then the implication (i) \Rightarrow (ii) follows from the fact that all $p g$-critical algebras are not of polynomial growth and all concealed algebras of types $\widetilde{\mathbb{A}}_{m}, T_{5}, \widetilde{\mathbb{D}_{n}}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$, $\widetilde{\mathbb{E}}_{8}$ are wild (see Section 1).

The implication (ii) \Rightarrow (iii) is a direct consequence of Propositions 1 and 2.
Assume (iii) holds. Then Theorem 1 yields that $T_{2}(\widetilde{A})$ does not contain a convex subcategory which is concealed of type $\widetilde{\mathbb{A}}_{m}, T_{5}, \widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}_{8}}$. We also know that the support of any indecomposable $T_{2}(\widetilde{A})$-module is contained in a weakly sincere convex subcategory $T_{2}(B)$ of $T_{2}(\widetilde{A})$ for a finite convex subcategory B of \widetilde{A}. But then, by our assumption (iii) and Proposition 5, we conclude that $T_{2}(B)$ is of polynomial growth. Therefore $T_{2}(\widetilde{A})$ is of polynomial growth. Finally, it follows from the proof of Theorem 1 and the assumption that \widetilde{A} has no factor algebra Λ with Λ or Λ^{op} from the family (NPG) that the push-down functor $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ is dense. Hence, invoking again [15, Lemma 3], we infer that $T_{2}(A)$ is of polynomial growth, and (iii) implies (ii).

Proof of Theorem 5. This is a direct consequence of the above proof and the properties of the push-down functor $F_{\lambda}^{(2)}$ described at the beginning of this section.

Proof of Theorem 3. It follows from [15, Proposition 2] that if $T_{2}(A)$ is domestic then $T_{2}(\widetilde{A})$ is domestic, and consequently (i) implies (ii).

The implication $($ ii $) \Rightarrow($ iii $)$ is a direct consequence of Propositions 1-3.

Assume that (iii) holds. Let Λ be a finite convex subcategory of \widetilde{A}. Since Λ and $\Lambda^{\text {op }}$ have no factor algebra from the families (W) and (ND), we easily deduce that Λ and Λ^{op} have no factor algebra from the family (NPG). In particular, by Theorems 2 and $5, T_{2}(\widetilde{A})$ is of polynomial growth and the push-down functor $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ is dense. Further, it follows from Propositions 5 and 7 that every weakly sincere finite convex subcategory of the form $T_{2}(B)$ in $T_{2}(\widetilde{A})$ is domestic. Therefore $T_{2}(\widetilde{A})$ and finally $T_{2}(A)$ are also domestic. Hence (iii) implies (i) and this finishes the proof.

Proof of Theorem 4. It is well known (see [21, Lemma 3.3]) that if $T_{2}(A)$ is of finite representation type, then $T_{2}(\widetilde{A})$ is locally representation-finite, that is, every object of $T_{2}(\widetilde{A})$ belongs to the supports of finitely many isoclasses of indecomposable $T_{2}(\widetilde{A})$-modules. Thus, clearly, (i) implies (ii).

The implication (ii) \Rightarrow (iii) follows from Proposition 4.
Assume (iii) holds. Then Propositions 5 and 7 imply that every weakly sincere finite convex subcategory of the form $T_{2}(B)$ in $T_{2}(\widetilde{A})$ is of finite representation type and consequently every finite convex subcategory of $T_{2}(\widetilde{A})$ is of finite representation type. In particular, $T_{2}(\widetilde{A})$ is of polynomial growth, and so the push-down functor $F_{\lambda}^{(2)}: \bmod T_{2}(\widetilde{A}) \rightarrow \bmod T_{2}(A)$ is dense. Since $T_{2}(\widetilde{A})$ is strongly simply connected, we deduce from [17, Corollary 2.5] that $T_{2}(\widetilde{A})$ is locally support-finite [15], that is, for each object x of $T_{2}(\widetilde{A})$ the full subcategory of $T_{2}(\widetilde{A})$ formed by the supports of all indecomposable finite-dimensional $T_{2}(\widetilde{A})$-modules having x in the support is finite. But then we conclude that each object x of $T_{2}(\widetilde{A})$ lies in the support of at most finitely many (up to isomorphism) indecomposable finite-dimensional $T_{2}(\widetilde{B})$-modules, that is, $T_{2}(\widetilde{A})$ is locally representation-finite in the sense of [9], [21]. Therefore, by [21, Theorem 3.6], $T_{2}(A)$ is of finite representation type. Thus (iii) implies (i).

REFERENCES

[1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
[2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46.
[3] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math. Soc. 12 (1976), 371-382.
[4] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1985.
[5] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 217-285.
[6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469.
[7] —, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136.
[8] -, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
[9] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 69 (1981), 331-378.
[10] S. Brenner, Large indecomposable modules over a ring of 2×2 triangular matrices, Bull. London Math. Soc. 3 (1971), 333-336.
[11] -, On two questions of M. Auslander, ibid. 4 (1972), 301-302.
[12] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40.
[13] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483.
[14] -, Tame algebras and generic modules, ibid. 63 (1991), 241-265.
[15] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
[16] -, 一, On the representation type of locally bounded categories, Tsukuba J. Math. 10 (1986), 63-77.
[17] -, -, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
[18] P. Dräxler and A. Skowroński, Biextensions by indecomposable modules of derived regular length 2, Compositio Math. 117 (1999), 205-221.
[19] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
[20] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 1-71.
[21] -, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105.
[22] D. Happel and D. Vossieck, Minimal algebras of finite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243.
[23] M. Hishino and I. Miyachi, Tame triangular matrix algebras over self-injective algebras, Tsukuba J. Math. 11 (1987), 383-391.
[24] K. Igusa, M. I. Platzeck, G. Todorov and D. Zacharia, Auslander algebras of finite representation type, Comm. Algebra 15 (1987), 377-424.
[25] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
[26] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 (1991), 313-333.
[27] M. Lersch, Minimal wilde Algebren, Diplomarbeit, Düsseldorf, 1987.
[28] Z. Leszczyński, l-hereditary triangular matrix algebras of tame representation type, Arch. Math. (Basel) 54 (1990), 25-31.
[29] -, On the representation type of triangular matrix algebras over special algebras, Fund. Math. 137 (1991), 65-80.
[30] -, On the representation type of tensor product algebras, ibid. 144 (1994), 143-161.
[31] Z. Leszczyński and D. Simson, On the triangular matrix rings of finite type, J. London Math. Soc. 20 (1979), 386-402.
[32] Z. Leszczyński and A. Skowroński, Auslander algebras of tame representation type, in: Representation Theory of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1986, 475-486.
[33] N. Marmaridis, On the representation type of certain triangular matrix rings, Comm. Algebra 11 (1983), 1945-1964.
[34] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth simply connected algebras, Colloq. Math. 73 (1997), 301-330.
[35] J. A. de la Peña, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 353-369.
[36] -, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1807.
[37] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287.
[38] -, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[39] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
[40] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 (1986), 245-264.
[41] -, On tame triangular matrix algebras, Bull. Polish Acad. Sci. Math. 34 (1986), 517-523.
[42] -, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516.
[43] -, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 535-468.
[44] -, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447.
[45] -, Module categories over tame algebras, in: Representation Theory and Related Topics, CMS Conf. Proc. 19, Amer. Math. Soc., 1996, 281-313.
[46] -, Simply connected algebras of polynomial growth, Compositio Math. 109 (1997), 99-133.
[47] -, Tame algebras with strongly simply connected Galois coverings, Colloq. Math. 72 (1997), 335-351.
[48] L. Unger, The concealed algebras of the minimal wild hereditary algebras, Bayreuth. Math. Schr. 31 (1990), 145-154.
[49] J. Wittmann, Verkleidete zahne und minimal Algebren, Diplomarbeit, Bayreuth, 1990.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: zbles@mat.uni.torun.pl skowron@mat.uni.torun.pl

