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Misiurewicz maps unfold generically
(even if they are critically non-finite)

by

Sebastian v a n S t r i e n (Warwick)

Abstract. We show that in normalized families of polynomial or rational maps, Misiu-
rewicz maps (critically finite or infinite) unfold generically. For example, if fλ0 is critically
finite with non-degenerate critical point c1(λ0), . . . , cn(λ0) such that fkiλ0

(ci(λ0)) = pi(λ0)
are hyperbolic periodic points for i = 1, . . . , n, then

λ 7→ (fk1
λ (c1(λ))− p1(λ), . . . , f

kd−2
λ (cd−2(λ))− pd−2(λ))

is a local diffeomorphism for λ near λ0. For quadratic families this result was proved
previously in [DH] using entirely different methods.

1. Introduction and statement of results. In this paper we consider
families of polynomial or rational maps fλ depending (complex) analytically
on λ ∈ V where V is some neighbourhood of λ0 ∈ CN where N ∈ N. We say
that fλ is a normalized family of polynomial (resp. rational) maps if λ 6= λ′

implies that no affine (resp. Möbius) transformation conjugates fλ and fλ′ .
Let f = fλ0 and C(f) be the set of critical points of f . The map f is called
critically finite if each critical point ci ∈ C(f) of f eventually lands on a
periodic point pi of p. In other words,

fki(ci) = pi and f li(pi) = pi

where for simplicity we choose ki minimal so that fki(ci) is a periodic point.
We shall only deal with the case where pi are hyperbolic periodic points. In
that case f is in the larger class of Misiurewicz maps defined as follows. The
map f satisfies the Misiurewicz condition if each critical point c is either in
the Julia set or eventually mapped to a periodic point which is hyperbolic
(i.e., with multiplier not on the unit circle), and moreover ω(c) contains no
parabolic or critical points. By a theorem of Mañé [Ma2] (see the remarks
below our Theorem), these conditions imply that
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P (f) = the closure of
⋃

c∈C(f)

⋃

i>0

{f i(c)}

is a hyperbolic set and that all components of the Fatou set of f are in
the basins of super-attracting periodic orbits. Note that we only consider
forward iterates of critical points in the definition of P (f).

The aim of this paper is to prove the following theorem.

Main Theorem 1.1. Let fλ be a normalized family of polynomial or
rational maps such that f = fλ0 is a Misiurewicz map with n critical points
c1, . . . , cn. Assume that in the definition above, the critical points ci are all
non-degenerate and that f is not a Lattès map (see definition below). Then
there exists a neighbourhood W ⊂ CN of λ0 such that

• W 3 λ 7→ ci(λ) is holomorphic;
• there exists a holomorphic motion φ : P (f)×W → C such that (writing

φλ(z) = φ(z, λ)) for λ ∈ U the set Xλ =
⋃
z∈P (f){φλ(z)} is mapped into

itself by fλ and fλ : Xλ → Xλ is conjugate to f : P (f) → P (f) by a
homeomorphism hλ depending on λ with h0 = id;
• assuming that f(ci) are in C, the map

W 3 λ 7→ (fλ(c1(λ))− φλ(f(c1)), . . . , fλ(cn(λ))− φλ(f(cn)))

is an immersion (its derivative has rank n for all λ ∈W ).

Here we say that φ : X ×W → C is a holomorphic motion of X ⊂ C
parameterized by W 3 λ0 with W a subset of some complex manifold if
(writing φλ = φ(z, λ)) the following properties hold:

1. φλ0(z) = z for each z ∈ X;
2. P (f) 3 z 7→ φλ(z) is one-to-one for each λ ∈W ;
3. the map W 3 λ 7→ φ(z, λ) ∈ C is holomorphic for each z ∈ X.

In the main theorem we do not exclude the possibility that some of the
points f(ci) coincide. If f is critically finite, then the proof shows that the
periodic points pi(λ) depend holomorphically on λ ∈ U and

λ 7→ (fk1
λ (c1(λ))− pi(λ), . . . , fknλ (cn(λ))− pn(λ))

is a local immersion.

Remarks. 1. We say that f is a Lattès map if the following holds. Let
n > 1 be an integer, Λ be a lattice with nΛ ⊂ Λ and T 2 = C2/Λ be a
torus. Let gn : T 2 → T 2 correspond to z 7→ nz. Let π : T 2 → C be an even
twofold branched covering (for example the Weierstrass function). Since gn
is odd, there exists a rational map f , called a Lattès map, of degree n2

on the sphere so that π ◦ gn = f ◦ π. Since the periodic points of gn are
dense, the Julia set of f is equal to C. The critical points of f correspond
to critical values of π (critical points are branch points of π) and therefore
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#(C(f)∪P (f)) = 4. Since there are arcs of such maps (corresponding to Λ)
consisting of quasiconformally conjugate maps, the assumption in the main
theorem that f is not a Lattès map cannot be dispensed with.

2. The main theorem implies for example that if we normalize and pa-
rameterize the space of polynomials of degree d by

fλ(z) = zd + ad−2z
d−2 + . . .+ a0

where λ = (ad−2, . . . , a0) and consider f = fλ0 as above, then the map

λ 7→ (fk1
λ (c1(λ))− p1(λ), . . . , fkd−2

λ (cd−2(λ))− pd−2(λ))

is a local diffeomorphism for λ near λ0.
3. If fλ and f̃λ are two families which are Möbius equivalent, then the

derivatives at λ = λ0 of

(1.1) λ 7→ (fλ(c1(λ))− φλ(f(c1)), . . . , fλ(cn(λ))− φλ(f(cn)))

and its corresponding object for f̃λ coincide. This is because the right hand
side vanishes at λ = λ0 and is the same for fλ and T ◦ fλ for any affine map
T and because the derivative with respect to λ of (1.1) with fλ replaced
by f̃λ = Mλ ◦ fλM−1

λ is the same as with fλ replaced by T ◦ fλ where
T = DMλ0(0).

4. If fλ is a normalized family then N ≤ n. Moreover, any normalized
family can be (locally) embedded in a normalized family with N = n. This
holds because one can consider the space of all polynomial (resp. rational)
maps of the degree considered and define f ∼ g if f and g are affinely (resp.
Möbius) conjugate. Each equivalence class is a two-dimensional (resp. three-
dimensional) complex manifold. Indeed, if f(z) = a0z

n + a1z
n−1 + . . .+ an

with a0 6= 0 and M(z) = αz + β then M−1 ◦ f ◦ M(z) = a0α
n−1zn +

αn−2(a0nβ + αn−2a1)zn−1 + . . . , which is a two-parameter family in α, β.
If f is rational of degree n we can write

f(z) =
a0z

n + . . .+ an
b0zn + . . .+ bn

such that (a0, b0) 6= (0, 0) and (an, bn) 6= (0, 0). A Möbius transformation
close to the identity map can be written as M(z) = (αz + β)/(1 + γz)
and then M−1(z) = (−z + β)/(γz − α). Then M−1 ◦ f ◦ M is a locally
(complex) three-dimensional manifold in the space of rational maps. To
see this fix three special points p1, p2, p3 of f (say periodic points or criti-
cal points). Then (α, β, γ) 7→ (M−1(p1),M−1(p2),M−1(p3)) ∈ C3 forms a
complex three-dimensional manifold through (p1, p2, p3) ∈ C3 consisting of
the corresponding special points for M−1 ◦ f ◦M .
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5. In [Tsu], Masata Tsujii proved that if Qt(x) = t− x2 with t real is a
Collet–Eckman map (i.e. lim infn→∞ |DQnt (Qt(0))|1/n > 1) then

lim
n→∞

∂
∂s (Qns (0))|s=t
DQn−1

t (Qt(0))
> 0.

This implies our result in the real quadratic case. It seems that his method
really requires the parameter t to be real.

Using the results of Tan Lei [TL] one can deduce from the main theorem
similarities of the Julia set and the parameter space.

2. Proof in the case where all critical points of f are eventually
mapped to repelling periodic points. Even though the general case is
not much more difficult, we shall first prove this case, because in this case
the proof is a little more concrete. That ci and pi depend analytically on λ
is simply a consequence of the implicit function theorem. So it remains to
show that the assumption that the family is normalized implies that

λ 7→ (fk1(c1(λ))− p1(λ), . . . , fkn(cn(λ))− pn(λ))

is a local immersion. The main ingredient for proving this is the following

Theorem 2.1 (Uniqueness part of Thurston’s realization theorem). Let
f, f̃ : C → C be critically finite rational maps which are combinatorially
equivalent. Then f and f̃ are conjugate by some Möbius transformation.

Here f and f̃ are called combinatorially equivalent if there exist two
orientation preserving homeomorphisms θ1, θ2 : C → C such that f ◦ θ1 =
θ2 ◦ f̃ , θ1 = θ2 on P (f), θi(P (f)) = P (f̃) and θ1, θ2 are isotopic relative
to P (f). (Assume that P (f) and P (f̃) are finite in this definition.)

We shall apply this uniqueness result, by using the following hyperbolic
structure near periodic points.

Lemma 2.1. For each repelling periodic point p of period l there exist
an open topological disc U , two open topological discs U0, U1 whose closures
are disjoint and contained in U and two positive integers s1, s2 such that
fsj : U j → U is a diffeomorphism for j = 1, 2. Here p ∈ U0 and s0 = l.
We can assume that fsj |Uj are the first return maps of f to U . Moreover ,
we can choose U with arbitrarily small diameter.

P r o o f. Take a small open Euclidean disc V around p so that one branch
of f−l maps V compactly into V . Call this inverse branch g. Let V−i = gi(V ).
So p ∈ V−i and V−(i+1) ⊂ V−i. Since the Julia set is perfect, and the
preimages of non-exceptional points are dense in the Julia set, there exists
an integer i and some preimage x of p which is contained in V−i \ V−(i+1).
We can assume that x is not a preimage of a critical point and that the first
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iterate of x which enters V−i is p. Let m be so that fm(x) = p. Hence there
exists a small disc B around x which is mapped by fm diffeomorphically
onto some Vi′ with i′ ≥ i. We can arrange it so that f t(B) ∩ Vi′ = ∅ for
t = 0, 1, . . . ,m − 1. So define U = V−i′ , U0 = V−(i′+1) and U1 = gi

′−i(B).
Then U1 ⊂ V−i′ \ V−(i′+1) = U \ U0 and f l : U0 → U , fm+(i′−i)l : U1 → U
are both diffeomorphisms. By construction, each of these maps is a first
return to U , and U0, U1 have disjoint closures.

F |U j := fsj defines a polynomial-like F : U0 ∪ U1 → U . The set

Λ = {z ∈ U0 ∪ U1 : F j(z) ∈ U0 ∪ U1}
forms a hyperbolic Cantor set (by putting the Poincaré metric on U , the
two maps (F |U i)−1 : U → U i become strictly contracting). The dynamics
of F : Λ → Λ is conjugate to the shift σ : {0, 1}N → {0, 1}N where the
conjugacy is A(z) = (am(z))m≥0 with am(z) defined so that fm(z) ∈ Uam(z).
The previous lemma implies that there exists a hyperbolic Cantor set Λ
containing p, and that p is the limit of a sequence of periodic points qi ∈ Λ.
The next lemma shows that this structure persists for nearby maps.

Lemma 2.2. Let f = fλ0 be as before. Then there exists K < ∞ and a
neighbourhood W of λ0 such that for each λ ∈W ,

• there are branches of f−siλ |U which are ε-close to (f |Ui)−si ;
• if we define U iλ := (f−siλ (U)) then Fλ|U iλ = fsiλ still defines a poly-

nomial-like map Fλ : U0
λ ∪ U1

λ → U ;
• there exists a family of K-quasiconformal hλ : U → U depending

continuously on λ and with h0 = id so that hλ sends Λ onto Λλ and
hλ : Λ→ Λλ conjugates F : Λ→ Λ to Fλ : Λλ → Λλ;
• for each z ∈ Λ, the map W 3 λ 7→ hλ(z) ∈ U is holomorphic.

P r o o f. This can be proved easily by applying the λ-Lemma (see [MSS]).
It is also easy to prove it by hand. Let h(0)

λ : U → U be a family of diffeo-
morphisms depending holomorphically on λ which map U → U , U0 → U0

λ ,
U1 → U1

λ, and so that h(0)
0 (0) = id and

(2.2) h
(0)
λ (0) ◦ fsi = fsiλ ◦ h(0)

λ (0)

on ∂U i, i = 1, 2. Provided λ is close to λ0 this is possible, and moreover one
can find K such that h(0)

λ is K-quasiconformal. Next define h(1)
λ to be equal

to h(0)
λ outside U0∪U1 and to f−siλ ◦h(0)

λ ◦fsi on U i. Because of (2.2), h(1)
λ is a

continuous map on U . It is also K-quasiconformal. Continuing this pullback
construction we get a sequence of K-quasiconformal homeomorphisms h(n)

λ :
U → U such that

(2.3) h
(n)
λ ◦ F = Fλ ◦ h(n)

λ
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outside Λ(n) = {z ∈ U : z, . . . , Fn(z) ∈ U0∪U1}. Note that h(n)
λ agrees with

h
(n−1)
λ outside Λ(n− 1). Hence as n tends to infinity, h(n)

λ converges to a K-
quasiconformal homeomorphism hλ conjugating F : Λ→ Λ to F : Λλ → Λλ.
For each z ∈ Λ, hλ(z) is the limit of φ(an)

λ ◦ φ(an−1)
λ ◦ . . . ◦ φ(a0)(x) where x

is an arbitrary point of U , (am) is the coding A(z) and φ
(i)
λ := (fsiλ |U iλ)−1.

Since all these maps are contractions depending holomorphically on λ, it
follows that for each fixed z ∈ Λ, the map W 3 λ 7→ hλ(z) is holomorphic.

Note that the conjugacy is so that z ∈ Λ and hλ(z) ∈ Λλ have the same
coding by the map A above (where in the definition of the coding of Λλ we
have of course to take am(z̃ ) so that fmλ (z̃ ) ∈ Uam(z̃ )

λ for the coding of Λλ).
In other words, when we fix for example a periodic q ∈ Λ then there exists a
unique corresponding periodic point qλ = hλ(q) ∈ Λλ for each λ sufficiently
close to λ0. The map λ 7→ qλ is holomorphic.

Let now f = fλ0 be a critically finite rational map. Associate polynomial-
like maps Fi : U0(pi) ∪ U1(pi) → U(pi) with each of the periodic points
pi = fki(ci) such that Fi|U j(pi) = fsi,j are first return maps of f to U(pi).
Let Λ(pi) be the corresponding Cantor sets and let W be a neighbourhood
of λ0 such that the previous lemma holds for each of the periodic points pi.

Proposition 2.1. There exists a neighbourhood W of λ0 with the fol-
lowing property. Assume that λ, λ′ ∈W and that fλ and fλ′ are so that

fkiλ (ci(λ)) ∈ Λλ(pi) and fkiλ′ (ci(λ
′)) ∈ Λλ′(pi)

are both periodic points of the same period and in fact correspond to one
and the same periodic point qi ∈ Λ(pi) of f = fλ0 , i.e., are respectively
equal to hλ(qi) and hλ′(qi). Then fλ and fλ′ are conjugate via a Möbius
transformation.

Note that the period of the periodic orbit from the above proposition
tends necessarily to infinity as λ, λ′ tend to λ0.

P r o o f (of Proposition 2.1). Step 1. Take U(pi) so that they are all
disjoint and take the family of homeomorphisms hλ : U(pi) → U(pi) from
Lemma 2.2. Next let θ = hλ′ ◦ h−1

λ . This homeomorphism conjugates the
polynomial-like maps

Fi,λ : U0
λ(pi) ∪ U1

λ(pi)→ U(pi)

to

Fi,λ′ : U0
λ′(pi) ∪ U1

λ′(pi)→ U(pi).

Note that θ|∂U(pi) = id and Fλ′ ◦ θ = θ ◦ Fλ on
⋃
i,j U

j
λ(pi).

Step 2. We have Fλ|U jλ(pi) = f
si,j
λ . Let Wi,λ be the union of the first

si,0 − 1 iterates of U0
λ(pi) together with the first si,1 − 1 iterates of U1

λ(pi).
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(Note that we may assume that all these iterates are disjoint, since Fλ|U jλ(pi)
is a first return map.) Define Wi,λ′ similarly. Extend θ to a homeomorphism⋃
Wi,λ →

⋃
Wi,λ′ so that fλ′ ◦ θ(z) = θ ◦ fλ(z) whenever z ∈ ⋃Wi,λ.

Step 3. Take a disc Vi,j of radius r centred at f j(ci) for j = 0, . . . , ki − 1.
Provided λ, λ′ are sufficiently close to λ0, one has f jλ(ci(λ)), f jλ′(ci(λ

′))
∈ Vi,j . Assume that r > 0 is so small that all these sets Vi,j are pair-
wise disjoint (or coincide) and are disjoint from

⋃
Wi,λ and

⋃
Wi,λ′ . Now

choose a K̃-quasiconformal homeomorphism θ : Vi,j → Vi,j which is equal
to the identity on the boundary of Vi,j and so that it maps f jλ(ci(λ)) onto
f jλ′(ci(λ

′)). Next define θ = id outside
⋃

(Vi,j ∪Wi). Thus θ : C → C be-
comes a K̃-quasiconformal homeomorphism which sends the post-critical set
of fλ to that of fλ′ . Note that we can choose K̃ close to one (i.e., θ close to
a Möbius map) provided λ, λ′ are close to λ0.

Step 4. Let us now assume that the neighbourhood W is small and K̃ is
close to one. Then define a conjugacy φ between fλ and fλ′ as the limit of a
sequence of quasiconformal homeomorphisms θn. Here we define θn induc-
tively as follows. Let θ0 = θ and given a K̃-quasiconformal homeomorphism
θn which sends the post-critical set of fλ to that of fλ′ , define a homeomor-
phism θn+1 with the same properties as follows. Take z and consider the
set f−1

λ′ ◦ θn ◦ fλ(z). Provided z 6∈ Vi,0, this set contains precisely one point
z′ which is close to z. (Provided ε > 0 is sufficiently small, there exists a
neighbourhood W of λ0 such that if λ, λ′ ∈W , then θn is close to the iden-
tity map and so there is a unique point z′ ∈ f−1

λ′ ◦ θn ◦ fλ(z) which is ε-close
to z. This does not hold when z ∈ Vi,0 because V ′i,0 := θ(fλ(Vi,0)) contains
a critical value of fλ′ .) So define θn+1(z) = z′ in this way for z 6∈ ⋃Vi,0.
Thus θn+1 is a homeomorphism sending the complement of

⋃
Vi,0 to the

complement of
⋃
V ′i,0. Since θn+1 is now already defined from ∂Vi,0 to ∂V ′i,0,

this map extends uniquely to a homeomorphism sending Vi,0 to V ′i,0 with
θn+1(z) ∈ f−1

λ′ ◦θn◦fλ(z) (since the map is prescribed on the boundary, con-
tinuity of θn+1 forces uniqueness in the choice of the preimages). Note that
θn+1 is again a K̃-quasiconformal homeomorphism sending the post-critical
set of fλ to that of fλ′ and θn+1◦fλ′ = θn◦fλ(z). Now taking a subsequence
of θn which converges to some K̃-quasiconformal homeomorphism φ we get
φ ◦ fλ′ = φ ◦ fλ(z). From Thurston’s uniqueness result, it follows that fλ′
and fλ are conjugate by a Möbius transformation.

We shall use the following

Lemma 2.3. Let G = (G1, . . . , Gn) : V → Cn be a complex analytic map
where λ0 ∈ V ⊂ Cn. Assume that G has an isolated zero at λ0. Then there
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is (locally) a univalent parameterization

Ψ : C→ {z : G2(z) = . . . = Gn(z) = 0}
with Ψ(0) = λ0.

P r o o f. This is a consequence of the Uniformization Theorem (see for
example [AGLV]).

Proof of the Main Theorem in the critically finite case. Assume that fλ
is a normalized family depending on λ ∈ W ⊂ Cn, and consider the map
G : W → Cn defined by

λ 7→ (fk1
λ (c1(λ))− p1(λ), . . . , fknλ (cn(λ))− pn(λ)).

Let us first show that G has an isolated zero at λ0. Indeed, otherwise there
exist a sequence of parameters λ(j) converging to λ0 such that G(λ(j))
vanishes. This means that for each fixed i, each fkiλ(j)(ci(λ(j))) corresponds
to the same periodic point. Hence by Proposition 2.1 the maps fλ(j) all
coincide up to a Möbius transformation, contradicting the assumption that
fλ is a normalized family.

So we may assume that the zero of G is isolated. Let G1, . . . , Gn be the
coordinate functions of G and let Zi be the set of λ ∈W for which Gj(λ) = 0
for all j 6= i. Let Ψi : C → Zi be the univalent parameterization of Zi with
Ψi(0) = λ0.

Claim. (Gi ◦ Ψi)′(0) 6= 0.

P r o o f. Assume the claim is false. Choose a periodic point qi(λ) ∈ Λλ
distinct from pi(λ) such that Ri(λ) := qi(λ)−pi(λ) is close to zero for all λ ∈
W . The existence of such periodic points follows from Lemmas 2.1 and 2.2.
Note that pi(λ) 6= qi(λ) for all λ ∈W . Note that Gi(λ) = fkiλ (ci(λ))− pi(λ)
and write

G̃i(λ) := fkiλ (ci(λ))− qi(λ) = (fkiλ (ci(λ))− pi(λ)) + (pi(λ)− qi(λ))

and

Ui(λ) := (pi(λ)− qi(λ)).

Then G̃i = Gi + Ui. Choose δ > 0 so small that Ψ(t) ∈ W for all t ∈
Bδ(0). Since we have assumed that the claim does not hold, Gi ◦ Ψi has
a zero of multiplicity d ≥ 2 at 0. Hence Gi ◦ Ψi(t) = tdg(t) where g(t) is
some holomorphic function on the disc Bδ(0) with g(0) 6= 0. By choosing
δ sufficiently small, we may assume that g(t) 6= 0 for all t ∈ Bδ(0). Let us
show that Bδ(0) 3 t 7→ G̃i ◦ Ψi(t) has several distinct zeros provided we
choose qi(λ) sufficiently close to pi(λ) (which means that Ui is close to 0).
Note that

0 = G̃i ◦ Ψi(t) = Gi ◦ Ψi(t) + Ui ◦ Ψi(t) = tdg(t) + Ui ◦ Ψi(t)
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is equivalent to

td
g(t)
u(t)

= −1

where u(t) = Ui◦Ψi(t) (note that u(t) 6= 0 for t ∈ Bδ(0)). Since g(t)/u(t) 6= 0
for all t ∈ Bδ(0), it follows that the closed curve ∂Bδ/2(0) 3 t 7→ %(t) :=
g(t)/u(t) has winding number zero, and that ∂Bδ/2(0) 3 t 7→ td%(t) has
winding number d. Moreover, the image of ∂Bδ/2(0) 3 t 7→ td%(t) is outside
the ball B3(0) (provided we choose qi(λ) close enough to pi(λ) because
then u(t) is small but not zero in Bδ(0)). It follows that there are d points
t ∈ Bδ/2(0) such that td%(t) = −1. To show that these points do not occur
with higher multiplicity we need the following

Subclaim. −1 is not a critical value of the map Bδ/2(0) 3 t 7→ td%(t) =
−1 provided we choose δ > 0 sufficiently small and qi sufficiently close to pi
(which means that u(t) is close to zero).

P r o o f. The homeomorphism ht which conjugates fΨi(0) to fΨi(t) is K-
quasiconformal and maps pi(Ψi(0)), qi(Ψi(0)) to pi(Ψi(t)), qi(Ψi(t)). By nor-
malizing we can assume that h̃t maps u(0) to u(t) and fixes 0, 1,∞. There-
fore, according to Lemma 4.1 in the appendix, there exists K ′ so that for
all t ∈ Bδ(0),

1
K ′
|u(0)|1/K ≤ |u(t)| ≤ K ′|u(0)|1/K

and (going along a line through 0 to u(0)/|u(0)|) this implies that for
s ∈ (0, 1),

∣∣∣∣ arg
(
h̃t

(
s
u(0)
|u(0)|

))
− arg

(
h̃t

(
u(0)
|u(0)|

))∣∣∣∣ ≤ K ′ ·
1

− log s
.

Write u(t) = exp(v(t)) (since u(t) is close to zero, <(v(t)) is close to −∞).
Choose v(t) so that =(v(0)) ∈ [0, 2π). The previous inequalities show that

K<(v(0)) ≤ <(v(t)) ≤ 1
K
<(v(0)),

|=(v(t))| ≤ K ′|<(v(0))|+K ′′ ≤ K ′′′|<(v(0))|,
provided u(0) is close enough to 0 (which means that <(v(0)) is close to−∞).
In particular,

(2.4) |v(t)| ≤ K1|<(v(0))|
for t ∈ Bδ(0). Because of the Cauchy integral formula this implies

(2.5) |v′(t)| ≤ K2|<(v(0))|
for |t| ≤ δ/2. So let us assume by contradiction that td%(t) = −1 and that t
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is a critical point of t 7→ td%(t). Since %(t) = g(t)/u(t) this gives

0 = dtd−1%(t) + td
g′(t)u(t)− g(t)u′(t)

[u(t)]2
,

i.e.,

0 = dg(t) + tg′(t)− tg(t)
u′(t)
u(t)

= dg(t) + tg′(t)− tg(t)v′(t).

Since g is non-zero on Bδ(0), this means that |tv′(t)| ≥ K3 > 0 for t ∈ Bδ(0)
provided δ > 0 is sufficiently small (where K3 only depends on g and not
on which point qi we choose). From (2.5) this gives

|t| · |<(v(0))| ≥ K4 > 0

and, since −1 = t3%(t),

1 = |t|d|%(t)| ≥ |t|d exp(−K5<(v(0)))

(where we used (2.4)). Clearly these two inequalities cannot both hold when
|u(0)| is small (because then <(v(0)) is close to −∞). This completes the
proof of the subclaim.

From all this it follows that tdg(t)/r(t) = −1 has d distinct solutions
inside the disc Bδ/2(0). In particular, if d > 1 then G̃i ◦ Ψi has at least two
distinct zeros t, t′ ∈ Bδ/2(0). It follows that λ = Ψi(t) and λ′ = Ψi(t′) are
distinct zeros of G̃i. Using Proposition 2.1 we again obtain a contradiction
if d > 1. This concludes the proof of the claim.

From the claim we see that Ψ ′i(0) 6= 0 and Zi is a smooth curve in Cn
through λ0 ∈ Cn. Hence we also deduce that DGi(vi) 6= 0 where vi is any
unit tangent vector in Tλ0Zi ⊂ Tλ0Cn. Since G maps Zi to the ith coordinate
plane in Cn it follows that the tangent lines at λ0 of the analytic curves Zi
are linearly independent, i.e. v1, . . . , vn forms a basis of Tλ0Cn. It follows
that DG′(λ0) 6= 0 and that G is a local diffeomorphism near λ0.

3. Proof in the Misiurewicz case. The main tools in the Misiurewicz
case are the following two theorems of Mañé (for the proofs, see [Ma2] and
also [ST]).

Theorem 3.1. Let f : C → C be a rational map. If a point x ∈ J(f)
is not a parabolic periodic point and is not contained in the ω-limit set of a
recurrent critical point , then for all ε > 0 there exists a neighbourhood U of
x such that

(1) for every k ≥ 0, each connected component of f−k(U) has spherical
diameter ≤ ε;
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(2) there exists N > 0 depending only on f such that for all k ≥ 0 and
every connected component V ′ of f−k(U),

deg(fk : V ′ → U) ≤ N ;

(3) for all ε1 > 0 there exists k0 such that every connected component of
f−k(U) for n ≥ k0 has spherical diameter ≤ ε1.

Theorem 3.2. Let f : C → C be a rational map and Λ ⊂ J(f) a
compact invariant set not containing critical points and parabolic periodic
points. Then Λ is either an expanding hyperbolic set or Λ ∩ ω(c) 6= ∅ for
some recurrent critical point c of f .

In order to prove the main theorem we shall generalize all the steps
from the previous section. First note that a Misiurewicz map cannot have
a Siegel disc or a Herman ring F . Indeed, since no critical point of a Misiu-
rewicz map is recurrent, we can apply Theorem 3.1 to any point x in ∂F .
But property (3) from that theorem clearly cannot hold for a neighbour-
hood U of x since U would intersect the Siegel disc or Herman ring. So
a Misiurewicz map f cannot have non-hyperbolic periodic points (i.e., all
eigenvalues have norm 6= 1). Let us also show that f can have no periodic
points with eigenvalues |µ| < 1. Indeed, a periodic attractor has a critical
point in its immediate basin. Since f is a Misiurewicz map, this critical
point is eventually mapped into a periodic orbit. This is only possible if the
critical point actually lies on the attracting periodic orbit. It follows that
for a Misiurewicz map the only Fatou components correspond to basins of
super-attracting periodic points.

Theorem 3.3 (Uniqueness part of Thurston’s realization theorem in
the Misiurewicz case). Let f, f̃ : C → C be Misiurewicz maps which are
K-quasiconformally conjugate. Moreover , assume that f, f̃ are not Lattès
maps. Then f and f̃ are conjugate by some Möbius transformation.

P r o o f. Let h be the quasiconformal conjugacy between f and f̃ . We
may assume that the restriction of h to the Fatou set is conformal. Indeed,
let c1, . . . , cs be the critical points of f which are not in the Julia set and
let c̃i = h(ci). Since the maps are Misiurewicz, these critical points are
either periodic or eventually mapped to a periodic critical point. Hence
there exists a conformal conjugacy h1 of f from a neighbourhood O of the f -
forward orbits of {c1, . . . , cs} to a neighbourhood Õ of the f̃ -forward orbits of
{c̃1, . . . , c̃s} with h̃(ci) = c̃i. (Here we use the fact that the map near a super-
attracting periodic orbit is locally conformally conjugate to a map of the
form z 7→ zl and moreover that critical points of f have the same order as the
corresponding critical points of f̃ since these maps are conjugate.) LetH be a
K ′-quasiconformal homeomorphism which is equal to h on a neighbourhood
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of J(f) and coincides with h1 near the f -forward orbits of {c1, . . . , cs}. Next
we can define a sequence of quasiconformal homeomorphisms Hn such that
Hn+1 ◦ f̃ = f ◦ Hn. Since Hn = Hn+1 outside the basins of the critical
points ci (and also on f−n(O)), Hn converges to a conjugacy H∞ which is
also K ′-quasiconformal. By construction H∞ is conformal on the basin of
super-critical periodic points, and therefore outside the Julia set.

It is very easy to see that for a Misiurewicz map, J(f) either is equal to
C or has zero Lebesgue measure. Indeed, assume that the Lebesgue measure
of J(f) is positive. Take a Lebesgue density point y of J(f) and a limit point
x of fni(y). Let |A| denote the Lebesgue measure of a measurable set A. Fix
two discs U ′ ⊂ U centred at x where U is taken so small that Theorem 3.1
holds. Using Mañé’s Theorem 3.1 and applying Koebe at most N times, we
find that the component Bi of f−ni(U ′) which contains y is “approximately
round”, and so this gives |Bi ∩ J(f)|/|Bi| → 1 and

|U ′ ∩ J(f)|/|U ′| = |fni(Bi) ∩ J(f)|/|fni(Bi)| → 1.

Hence if J(f) has positive Lebesgue measure then J(f) contains an open set,
and so J(f) = C. So if J(f) is not equal to C then H∞ is almost everywhere
conformal and therefore a Möbius transformation.

So assume J(f) = C. If the quasiconformal distortion of H∞ does not
vanish almost everywhere then it induces a measurable line field µ on the
Julia set of f which is invariant under f . Now we argue as in [McM] (see
also [LS2]): take a density point y of the support of µ at which µ is almost
continuous (i.e., for any % > 0 and any sequence of balls Bi centred at y,
the set where the angle of the line field µ|Bi differs by more than % from
some constant line field has Lebesgue measure θi|Bi| where θi tends to zero).
Using again Mañé’s Theorem 3.1 and Koebe in the same way as above, we
obtain a small neighbourhood U ′ of x on which µ defines a smooth foliation
with at most N singularities (because by Mañé’s Theorem one can pass
through the critical point at most N times). From Lemma 3.16 of [McM] it
follows that f is a Lattès map, a contradiction.

We want to generalize Lemma 2.1 by showing that each critical value is
a non-isolated point in some hyperbolic Cantor set (assuming that f is a
Misiurewicz map).

Lemma 3.1 (Analogue of Lemma 2.1). Assume that f is a Misiurewicz
map. Then there exists a neighbourhood O of the set of critical points such
that

XO = {z : fn(z) 6∈ O for all n ≥ 0}
is a compact hyperbolic set and for each critical point c there exists a se-
quence of preperiodic points in XO converging to f(c).
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P r o o f. Since f is Misiurewicz, any x ∈ ω(c) satisfies the assumptions of
Theorems 3.1 and 3.2 (f has no neutral periodic points). Theorem 3.2 gives
that XO is hyperbolic for any neighbourhood O of C(f). So let us prove
the last assertion of this lemma. Since f is a Misiurewicz map, there exists
ε > 0 such that the distance of all forward iterates of critical points to C(f)
is at least 2ε. If c is eventually mapped to a repelling periodic orbit then
Lemma 2.1 implies that one can choose O so that f(c) is a non-isolated point
in XO. So assume this is not the case and take x ∈ ω(c) ⊂ J(f). Let U be
the neighbourhood of x from Theorem 3.1 corresponding to the above choice
of ε. Let y be a repelling periodic point in U ∩ J(f) and let ε1 ∈ (0, ε) be so
that the orbit of y has distance ≥ ε1 to C(f). Let O be the ε1-neighbourhood
of C(f). Since x ∈ ω(c), there exist arbitrarily large k̂ with f k̂(c) ∈ U , and
the preimages of U have diameter ≤ ε. In particular, there exists a point
y′ = y′(k̂) in the component of f−k̂(U) containing c such that f k̂(y′) = y

(i.e., y′ is preperiodic) and dist(f i(y′), f i(f(c))) ≤ ε for i = 0, 1, . . . , k̂. In
particular, this implies that f i(y′) has distance ≥ ε′ to C(f) for all i ≥ 1
(by the definition of ε and ε′). From part (3) of Theorem 3.1, y′(k̂) tends to
c as k̂ →∞. The assertion of the lemma follows.

The persistence of XO under (small) changes of the parameter follows
from the hyperbolicity of XO:

Lemma 3.2 (Analogue of Lemma 2.2 and Proposition 2.1). Let f = fλ0

be as before and let X be a hyperbolic set. Then there exists a neighbourhood
W of λ0 such that for λ ∈W ,

• there exists a family of K-quasiconformal hλ : C → C depending
continuously on λ and with h0 = id so that Xλ = hλ(X) and the restriction
hλ : X → Xλ conjugates F : X → X to Fλ : Xλ → Xλ;
• for each z ∈ X, the map W 3 λ 7→ hλ(z) ∈ U is holomorphic.

P r o o f. Use Theorem III.1.6 of [MS] and the λ-Lemma (cf. also [McM]).

Proof of Main Theorem. Consider the map

G(λ) = (fλ(c1(λ))− φλ(f(c1)), . . . , fλ(cn(λ))− φλ(f(cn)))

and let Gi be its coordinate functions. Then G has an isolated zero at
λ0 because otherwise we get a sequence of Misiurewicz maps fλ(n) with
λ(n)→ λ0 and G(λ(n)) = 0. Because of Lemma 3.2 all these maps fλ(n) are
quasiconformally conjugate to Gλ0 and by Theorem 3.3 they are conformally
conjugate. This contradicts the assumption that fλ is a normalized family.

So assume that G has an isolated zero, and let Zi be the set of λ ∈ W
with Gj(λ) = 0 for all j 6= i. As before, let Ψi : C → Zi be univalent
parameterizations of Zi with Ψi(0) = λ0. We again need to show that
(Gi ◦ Ψi)′(0) 6= 0. Let us consider a few cases.
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Case 1: The critical point ci is in the Julia set. In this case, by Lem-
ma 3.1, there is a hyperbolic set containing hyperbolic periodic points qi
arbitrarily close to f(ci). Thus the proof is identical to the proof in the
previous section.

Case 2: The critical point ci is periodic (i.e., a super-attracting periodic
point) of, say, period l = li. In this case, let pi(λ) be the periodic point of
fλ with pi(λ0) = ci. Note that pi(λ) and ci(λ) depend analytically on λ by
the implicit function theorem. Note that by the chain rule

(f lλ)′(pi(λ)) = g(λ)(pi(λ)− ci(λ))

because the critical point of f is non-degenerate. Here g(λ) is non-zero.
Now if

t 7→ Ψi ◦Gi(t) = (pi(Gi(t))− ci(Gi(t)))
has derivative zero at t = 0 then there are at least two parameters λ = Gi(t)
and λ′ = Gi(t′) arbitrarily close to λ0 such that

(f lλ)′(pi(λ)) = (f lλ′)
′(pi(λ′))

(and are close to 0, i.e., the points are attracting). But then we conformally
conjugate the restriction of fλ to a neighbourhood of pi(λ) to the restriction
of fλ′ to a neighbourhood of pi(λ′) in such a way that these neighbourhoods
contain fλ(ci(λ)) respectively fλ′(ci(λ′)) and the conjugacy maps one criti-
cal point to the other. Then one can extend the conjugacy so that it becomes
conformal on the basin of these attracting fixed points. But since the for-
ward orbits of other critical points still remain outside neighbourhoods of
the critical points (or are still periodic), we can then extend this to a quasi-
conformal conjugacy between fλ and fλ′ ; now by using the same proof as in
Theorem 3.3 this shows that in fact fλ and fλ′ are conjugate via a Möbius
transformation.

4. Appendix. In the next lemma we prove that a quasiconformal hom-
eomorphism fixing 0 sends a line 0 to a curve through 0 which spirals no
faster than logarithmically.

Lemma 4.1. For each K ≥ 0 there exists K ′ < ∞ with the following
property. Let h : C → C be a K-quasiconformal homeomorphism fixing 0,
1 and ∞. Then for z ∈ C, s > 0, φ ∈ R,

(4.6)
1
K ′
|z|K ≤ |h(z)| ≤ K ′|z|1/K ,

(4.7) |arg(h(seiφ))− arg(h(eiφ))| ≤ K ′ · 1
− log |s| .

(The difference of the arguments is well defined if we take a continuous lift
of (0, 1) 3 s 7→ arg(h(seiφ)).)
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If, for r > 0 and φ ∈ R, we write h(reφi) = h1(r, φ)eh2(r,φ)i with
h1(r, φ) ≥ 0 and h2(r, φ) ∈ R, then (4.7) gives

(4.8) |h2(r, φ)− h2(1, φ)| ≤ K ′

− log r
.

P r o o f. Let F be the family of K-quasiconformal homeomorphisms fix-
ing 0, 1,∞. By Theorem 2.1 of [Le], F is an equicontinuous (and normal)
family. From this it follows (see Theorem 2.4 of [Le]) that there exists
c(K) > 0 such that for any r > 0,

(4.9)
maxφ |h(reiφ)|
minφ |h(reiφ)| ≤ c(K).

According to Theorem II.3.1 of [LV], there exists a Hölder function
φK : R+ → R+ such that for any K-quasiconformal homeomorphism h̃
fixing 0 and sending the unit disc into itself, one has

(4.10) |h̃(z)| ≤ φK(|z|).
Combining (4.9) and (4.10) gives (4.6). This also shows that the h-image
of the annulus {1/2 ≤ |z| ≤ 1} is contained in an annulus of the form
{1/M ≤ |z| ≤M} where M only depends on K. Now consider the h-image
of a line of the form seiφ with s ∈ [1/2, 1]. By the normality of F the maximal
variation of [1/2, 1] 3 s 7→ arg(h(seiφ)) is bounded by some number M ′

which only depends on K (otherwise there would be a sequence of maps
hn ∈ F for which the corresponding M ′n is at least n; such a sequence
could not have a subsequence converging to a homeomorphism mapping
{1/2 ≤ |z| ≤ 1} into {1/M ≤ |z| ≤ M}, contradicting the normality of F).
Now consider the h-image of an annulus {1/2k+1 ≤ |z| ≤ 1/2k}. By rescaling
h as follows: h̃(w) = h(w/2k)/h(1/2k), we get h̃ ∈ F . Hence we can apply the
previous argument to h̃ and this shows that the variation of [1/2k+1, 1/2k] 3
s 7→ arg(h(seiφ)) is again bounded by M ′. This means that the variation of
[1/2k, 1] 3 s 7→ arg(h(seiφ)) is bounded by M ′k, which proves the second
inequality in the lemma.
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