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Magnetic flows and Gaussian thermostats
on manifolds of negative curvature

by

Maciej P. Wojtkowski (Tucson, AZ)

Abstract. We consider a class of flows which includes both magnetic flows and Gaus-
sian thermostats of external fields. We give sufficient conditions for such flows on manifolds
of negative sectional curvature to be Anosov.

0. Introduction. The geodesic flow on a Riemannian manifold describes
inertial motion of a point particle confined to the manifold. If the manifold
has negative sectional curvature we obtain an Anosov flow, a prime example
of a dynamical system with good statistical properties. In the present paper
we study flows generated by special forces, magnetic flows and Gaussian
thermostats.

Magnetic flows in this context were discussed already 30 years ago by
Anosov and Sinai [A-S]. They were studied recently by Gouda [Go], Grognet
[Gr], and M. and P. Paternain [P-P]. Just like the geodesic flow the magnetic
flow lives naturally on the unit tangent bundle.

Another class of flows on the unit tangent bundle was introduced recently
in physics literature, the Gaussian thermostat of an external field [H].

We show (Section 1) that both classes of flows can be represented as
special cases of a general construction. We define a generalized magnetic
flow on the tangent bundle 7'M (or the cotangent bundle 7% M) by requiring
that its velocity vector field F' satisfies

where w is the standard symplectic form, H is a hamiltonian and the 2-form
~ represents the generalized magnetic field.
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This relation is classical for magnetic flows, where v is a closed 2-form
on M. In general, although it resembles Hamiltonian formalism, it does not
have the usual consequences. However, we show that for any 2-form v on M
the resulting flow is volume preserving. It seems that this fact was overlooked
in the papers on magnetic flows.

For the Gaussian thermostats the relation (0.1) appeared in [W-L] and it
was the basis for representing the flow as a conformally symplectic system.
In this paper we are making the point that (0.1) holds because the Gaussian
thermostat can be viewed as a velocity dependent magnetic field. We discuss
these results in Section 2 and compare them with the work of Dettmann and
Morriss [D-M].

In Section 3 we consider general flows with potential fields, magnetic
fields and Gaussian thermostats. We show how such systems look like in
Darboux coordinates and we calculate the divergence of the resulting vector
field. This generalizes the coordinate free calculations of Sections 1 and 2.

We discuss the average rate of volume contraction which was shown by
Ruelle [R] to represent the average rate of entropy production in the system.
Its positivity (= dissipativity of the system) is usually hard to establish in
concrete examples. In the case of surfaces of constant negative curvature
Gaussian thermostats were studied by Bonetto, Gentile and Mastropietro
[B-G-M], and they addressed the problem of dissipativity. We show (Proposi-
tion 3.1) that if the flow is Anosov and the external field has a local potential
but no global potential then the system is dissipative. We can allow mag-
netic fields but no “internal” potential interactions. It would be interesting
to understand also this “isoenergetic” case. The proof of Proposition 3.1 is
deceptively simple because it relies heavily on the deep results of Ledrappier
and Young [L-Y].

In the rest of the paper we address the question of when the general flow
on a manifold with negative sectional curvature is Anosov. Gouda [Go] and
Grognet [Gr] obtained sufficient conditions for magnetic flows. We obtain
similar conditions for the general flows (Theorem 4.1 and its corollaries).

The proof of Theorem 4.1 (Section 6) is based on a criterion for Anosov
property, formulated and proven in Section 5, involving indefinite quadratic
forms. This criterion generalizes to Anosov flows a result of Lewowicz [L]
on Anosov diffeomorphisms (see also [K-B] and [W]). Important technical
advantage of this method is that we can do calculations in the ambient
space, although they relate to a level set of the hamiltonian.

1. Potential flows, magnetic flows and Gaussian thermostats.
Let us consider a compact n-dimensional Riemannian manifold M and its
tangent bundle m : TM — M. For a smooth function W : M — R we
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introduce the potential flow on T M defined by the equations

dq Dv
(1.1) il 7
where ¢ € M and D/dt denotes the covariant derivative. Let w be the
canonical symplectic form transported from T*M to T'M by the natural
isomorphism. The vector field F' on TM defined by (1.1) is a Hamiltonian
vector field with hamiltonian H = %vz + W and we have ipw = —dH.

We are going to modify (1.1) by adding “nonpotential forces”. A 2-form
~v on TM will be called a generalized magnetic field (gmf) if there is an
antisymmetric operator Y on the tangent spaces on M (depending in general
on the point in M) such that

= VW,

(1.2) (Ve ,drn-) = ().

We consider the generalized magnetic flow on T'M defined by
dq Dv

1. — = — = Y.

(1.3) i VW +Ywv

Now the vector field F' on TM defined by (1.3) satisfies

(1.4) ip2=—dH, where 2=w—".

To prove this let us introduce the identification of the tangent space of
TM at (g,v) with T,M @& T,M. For a tangent vector defined by a para-
metrized curve (q(u),v(u)), |u| <e, we use (§,n) € Ty)M & TyyM with

_dq _ Dv

T " W
as the linear coordinates. In these coordinates F' = (v, —VW + Y v) and the
symplectic form is w((£1,11), (§2,12)) = (€2,m1) — (£1,7m2). We have further

w(F, (&m) = — (v,n) +(=VW +Y,§),
Y(F () = (Yv,8),
dH((&,m)) = (v,n) + (VW §),

which proves (1.4).

{2 is always nondegenerate because, roughly speaking, v depends on dg
but not on dv, so it cannot destroy the nondegeneracy of w. However (2 is
closed only if 7 is closed. When {2 is not closed (1.4) does not amount to
much because it does not force the preservation of {2 by the flow, which is
the cornerstone of Hamiltonian formalism.

Special cases of this construction include the magnetic flow studied by
Gouda [Go], Grognet [Gr|, and M. and G. Paternain [P-P]. In this case the
form + is the pullback under the projection 7 of a 2-form 5 on M. In view
of (1.4), if 7 is closed (which is a natural assumption for a magnetic field),
the magnetic flow is a Hamiltonian flow with hamiltonian H with respect to
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a modified symplectic structure. If 7 is not closed the resulting flow is not,
in general, symplectic with respect to any symplectic structure. It turns out
that without any assumptions on 7 the magnetic flow preserves the Lebesgue
measure on T'M and hence for such flows we get smooth invariant measures
on the level sets of H (energy shells).

PROPOSITION 1.5. If v is a pullback to TM of a 2-form 5 on M and a
vector field F' on T M satisfies

’ipw - iF’y = —dH

for a smooth function H on TM then the flow defined by the vector field
F preserves the standard Lebesgue measure on T M (the symplectic volume
element).

In the proof we will use the following observation:

LEMMA 1.6. If a k-form ¢ on T*M is the pullback of a k-form E defined
on M then

CAWN =0 forl>n—k+1.

As a consequence we obtain (w — v)"" = w"". We proceed with the
calculation of the Lie derivative:

Lrw"® = Lp(w =" =nd(irpw—7) AW —=7)"""D)
= —nd(dH A (w—~)N"=D)
= —n(n—1dH ANdy A (w—~)""=2),

But dy A (w — v)"(»=2) = 0 by Lemma 1.6. Proposition 1.5 is proven. We
will obtain a different, coordinate proof in Section 3.

Another interesting example of a generalized magnetic field is an external
field with the Gaussian thermostat which we are going to describe in detail.
Let E be a vector field on M, for example the gradient vector field £ = —VU
for some potential function U. We consider the flow in T'M given by

dq Dv

The resulting flow does not in general preserve the energy function H =
%v2 + W. We impose the preservation of H via the Gauss least constraint
principle [H]. The resulting equations are

d Dv FE. v

ﬁ:u, = VW4 E- < - Ly
These systems appear in physics literature under the name of “isoenergetic
dynamics”. They fit our formalism of generalized magnetic fields.

(1.7)
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We introduce the 2-form + by

o((Em) = (0.8, T(EM) ={E.8), 7= sonT.

Note that da = w and in the special case of the potential vector field £ =
—VU, we have T = —dU (strictly speaking 1" = —7*dU, but we will allow
this kind of identification). The antisymmetric operator

Y () = — (0, )E — (E, )v)

V2

satisfies (1.2) and the corresponding generalized magnetic flow on T'M co-
incides with (1.7).

2. Isokinetic dynamics and conformally symplectic structures.
Let us look more carefully at the Gaussian thermostat of an external field
E when W = 0, ie.,, H = %vQ. It is called the isokinetic dynamics. The
derivative dy does not vanish (except in trivial cases). If the form 7" is
closed (locally T = —dU), then for a fixed level set v?2 = ¢ we can modify
the form = to v. = %a AT without changing the gmf on the level set. Now
we have

1 1
(2.1) A2, =dw —7.) = —dU ANw = —dU A §2,.
c c

The significance of (2.1) is revealed when we calculate d(e~Y/¢§2.) = 0,
which shows that e~U/¢(2, defines a genuine symplectic structure. In such a
situation we say that the form (2. defines a conformally symplectic structure.
It follows that when the field F has a global potential U the resulting flow
on the level set v? = ¢ is a Hamiltonian flow with respect to the symplectic
structure e~Y/¢(2, and the hamiltonian e~Y/¢(v?/2 — ¢/2). Indeed on the
level set v? = ¢ we have

ip(e”Ve0.) = —d(e V(2 )2 — ¢/2)).

In particular when the field E has a global potential U the flow has a smooth
invariant measure. We will obtain the density of this invariant measure at the
end of this section and then again, by coordinate calculations, in Section 3.

This geometric setup for the Gaussian thermostat of a locally poten-
tial field F was discovered in [W-L]. It explains the symmetry of Lyapunov
spectrum which was first observed numerically by Evans, Cohen and Morriss
[E-C-M], and then proved by Dettmann and Morriss [D-M]. In their proof
they consider tangent subspaces transversal to the flow, defined by the con-
dition that £ be orthogonal to v. This tangent subbundle is not invariant
under the flow. (We should not expect in general any invariant geometri-
cally defined transversal subbundle, the case of a geodesic flow, a contact
flow, is in this respect rather special.) They consider the projection of the
linearized flow onto this subbundle and observe that the linear equations
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are infinitesimally Hamiltonian up to addition of a multiple of identity. This
situation can be understood in our language in the following way.

Let us calculate the Lie derivative of (2. in the direction of the vector
field F' of our flow. Using the Cartan formula we obtain

1
LrQc =~ (dU(F)Qe+dU A dH).

This is not a nice formula in general because it shows that such flows do not
preserve the conformally symplectic structure. That is probably why in his
geometric study of conformally symplectic dynamics Vaisman [V] defined
Hamiltonian flows differently, and his Hamiltonian flows do preserve the
structure. However, if we restrict the flow to the level set of the hamiltonian,

v? = ¢ (which we have already done anyway), we obtain

(2.2) Lr0 = %dU(F)QC.

Hence under the action of the flow the restriction of the form 2. to the
level set will be multiplied by e(V1=Y0)/¢ when we move from the value U,
of the potential to the value U;. The restriction of the form (2. projects
onto the quotient tangent space (quotient by the span of the velocity vector
field). When we restrict {2, further to the Dettmann-Morriss transversal
subspace (£ orthogonal to v) we see that the form « vanishes and we obtain
the restriction of the canonical symplectic form w. Now (2.2) captures the
essence of the Dettmann—Morriss proof.

Similarly to the symplectic case we can consider the kth exterior power
of the form (2. and again its restriction to the level set is preserved up to a
scalar factor e#(U1=U0)/¢ The (n — 1)th exterior power defines a volume ele-
ment on the quotient transversal tangent subspace. This transversal volume
element can be further uniquely extended to the full volume element = on
the level set by the condition

ipZS =)0,

A moment of reflection convinces us that because on the orthogonal transver-
sal subspace the form (2. coincides with the standard symplectic form, =
is (up to a constant factor) the standard Lebesgue volume element on the
sphere bundle (the level set of H). Moreover under the action of the flow
this volume element will be multiplied by the same coefficient as the form
QcA(n_l), ie., e~ DW1=Uo)/c Thig follows from a simple calculation using
the Cartan formula and (2.2). We will also obtain a simple coordinate proof
in the next section.

We conclude that if the field F has a global potential U then the re-
sulting flow preserves the smooth invariant measure which has the den-
sity e~ (= DU/¢ with respect to the standard volume element on the sphere
bundle v? = c.
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It was recently shown by Bonetto, Cohen and Pugh [B-C-P] with a care-
ful numerical study that in general if W #£ 0, i.e., in the case of isoenergetic
dynamics, the Floquet exponents do not obey the shifted symplectic sym-
metry. Thus there is no conformally symplectic structure preserved by the
flow.

3. The general flow and entropy production. Let us now combine
a potential field, a magnetic field and an external field with the Gaussian
thermostat, i.e., we consider equations of the form
% =, % = VW +Bv+E— <E7I;2’U>U
Now the vector field F' defined by (3.1) is the gmf with respect to v =
0+ v%oz AT, where B and 3 describe the magnetic field. In this case, even
if W = 0 and 3 is closed, we do not in general have a conformally sym-
plectic structure. We will calculate the divergence of the vector field to be
—(n — 1)v=2(E,v), equal to (n — 1)v=2dU /dt in the potential case. It fol-
lows that in the isokinetic case W = 0, if the external field has a global
potential U the flow preserves the smooth invariant measure with density
e~ (n=DU/v* with respect to the standard volume element. It seems that in
the isoenergetic case W # 0, even if the external field has a global potential
the flow may have no absolutely continuous invariant measure, because now
v? is not constant. It would be interesting to have an explicit example.

We will do the calculations in standard symplectic coordinates in T M.
Now w = > dp A dq denotes the standard symplectic form in T*M and
the gmf is defined by the form v = Zk,l cridqr ® dg; where the matrix of
coefficients C' = {cy;} is antisymmetric. A vector field F' on T*M which

(3.1)

satisfies ipw — ipy = —dH for a smooth function H on T M generates the
following differential equations:
0H OH OH
3.2 j=—, p=—7—-—C—.
(3.2) =3, =%, o

We can immediately calculate the divergence of the vector field (3.2). We
obtain

. 8Ckl oOH
divF=-Y) 2=,
v ; Opi. Opy

It follows that for magnetic flows the divergence is zero because the en-
tries of C are functions on M. This provides another proof of Proposition 1.5.

In the case of the flow (3.1) we obtain

1
Crl = 2;(PkEz —piEy),
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where 1" = > Ejdgy. Hence

1 op?0H 1 OH
e LY LS o
P* 43 Opr Opr p* 1 i oy

The first sum vanishes if H = $p* + W (q) for some function W (the case of
isoenergetic dynamics), and the second term yields
(33)  dvF=—2 3 (Bd) - Beg) = 0 (m,g).
P? p
In the potential case T = —dU we get (n — 1)p~2dU /dt.

If the external field E is nonvanishing then in the flow (3.1) we can
expect that asymptotically the velocity v is aligned with the field £ and
hence that asymptotically the phase volume is contracted. This intuition is
supported by the following considerations. Let us denote by ¢' = ¢! our
flow on the energy shell H = h (we assume that h is large enough so that
v? does not vanish) and by A the normalized volume element on this energy
shell. Suppose that the flow has an asymptotic invariant measure p equal
to the weak limit of the time averages 7! Sg PN dt as T — +oo (possibly
on a subsequence). Now e = — Sdiv F'dy represents the average logarithmic
rate of volume contraction in this asymptotic state. As shown by Ruelle [R],
this quantity can be interpreted as the average rate of entropy production
in the system and it is always nonnegative. It is interesting to investigate
conditions under which e is positive. One such case is a nonvanishing strong
field E. Indeed we can calculate

%(E, v) = (V,E,v) — (E,VW) + (E, Bv) + E* — %(E,W,
and we see that where (E,v) = 0 we have 4 (E, v) > 0if only E # 0 and we
multiply it by a sufficiently large scalar. It is not hard to prove that in such
a case the support of p is contained in the domain (E,v) > 0. This follows
from the fact that in the domain (F,v) < 0 the volume is expanded under
the flow.

In the rest of this section we consider the isokinetic case W = 0. If
the external field F has a global potential then the system has a smooth
invariant measure. A more interesting situation arises when the external field
has a local potential but no global potential (7" is closed but not exact). Let
us again consider the asymptotic measure p as introduced above. Now the
positivity of e can also be interpreted as the establishment of current in the
system since by (3.3), e = (n — 1)v =2 {(E, v) dp.

In the case of surfaces of constant negative curvature Gaussian ther-
mostats were studied by Bonetto, Gentile and Mastropietro [B-G-M] and
they addressed the question of positivity of e. Let us consider more gener-
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ally a Riemannian manifold with negative sectional curvature. By structural
stability if the magnetic and external fields are sufficiently small we obtain
an Anosov flow topologically conjugate to the geodesic flow [K-H]. Moreover
the topological conjugacy is homotopic to identity. Such flows have unique
asymptotic measures, called SRB measures [R]. We have

ProPOSITION 3.1. If the flow ¢ is an Anosov flow topologically conjugate
to the geodesic flow, the conjugacy is homotopic to identity and the external
field has a local but no global potential then the entropy production e with
respect to the SRB measure |4 is positive.

Proof. We begin by repeating the argument given by Ruelle in the case
of discrete time [R]. Let us assume to the contrary that e = — Sdiv Fdu=0.
Then the sum of positive Lyapunov exponents (with respect to p) is equal
to the sum of negative Lyapunov exponents and hence the metric entropy of
¢~ ! satisfies the Pesin formula. It follows from the work of Ledrappier and
Young [L-Y] that the measure p is absolutely continuous on both stable and
unstable foliations and hence it is absolutely continuous. Moreover the den-
sity with respect to the volume element A must be positive and continuous.

Such an invariant measure contradicts the multivaluedness of the poten-
tial U. Indeed let us take a closed loop [ on M such that §l dU > 0. There is
a periodic geodesic I’ homotopic to I. Further by topological conjugacy our
flow has a periodic orbit ¢ with projection on M homotopic to I’ and I. The
time integral § ¢ div F' dt of the divergence along the periodic orbit is equal to

—(n—1)(2h)~1 §, dU < 0. On the other hand it is equal to the logarithm of
the Jacobian of ¢! on our T-periodic orbit. Since the flow has an absolutely
invariant measure with continuous positive density the Jacobian must be
equal to 1. m

This proposition raises the question of explicit conditions on the mag-
netic and external fields that imply the Anosov property. The rest of the
paper is devoted to this problem.

4. When is the general flow Anosov? Gouda [G] and Grognet [Gr]
obtained conditions on the magnetic field on a manifold of negative sectional
curvature which imply that the flow is Anosov. We will extend their re-
sults by including potential fields, external fields and Gaussian thermostats.
Hence we consider the general flow defined by the equations

dq Dv (E,v)

— = — =-VW+Bv+ E -

o7 v, 7t + bv + 2 v,
where W is a smooth function on M (the potential energy of internal inter-
actions), B is a magnetic field, and F is the external field. We restrict the
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system to the level set h = %U2 + W and we assume that h is large enough
so that v does not vanish. We denote by R(-,-) the curvature tensor.

THEOREM 4.1. If for every point ¢ € M and v € T,M with v* =
2(h — W), the quadratic form

—<R(§,'U)U,f> - <V$VVV7 €> + <V5B’U,§> + <V§E,§>

<E7U>2 s 1 2 1 2 1 2
o1&~ 7(BO* 4 5(¢ —2VIW 4 Bu)® — (¢, ~2VW + B + E)

in § € TyM is positive definite on the subspace of T,M orthogonal to v,
then the system is Anosowv.

The condition in the theorem is clearly satisfied if the sectional curva-
tures are negative and h is sufficiently large. It can be made less cumbersome
by considering special cases. Let the sectional curvatures of M be bounded
above by —k? < 0.

1. Pure potential flow (B =0, E =0). If

o1 (o)) <+

then the system is Anosov.

This criterion could be strengthened by the observation that where the
potential function is concave ((VVW, &) negative definite), it adds to the
dispersing effect of the negative curvature.

2. Pure magnetic flow (W =0, E =0, v? =¢). If
IVBI . (IBI® _ -
k
NG + e <

then the system is Anosov.

We have thus obtained the condition of Gouda [Go] and Grognet [Gr]
(Grognet does not get optimal coefficients).

3. Pure Gaussian thermostat (W =0, B =0, v? =¢). If
E E|\?
v ||+<|| ||> K2

C Cc

then the system is Anosov.
4. Gaussian thermostat with magnetic field (W =0, v? = ¢). If

IVBI _IVEL , (1Bl IEIN® _ s
<k
=t et

then the system is Anosov.
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5. A criterion for a flow to be Anosov. Let IV be a smooth compact
k-dimensional manifold with an auxiliary Riemannian metric. Let further F
be a nonvanishing smooth vector field on N. We consider the flow ¢¢, t € R,
defined by the vector field F.

The flow ¢', t € R, is Anosov (cf. [K-H]) if there is a ¢'-invariant splitting
of the tangent bundle T,M = E° ® Ef & E;, x € M, and two positive
constants a, b such that

(1) B = span{F(2)}, o € M.
(2) | DopTto|| < be~t||v|| for v € EF and t > 0.

The linear subspaces of the splitting are called neutral, unstable and
stable, respectively.
__ In addition to the tangent bundle T'M we consider the quotient bundle
TM defined by T, M = T, M /span{F(z)}, i.e., the linear space T, M is the
linear quotient of T, M by the one-dimensional subspace spanned by the
vector F'(z). The quotient bundle inherits the scalar product and the norm.
Since D,¢'F(x) = F(¢'x) we can project the linear map

Dyt : TuM — Ty M

to the quotient linear spaces ZIA}M and @,th . We denote the projected
map by
Al ﬁcM — @zmM.
The Anosov property can be reformulated in the language of the quotient
bundle.

PROPOSITION 5.1. The flow ¢t, t € R, is Anosov if and only if there is
an A-invariant splitting of the quotient bundle T,M = Ef ® E_,x € M,
and two positive constants a,b such that

AT || < be™|jv||  for ve EF and t > 0.

Proof. The only thing that needs to be done is the reconstruction of
the (un)stable subspace from its projection on the quotient space. We will
do it for the stable subspace E; :

We identify the quotient tangent space fwM with the orthogonal com-
plement of span{F(z)}. Let IT : TM — TM be the orthogonal projection
and let Lpll = %qu*sHquﬂS:o be its Lie derivative. Consider the linear
functional A(z) defined on E by

o0

S (F, (LpIT)AZv)

AMz;v) = FF)

ds.

0

The integral converges thanks to the decay of AL v, and for any vector v € E;
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we have
D' (v + Masv)F(z)) = A'v + Mo'w; A'v) F(¢'z).
It follows that the stable subspace is given by
E; ={w=v+Aa;v)F(z) |[ve E;}. =

Let Q : TM — R be a continuous quadratic form on the tangent bundle,
i.e., each @, = Qr,n is a quadratic form on the tangent space T,,M and
it depends continuously on x. We assume further that the form can be
projected onto the quotient bundle, i.e., Q,(w + aF(x)) = Q. (w) for any
w € T, M and any real a. We will use the same notation for the projected
form. We assume that the projected form is nondegenerate, and hence being
continuous it has constant signature (I,m) (I+m =k —1).

We assume that the Lie derivative LrQ(w) = 4 Q(D¢'w)|;—o of Q in the
direction of the vector field F' is continuous. Clearly it can also be projected
onto the quotient space. We say that the flow ¢! is strictly monotone (with
respect to a quadratic form Q) if the projection of the Lie derivative LrQ
onto the quotient bundle is positive definite.

The following theorem is a generalization of a result of Lewowicz [L] to
flows.

THEOREM 5.2. If a flow is strictly monotone then it is Anosov.

Proof. We will work in the quotient bundle TM. We define the bundle
of positive cones C' = {v € TM | Q(v) > 0} associated with the form Q. By
C(x) we denote the positive cone at z € M. By €’ = {v € TM | Q(v) < 0}
we denote the bundle of negative cones.

By strict monotonicity we have £LrQ(v) > ¢1||v||* and also (by compact-
ness) |Q(v)| < ez|v||2 for all v € TM and some positive constants ¢y, co. It
follows that

%Q(Atv) > c1||A%]|? > 2a|Q(A'v)| where 2a = a

2
Hence A'C C int C U {0} and A~'C’ C int C" U {0} for any ¢ > 0. Moreover
by integrating the last inequality we obtain
QA) _ zu o(A™)
Qv) ~ Q(v)
To compare the value of Q(v) with ||v]|? let us introduce the bundles of nar-

row cones C; = A'C and C] = A~'C’. By compactness, for some positive
constants cs3, ¢y we get

Qv) > e3|lv]|* forveCy, —Q(v)>cyllv]|* forveC].

for v € int C, <e 2% for Alv €intC’.
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We introduce the intersection Cog = (),5¢ A’C. In particular

Coo(z) = [ AL, Clo™ ).

t>0

Our goal is to show that Cs(x) is the unstable subspace. Monotonicity
yields the invariance property A*C,, = Cu. Moreover since Q has constant
signature (I,m), Cs(z) must contain at least a subspace of dimension [. In-
deed the I-dimensional subspaces contained in A%, _, C(¢~*x) form compact
subsets of the [-dimensional grassmannian, decreasing as t increases. Hence
their intersection is nonempty.

It follows from the inequalities above and the inclusion Cy, C C; that
for any v € C, t > 0, we have

callv]]* = Q(v) = QA'A™') > €' Q(A™'v) > cze®™ A,

ie., ||[A || < be=|jv|| for all v € Cy and some positive constant b. This
decay property also holds in the linear span of C,, perhaps with a different b.

Similarly starting with the negative cones C’ we can define C’_ which
over every point contains at least an m-dimensional subspace and ||A%v|| <
be~||v|| for any v € spanC’_, t > 0.

It remains to show that C(z) is an I-dimensional subspace and C’_(z)
is an m-dimensional subspace. This follows from the fact that the linear
spans of C(z) and C/_(x) must be transversal. Indeed for any nonzero
vector in the intersection we would have contradictory decay properties. m

6. Proof of Theorem 4.1. Let us introduce the linearized equations
for the general flow (3.1). Let ¢(¢;u), |u| < e, be a family of trajectories for
the system. We introduce the Jacobi field

dq Dv D dq
S ™ T W T dwa
We get the following equations for (£,7) (the linearization of the flow

(3.1)):

Dg _
dt —77;
D FE
(6.1) CT: L R(E 0= — VeVIW 4+ (VeB)o + B+ VeE — | U,2v>n
1 2(E,v){v,n

We introduce a quadratic form H on the tangent spaces of T'M by

e = 3 (- &50),

V2




190 M. P. Wojtkowski

The form H can be naturally projected onto the quotient bundle (quotient
by the span of the vector field (3.1)). We define Q as the Lie derivative of
H in the direction of the vector field (3.1).

We get

a(en) = (6.m) — &2 (o) — (€YW) + (6. Bv) + (6. B)

L 6w <<E,v) - W).

v2 v2

To apply Theorem 5.2 we need to calculate the Lie derivative of Q. This
cumbersome task is simplified by restricting the resulting quadratic form to
the subspace defined by

(62) <7’a U> = _<§a VW>7 <€7 1}> =0.

The first equation corresponds to the restriction of the energy function
H = %112 + W, the second equation gives a representation of the quotient
space. (Note that we can use the first equation before differentiating the
form but the second equation can be used only after the differentiation.)
Thanks to this restriction a considerable number of terms in %Q vanishes.
In particular we do not have to differentiate the terms in the first bracket
and the terms in the second bracket give no contribution whatsoever to the
restricted derivative. We obtain

G0 =1 = (R(E:0)0.8) — (€. TeVW) + (6, (VeB)e) + (€. By)

+ <§7 V§E> - <EU,21)> <£a 77>
- é(g, —2VW + Bv + E)?
, E, 1 BE, 2
- <R(€7U),Ua§> - <§7 V§VW> + <§7 (VEB)U> + <€7 V£E>
_ <E7U>2£2 _ 1(35)2 + L<£ —2VW+BU>2
4vt 4 4p2 7
1

~ 5{&-2VW + Bu + E)*.

To end the proof of Theorem 4.1 we only need to check that the projected
form Q is nondegenerate. We can represent the projected form by the restric-
tion to the subspace (6.2). We obtain the form (£, n). It is straightforward
to check that it is nondegenerate on the subspace (6.2). m



[K-H]

[L-Y]

Magnetic flows and Gaussian thermostats 191

References

D. V. Anosov and Ya. G. Sinai, Certain smooth ergodic systems, Russian
Math. Surveys 22 (1967), 103-167.

F. Bonetto, E. G. D. Cohen and C. Pugh, On the validity of the conjugate
pairing rule for Lyapunov exponents, J. Statist. Phys. 92 (1998), 587-627.

F. Bonetto, G. Gentile and V. Mastropietro, Electric fields on a surface
of constant negative curvature, Ergodic Theory Dynam. Systems, to appear.
C. P. Dettmann and G. P. Morriss, Proof of Lyapunov exponent pairing for
systems at constant kinetic energy, Phys. Rev. E 53 (1996), R5541-5544.

D. J. Evans, E. G. D. Cohen and G. P. Morriss, Viscosity of a simple fluid
from its mazimal Lyapunov exponents, Phys. Rev. A 42 (1990), 5990-5997.
N. Gouda, Magnetic flows of Anosov type, Téhoku Math. J. 49 (1997), 165—
183.

S. Grognet, Flots magnétiques en courbure négative, Ergodic Theory Dynam.
Systems 19 (1999), 413-436.

W. G. Hoover, Molecular Dynamics, Lecture Notes in Physics 258, Springer,
1986.

A. Katok (in collaboration with K. Burns), Infinitesimal Lyapunov functions,
invariant cone families and stochastic properties of smooth dynamical systems,
Ergodic Theory Dynam. Systems 14 (1994), 757-786.

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dy-
namical Systems, Cambridge Univ. Press, 1995.

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: I.
Characterization of measures satisfying Pesin’s formula, II. Relations between
entropy, exponents and dimension, Ann. of Math. 122 (1985), 509-539, 540—
574.

J. Lewowicz, Lyapunov functions and topological stability, J. Differential
Equations 38 (1980), 192—-209.

G.P.Paternain and M. Paternain, Anosov geodesic flows and twisted sym-
plectic structures, in: Dynamical Systems (Montevideo, 1995), Pitman Res.
Notes Math. 362, Longman, 1996, 132-145.

D. Ruelle, Positivity of entropy production in nonequilibrium statistical me-
chanics, J. Statist. Phys. 85 (1996), 1-23.

I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. Math.
Sci. 8 (1985), 521-536.

M. P. Wojtkowski, Systems of classical interacting particles with nonvan-
ishing Lyapunov exponents, in: Lecture Notes in Math. 1486, Springer, 1991,
243-262.

M. P. Wojtkowski and C. Liverani, Conformally symplectic dynamics and
symmetry of the Lyapunov spectrum, Comm. Math. Phys. 194 (1998), 47-60.

Department of Mathematics
University of Arizona

Tucson, AZ 85721, U.S.A.

E-mail: maciejw@math.arizona.edu

Received 28 July 1999;
in revised form 18 October 1999



