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Free spaces

by

Jianwei S o n g and E. D. T y m c h a t y n (Saskatoon)

Abstract. A space Y is called a free space if for each compactum X the set of maps
with hereditarily indecomposable fibers is a dense Gδ-subset of C(X,Y ), the space of all
continuous functions of X to Y . Levin proved that the interval I and the real line R are
free. Krasinkiewicz independently proved that each n-dimensional manifold M (n ≥ 1) is
free and the product of any space with a free space is free. He also raised a number of
questions about the extent of the class of free spaces. In this paper we will answer most
of those questions. We prove that each cone is free. We introduce the notion of a locally
free space and prove that a locally free ANR is free. It follows that every polyhedron
is free. Hence, 1-dimensional Peano continua, Menger manifolds and many hereditarily
unicoherent continua are free. We also give examples that show some limits to the extent
of the class of free spaces.

1. Introduction. All spaces in this paper are separable metric. A contin-
uum (compact, connected, metric space) is decomposable if it is the union
of two proper subcontinua. Otherwise, it is said to be indecomposable. A
compactum (compact, metric space) is hereditarily indecomposable if each
of its subcontinua is indecomposable.

Let I denote the closed unit interval. Let X be a space and p ∈ C(X, I).
We say that X is folded relative to p if X = F0 ∪ F1/2 ∪ F1 where F0, F1/2
and F1 are closed sets in X such that:

(i) F0 ∩ F1 = ∅,
(ii) p−1(0) ⊂ F0, p

−1(1) ⊂ F1, and

(iii) F0 ∩ F1/2 ⊂ p−1((1/2, 1]) and F1/2 ∩ F1 ⊂ p−1([0, 1/2)).
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Lemma 1.1 [K, 2.1]. Let X be a space and p ∈ C(X, I).

(i) If X is folded relative to p and q ∈ C(Y,X) for some space Y , then
Y is folded relative to the mapping p ◦ q. In particular , each subset of X is
folded relative to p.

(ii) If F ⊂ X is folded relative to p, then there is a neighbourhood of F
which is folded relative to p.

(iii) If f ∈ C(X,Y ) for some space Y and each fiber of f is folded relative
to p, then there is an open cover V of Y such that f−1(V ) is folded relative
to p for each V ∈ V.

Lemma 1.2 [K, 2.2]. Let X be a compactum, and let p ∈ C(X, I). Then
X is not folded relative to p if and only if there exist continua A and B in
X such that :

(1) A ∩B 6= ∅,
(2) A ∩ p−1(0) 6= ∅ 6= B ∩ p−1(1),
(3) A ⊂ p−1([0, 1/2]), B ⊂ p−1([1/2, 1]).

If X and Y are compacta, let C(X,Y ; h.i.) be the set of maps of X to
Y with all fibers hereditarily indecomposable. A space Y is said to be free if
C(X.Y ; h.i.) is a dense Gδ-set in C(X,Y ) for each compactum X. Levin [L,
1.8] proved that I is free and independently Krasinkiewicz [K, 5.1] proved
that each manifold of dimension at least 1 is free.

Proposition 1.3 [K, 4.1]. If the space Y is free, then Y × Z is free for
each space Z.

If X and Y are spaces, we denote by π1 (resp. π2) the first (resp. second)
coordinate projection of X × Y onto X (resp. onto Y ).

The main tool for checking whether a space is free is the following theo-
rem of Krasinkiewicz.

Theorem 1.4 [K, 4.5]. A compactum Y is free if and only if the projection
π1 : Y × I → Y can be approximated by mappings g ∈ C(Y × I, Y ) with
fibers folded relative to π2 : Y × I → I.

Krasinkiewicz [K] raised a number of questions about the extent of the
class of free spaces. It is our purpose to answer most of those questions.

2. Cones. In this section we prove that each cone is free. We shall repeat-
edly use the construction in the next lemma which reproves that I is free.

Lemma 2.1. For each ε > 0 there exists f : I × I → I such that f is
ε-close to the first coordinate projection π1 : I × I → I and each fiber of f
is folded relative to the second coordinate projection π2 : I × I → I.

P r o o f. Let n be a positive integer so that 4/(4n+ 3) < ε. Let xi =
i/(4n+ 3) for each i = 0, 1, . . . , 4n+ 3.
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For each i = 0, 1, . . . , 4n + 3 choose disjoint polygonal arcs Lxi ⊂ I × I
(see Figure 1) such that Lxi = aibicidiei where

0

0

0

1

1

0

10 2 43 4n+34n+24n+1

a

e

b

d

b

d

e1

a1

0c

L

1L L

3L L 4

L L

4n+3

4n+2

L 0

2

c
1

x xxx x xxx

x

x x

x x

x4n+1

x

x

. . . . . .

Fig. 1

(i) π1(ai) = π1(bi) = π1(di) = π1(ei) = xi;
(ii) 0 = π2(ai) < π2(bi) < π2(di) < π2(ei) = 1;

(iii) if i = 0 mod 4 then

xi < π1(ci+1) <
xi + xi+1

2
< π1(ci) < xi+1,

π2(di+1) < π2(ci) <
1
2
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(iv) if i = 2 mod 4 then
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2
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(v) L1 (resp. Lx4n+2) is the reflection of L0 (resp. Lx1) about the line
x = 1/2 in the plane.

Let m = px1 = qx1 = rx1 = (b0 + d0)/2. For 0 < x ≤ x1 let Jx be the
polygonal arc pxrxqx (see Figure 2) where

px = (4n+ 3)xm+ (1− (4n+ 3)x)b0,

qx = (4n+ 3)xm+ (1− (4n+ 3)x)d0,

rx = (4n+ 3)xm+ (1− (4n+ 3)x)c0.
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(†) For x ∈ (0, x1) let Lx be an irreducible polygonal arc such that for
0 < x < y < x1, Ly separates L0 ∪ Lx from Lx1 and

⋃
x∈(0,x1) Lx is

the component of I × I − L0 ∪ Lx1 with boundary L0 ∪ Lx1 in I × I.
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For x ∈ [x1, x4n+2] let Jx = ∅. Let u = (x1 + x2)/2. Let Lu be a polyg-
onal arc which separates Lx1 from Lx2 with Lu = aubupuruqudueu (see
Figure 3) such that

(vi) u = π1(au) = π1(bu) = π1(du) = π1(eu) = π1(ru),
(vii) 0 = π2(au) < π2(bu) < π2(ru) < π2(du) < π2(eu) = 1,
(viii) π1(pu) < x1 < x2 < π1(qu),
(ix) π2(pu), π2(qu) > 1/2.

(††) For each x ∈ (x1, u) ∪ (u, x2) let Lx be an irreducible polygonal arc
such that for x1 < x < y < x2, Ly separates Lx1 ∪ Lx from Lx2 in
I × I and

⋃
x∈(x1,x2) Lx is the component of I × I − Lx1 ∪ Lx2 with

boundary Lx1 ∪ Lx2 in I × I.

For x ∈ [x4n+2, 1] let Lx (resp. Jx) be the reflection of L1−x (resp. J1−x)
about the line x = 1/2 in the plane.

For x ∈ (x4k−2, x4k−1) ∪ (x4k, x4k+1), k = 1, . . . , n, let Lx be defined in
a manner analogous to that in (†).

For x ∈ (x4k−1, x4k) ∪ (x4k+1, x4k+2), k = 1, . . . , n, let Lx be defined in
a manner analogous to that in (††).

Define f : I × I → I by f−1(x) = Jx ∪Lx for x ∈ I. Then f satisfies the
required conditions.

Theorem 2.2. The cone over a space X is free.

P r o o f. Let Y = X × I/X × {1} be the cone and let ε > 0. Let x0 ∈ X,
ξ : X × I → Y be the quotient map and let η : Y → ξ({x0} × I) be given
by η(ξ(x, t)) = ξ(x0, t). We construct a map f : Y × I → Y such that f is
ε-close to π1 on Y × I and the fibers of f are folded relative to π2.

For each x ∈ X let Dx = ξ({x}×I)×I. For the given x0 ∈ X, Lξ(x0,t) and
Jξ(x0,t) are defined as in Lemma 2.1 for each t. Let f0 : Dx0 → ξ({x0} × I)
be defined as in Lemma 2.1 so that f0 is ε/2-close to the projection of Dx0 =
ξ({x0}× I)× I onto ξ({x0}× I) and each fiber of f0 is folded relative to π2.

For (x, t) ∈ X×I define Lξ(x,t) = (η× idI)−1(Lξ(x0,t))∩Dx and Jξ(x,t) =
(η × idI)−1(Jξ(x0,t)) ∩Dx. Define f : Y × I → Y by

f−1(ξ(x, t)) =





Lξ(x,t) ∪ Jξ(x,t) if t < x4n+2;
Lξ(x,t) if x 6= x0 and x4n+2 ≤ t < 1;
Lξ(x0,t) ∪ (

⋃
x∈X Jξ(x,t)) if x = x0 and x4n+2 ≤ t < 1;⋃

x∈X(Lξ(x,1) ∪ Jξ(x,1)) if ξ(x, t) = ξ(x0, 1).

Then f is a map within ε of π1 on Y × I and with fibers folded relative
to π2. By Theorem 1.4, Y is free.

3. Locally free spaces. A space Y is locally free if there is an open
cover of Y by open sets which are free spaces. Clearly, every free space is
locally free. We show that among ANRs the converse is also true.
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For completeness we first state the following simple proposition.

Proposition 3.1. Each open subspace of a free space is free.

Theorem 3.2. An ANR Y is free if and only if it is locally free.

P r o o f. Let X be a compactum, f ∈ C(X,Y ) and ε > 0. For y ∈ Y there
exists a neighbourhood Uy of y in Y such that Uy is free. Let 0 < εy ≤ ε be
so that B(y, 3εy), the open 3εy-ball about y, is contained in Uy.

Since Y is an ANR there is a δ > 0 with δ < εy such that for each closed
subset A of X and g : A → Y which is δ-close to f |A, g has a continuous
extension g : X → Y which is εy-close to f (see [M, Theorem 5.1.3]).

Since Uy is free and f−1(B(y, 2εy)) is compact there exists φ ∈
C(f−1(B(y, 2εy)), Uy; h.i.) with

d(φ, f |f−1(B(y,2εy))) < δ.

Then φ has a continuous extension φ : X → Y which is εy-close to f .
Hence, φ−1(z) = φ−1(z) for z ∈ B(y, εy) since φ(x) 6∈ B(y, εy) for x ∈
X − f−1(B(y, 2εy)).

We have shown that

Hy = {g ∈ C(X,Y ) | g−1(z) is hereditarily indecomposable

for each z ∈ B(y, εy)}
is dense in C(X,Y ). By [K, 3.2], Hy is a Gδ-set in C(X,Y ). Since we need
only finitely many B(y, εy) to cover f(X) it follows by the Baire Category
Theorem that C(X,Y ; h.i.) is a dense Gδ-set in C(X,Y ).

4. Some classes of free spaces

Theorem 4.1. Each locally finite polyhedron P without isolated points
is free.

P r o o f. Each point in the locally finite polyhedron P has a neighbour-
hood which is either a cone or the product of some set by an open interval.
By Theorem 2.2 and Proposition 1.3, P is locally free. By Theorem 3.2,
P is free.

The next result says that if a space can be suitably approximated by free
spaces then it is free.

Theorem 4.2. Let Y be a metric space. If for each ε > 0 there exists a
compact free space Z and mappings r : Y → Z and φ : Z → Y such that φ
is light and φ ◦ r is within ε of the identity on Y then Y is free.

P r o o f. Let f ∈ C(X,Y ) for some compactum X and let ε > 0. Let Z
be a compactum such that there exist r : Y → Z and a light map φ : Z → Y
so that φ ◦ r is within ε/2 of the identity on Y . Let δ > 0 be so that if a and
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b are within δ in Z then φ(a) and φ(b) are within ε/2 in Y . Let g : X → Z
be a mapping with hereditarily indecomposable fibers such that r ◦ f and
g are within δ. Then φ ◦ g : X → Y has hereditarily indecomposable fibers
since φ is light. Also φ ◦ g is within ε of f .

Theorem 4.2 is of special interest when the space Z can be chosen to be
a retract of Y .

A Menger manifold (resp. Nöbeling manifold) is a space modelled on the
Menger cube Mn

2n+1 (resp. Nöbeling space Nn
2n+1) [HW].

Corollary 4.3. Every Menger manifold and every Nöbeling manifold
are free.

P r o o f. Menger manifolds and Nöbeling manifolds admit small retrac-
tions to polyhedra (see [B] and [CKT]).

Corollary 4.4. Every 1-dimensional Peano continuum is free.

P r o o f. Every 1-dimensional Peano continuum admits a small retraction
to a finite graph [Ku, II, p. 258].

In the next section we shall see that this corollary fails in higher dimen-
sions.

A continuum X is said to be unicoherent if whenever X = A ∪B where
A and B are subcontinua then A ∩ B is also a subcontinuum. We say X is
hereditarily unicoherent if each of its subcontinua is unicoherent.

A dendroid is an arcwise connected, hereditarily unicoherent continuum.
A dendroid X is said to be smooth if there exists p ∈ X such that for each
convergent sequence {ai} converging to a in X the sequence of arcs {aip}
from ai to p converges to ap, the arc from a to p.

A fan is a dendroid with at most one ramification point.

Corollary 4.5. Each smooth dendroid and each fan are free.

P r o o f. By work of Fugate [F1-2] each smooth dendroid and each fan
retract to a finite tree.

Corollary 4.6. The sin(1/x)-continuum S and Knaster’s dyadic inde-
composable chainable continuum [Ku, II, p. 205] are free.

P r o o f. Each of these continua admits a small retraction to an arc.

In the next section we shall construct examples based on the sin(1/x)-
continuum S. For that reason it is essential to give another geometric con-
struction showing that S is free.

4.7. Alternative proof that S is free. Let K = {0} ∪ {1/k}∞k=1 in the real
line. Let ε > 0. Let f : I × I → I be defined as in Lemma 2.1 so that f is
within ε of π1 and the fibers of f are folded relative to π2.
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Define g : (I × K) × I → I × K by g((x, t), s) = (f(x, s), t). Let
S = I × K/∼ where (x, t) ∼ (y, s) iff (x, t) = (y, s) or {(x, t), (y, s)} =
{(1, 1/(2k)), (1, 1/(2k − 1))} or {(x, t), (y, s)}= {(0, 1/(2k+1)), (0, 1/(2k))}
for some k. Let π : I × K → S be the quotient map. Note that S is a
sin(1/x)-continuum. Then g can be used to construct in an obvious way a
map g : S × I → S so that g is within ε of π1 on S × I and each fiber
of g is folded relative to π2 on S × I. To make g continuous one can let
g(Jπ(x,1/(2k))) = g(Jπ(x,1/(2k−1))) ∈ π(I×{1/(2k)}) for (4n+ 2)/(4n+ 3) ≤
x ≤ 1 and g(Jπ(x,1/(2k))) = g(Jπ(x,1/(2k+1))) ∈ π(I × {1/(2k + 1)}) for
0 ≤ x ≤ 1/(4n+ 3) where n is chosen as in Lemma 2.1.

5. Miscellaneous examples. We give some examples which show that
the property of being a free space is not well-behaved under unions. Also,
we show that this property has little to do with good homotopy properties.

Example 5.1. The sin(1/x)-continuum S with a sticker L adjoined at
the end of the limit segment of S is free.

To see this simply reflect onto L× I the decomposition of the limit disk
in S × I induced by the map f in 4.7. Use this decomposition on L × I to
extend f continuously to the new space in the obvious way (see Figure 4).

Fig. 4

The next example shows that the property of being a free space is not
preserved in general even under very nice unions. In particular, it shows
that the wedge of two free spaces need not be free, and the union of two free
spaces with free intersection need not be free.
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Example 5.2. The wedge of two sin(1/x)-continua A and B joined at a
common endpoint of the limit segments in A and in B is not free.

To see this let 0 ∈ A∩B and suppose f : (A∪B)×I → A∪B is a mapping
close to π1. Using path components it is easy to see that f(A× I) ⊂ A and
f(B × I) ⊂ B so f({0} × I) ⊂ A ∩ B = {0}. Thus the fiber f−1(0) is not
folded relative to π2 by Lemma 1.2.

We can modify Example 5.2 to get for each n ≥ 2 a Cn, LCn−2, free
continuum of dimension n whose wedge with a homeomorphic copy of itself
is not free. In Example 5.3 we do this for n = 2. It is clear how to generalize
this example for arbitrary n.

Example 5.3. Let W1 be the circular cone (with vertex removed) x2 =
y2 + z2, 0 < x ≤ 1, in R3. Define

V1 = {(x, y + sin(1/x) + 1, x+ z) ∈ R3 | (x, y, z) ∈W1},
P1 = [0, 1]× [0, 2]× {0},
D1 = {(1, y + sin 1 + 1, 1 + z) | y2 + z2 ≤ 1}.

Then V1 is a circle of sin(1/x)-curves identified along their limit segments.
Let Y1 = P1 ∪ V1 and X1 = P1 ∪ V1 ∪ D1. Then Y1 is a circle of sin(1/x)-
curves with limit segments identified and lying on a disk. Alternatively, Y1

is a sin(1/x)-tube lying on a disk. We obtain X1 from Y1 by capping the
end of the tube in Y1 by a disk. Then Y1 is C0 and LC0 and X1 is C2 and
LC0. See Figure 5.

Y

X

Z

Fig. 5. A sin(1/x)-tube lying on a disk

Let Y2 (resp. X2) be the reflection of Y1 (resp. X1) about the origin. The
spaces Y1 ∪ Y2 and X1 ∪X2 are not free for essentially the same homotopy
reasons as in Example 5.2. We claim Y1 and X1 are free. We only prove that
Y1 is free. The proof that X1 is free uses the fact that Y1 is free and the
argument of Theorem 3.2.
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Let ε > 0 and let f : I× I → I be as in Lemma 2.1, i.e. f is ε-close to π1

and the fibers of f are folded relative to π2. We define a map h : I2×I → I2.
In the disk I2 let A2i−1 be the line segment from (1/(2i), 1) to

(1/(2i−1),0) and let A2i be the line segment from (1/(2i),1) to (1/(2i+1), 0)
for each positive integer i. Then ({0}× I)∪⋃∞i=1(A2i−1∪A2i) is a sin(1/x)-
curve. Let (x, y, z) ∈ I3.

(i) Suppose that (x, y, z) ∈ A2i × I. If (y, z) ∈ Jt for some t ∈ [0, ε],
let h(x, y, z) ∈ A2i+1 ∩ (I × {f(y, z)}). Otherwise, let h(x, y, z) ∈ A2i ∩
(I × {f(y, z)}).

(ii) Suppose that (x, y, z) ∈ A2i−1×I. If (y, z) ∈ Jt for some t ∈ [1−ε, 1],
let h(x, y, z) ∈ A2i ∩ (I × {f(y, z)}). Otherwise, let h(x, y, z) ∈ A2i−1 ∩
(I × {f(y, z)}).

(iii) If x = 0, 1 define h(x, y, z) = (x, f(y, z)).
(iv) If (x, y) is in the component of I2 − (A2i ∪ A2i−1) which misses

{0, 1} × I let (x′, y) ∈ A2i−1 and (x′′, y) ∈ A2i. There is a number t so that
x = tx′+ (1− t)x′′. Let h(x, y, z) = th(x′, y, z) + (1− t)h(x′′, y, z), the linear
combination of h(x′, y, z) and h(x′′, y, z).

(v) If (x, y) is in the component of I2 − (A2i ∪ A2i+1) which misses
{0, 1}× I2 let (x′, y) ∈ A2i and (x′′, y) ∈ A2i+1. There is a number t so that
x = tx′ + (1− t)x′′. Let h(x, y, z) = th(x′, y, z) + (1− t)h(x′′, y, z).

(vi) If (x, y) is in the component of I2 − A1 which meets {1} × I let
(x′, y) ∈ A1 ∩ (I × {f(y, z)}). There is a number t so that x = tx′ + (1− t).
Let h(x, y, z) = th(x′, y, z) + (1− t)h(1, y, z).

Now I2 is homeomorphic to [0, 1]× [0, 2] and
⋃∞
i=1Ai is homeomorphic

to S. We regard h as a mapping of P1×I to P1. This map extends using the
partial product structure on V1 to a map h̃ : Y1× I → Y1 so that h̃ is ε-close
to π1 : Y1 × I → Y1 and each fiber of h̃ is folded relative to π2 : Y1 × I → I.

Example 5.4. Solenoids are free.

A solenoid S is a continuum obtained as the inverse limit

S = lim←−(Si, zpi)

where each Si is the unit circle S1, pi is a positive integer and zpi represents
the pi-fold covering mapping z 7→ zpi of S1 onto itself.

We prove that for each ε > 0 there is a mapping φ : S × I → S so that
d(φ, π1) < ε and each fiber of φ is folded relative to π2. We construct an
infinite commutative diagram

S1 × I S2 × I

S1 S2

φ1

²²

zp1×idoo

φ2

²²

oo

zp1oo oo



Free spaces 239

The map φ1 is induced by the map f : I × I → I defined in the proof of
Lemma 2.1 and by the exponential map η : I → S1, η(x) = e2πix. More
precisely, let (x, y) ∈ I × I. If (x, y) ∈ Jt for some t ∈ [0, ε] let φ1(η(x), y) =
η(f(x, y)) = η(t) ∈ S1 since f(Jt) = {t}. If (x, y) ∈ Jt for some t ∈ [1− ε, 1]
then (1 − x, y) ∈ J1−t so we define φ1(η(x), y) = η(f(1 − x, y)) = η(1 − t).
Otherwise, let φ1(η(x), y) = η(f(x, y)).

Since zp1 × id and zp1 are both p1-fold covering maps there is a unique
way to define φ2 to make the diagram commute. The step i = 2 is the general
step in the inductive definition of φi. Let φ = lim←−φi. If (x, t) ∈ S × I then
x and φ(x) are contained in an arc of S of diameter less than ε. Each fiber
of φ is folded relative to the projection π2 : S × I → I.

Questions. (1) Is each ANR free?
(2) Is each bundle space over a free space free?
(3) Is each dendroid free?
(4) Is the hyperspace over the pseudo-arc free?
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