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Does C∗-embedding imply C-embedding
in the realm of products with a non-discrete metric factor?

by

Valentin G u t e v (Durban) and Haruto O h t a (Shizuoka)

Abstract. The above question was raised by Teodor Przymusiński in May, 1983, in
an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a
question that is of fundamental importance in the theory of rectangular normality. The
present paper provides a complete affirmative solution. The technique developed for the
purpose allows one to answer also another question of Przymusiński’s.

1. Introduction. A subset A of a topological space X is C∗-embedded
in X if every bounded real-valued continuous function on A is continuously
extendable to the whole of X. If this holds for all real-valued continuous
functions on A, then A is called C-embedded in X. Now, we shall say that
a subset A ⊂ X is Uω-embedded in X if for every continuous function f :
A→ R, there exists a continuous function g : X → R such that f(x) ≤ g(x)
whenever x ∈ A. The notion “Uω-embedded” in this sense is the same as
“Uω-embedded” in the sense of Hoshina [8] (see Lemma 2.5). It should be
mentioned that a subset A ⊂ X is C-embedded in X if and only if it is both
Uω- and C∗-embedded in X [20] (see [8, Proposition 1.6]).

Another special embedding which will play a central role in the paper
is related to extension of maps with values in Banach spaces. Let λ be an
infinite cardinal. A subset A ⊂ X is Pλ-embedded in X if every continuous
map f : A → Y into a Banach space Y with w(Y ) ≤ λ is continuously
extendable over X, where w(Y ) is the weight of Y , i.e., the least cardinality
of a base for the topology of Y . The notion “Pλ-embedded” in this sense is
the same as “Pλ-embedded” in the sense of Shapiro [28], which was intro-
duced by Arens [3] under the name “λ-normally embedded” (see [1, 19, 22,
28]). It should be mentioned that A is C-embedded in X if and only if it is
Pω-embedded in X [6].
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The following theorem will be proved in this paper.

Theorem 1.1. Let λ be an infinite cardinal number , A be a Pλ-embedded
subset of a topological space X, and let M be a metric space. The following
conditions are equivalent :

(a) A×M is Pλ-embedded in X ×M .
(b) A×M is C∗-embedded in X ×M .
(c) A×M is Uω-embedded in X ×M .

Concerning the right place of Theorem 1.1, let us first especially men-
tion the following consequence which provides an affirmative answer to [24,
Problem 3] raised by Teodor Przymusiński, and also to [9, Problem 4.14]
and [10, Problem 3.1] stated by Takao Hoshina.

Corollary 1.2. Let X be a topological space, A be a subset of X, and
let M be a non-discrete metric space. Then A×M is C-embedded in X×M
provided it is C∗-embedded in X ×M .

P r o o f. By Theorem 1.1, it suffices to show that A is C-embedded in X
if A×M is C∗-embedded in X×M . By assumption, M contains an infinite
compact subset K. By a result of E. Michael (see Lemma 2.1), A × K is
C∗-embedded in X ×K. Finally, by a result of [20, 22] (see Lemma 2.3), A
is C-embedded in X.

Theorem 1.1 incorporates also several known results. In case X ×M is
an M -independent product, Corollary 1.2 coincides with a result of Przy-
musiński [24]. Let us point out here that the notion of M -independence of
X×M is located between dim(X×M) = 0 and dimM = 0. In case M is the
space of irrational numbers, Corollary 1.2 coincides with a result of H. Ohta
[21]. The equivalence between conditions (a) and (b) of Theorem 1.1 was
established by K. Yamazaki when M is σ-locally compact [30], and by T.
Hoshina and K. Yamazaki when M2 is homeomorphic to M [11].

For a proper understanding of Theorem 1.1, a word should be said also
about the last condition (c). The statement that it is equivalent to the pre-
vious ones should be compared with Rudin–Starbird’s result in [27] that, for
a non-discrete metric space M , the normality of X ×M is equivalent to the
countable paracompactness of X×M . As we shall establish in the next sec-
tion, the notion of Uω-embedding has a quite nice and useful interpretation
in terms of Ishikawa’s characterization of countable paracompactness [14].

Another interesting consequence which follows from Theorem 1.1 is the
following result.

Corollary 1.3. Let λ be an infinite cardinal , A be a Pλ-embedded subset
of a topological space X, Y = K×M be the product of a compact Hausdorff
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space K and a metric space M , and let µ = max{w(K), λ}. Then A× Y is
Pµ-embedded in X × Y provided it is C∗-embedded in X × Y .

P r o o f. Suppose that (A×K)×M is C∗-embedded in (X×K)×M . Then
A×K is C∗-embedded in X ×K. Hence, it is Pµ-embedded in X ×K (see
Lemma 2.3). Finally, by Theorem 1.1, A× Y is Pµ-embedded in X × Y .

In view of Corollary 1.3 and Theorem 1.1, the following two problems
become natural.

Problem 1. Let λ be an infinite cardinal, A be a Pλ-embedded subset
of a topological space X, and let Y be a closed subspace of the product of
a compact Hausdorff space and a metric space, i.e. a paracompact M -space
in the sense of [18]. Is A× Y Pλ-embedded in X × Y if it is C∗-embedded
in X × Y ?

Problem 2. Let λ be an infinite cardinal, and let A be a Pλ-embedded
subset of a topological space X. Does Theorem 1.1 remain true if M is
supposed to be only (i) a Lašnev space, or (ii) a stratifiable space, or (iii) a
paracompact σ-space?

For the notions involved in Problem 2, we refer the reader to [7].
The proof of Theorem 1.1 is divided into a few steps and will be finally

accomplished in Section 6. Some of these steps were inspired by ideas stated
in the proof of [24, Proposition 5] but, in view of the present situation of ar-
bitrary metric spaces M , our arguments are entirely different. The first step
of our proof is a general “scattered” reduction of the theorem to the same
statement but now only for metric spaces M which are both nowhere locally
compact and homogeneous with respect to the weight of their non-empty
open subsets. This is done in detail in Section 4 (see Theorem 4.1), where
we call the spaces with the second property weight-homogeneous. Next, in
Section 5, we deal with the special case of weight-homogeneous and nowhere
locally compact spaces M , showing that, in this case, controlled simultane-
ous extension of “many” cozero-sets of A to cozero-sets of X implies (a) of
Theorem 1.1 (see Theorem 5.1). Finally, in Section 6, we finish the proof
by showing that (b) and (c) of Theorem 1.1 certainly imply the extension
property stated in Theorem 5.1 (see Propositions 6.1 and 6.2). The technique
developed for the proof of Theorem 1.1 allows one to provide an answer to
another question of Przymusiński’s [23, Problem 1]. This is done in Theorem
7.1 in the last section.

2. The necessary preliminary results. This section contains all nec-
essary preliminary results which are used in the proof of Theorem 1.1.

For a topological space X and a linear topological space L, we use
C(X,L) to denote the linear space of all continuous maps from X to L.
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Also, as usual, we write C(X) for C(X,R). In what follows, for a map ϕ
from a set T to a function space C(X,L), let us agree to write the value of ϕ
at a point t ∈ T as ϕ[t]. Suppose that A ⊂ X. A map ϕ : C(A,L)→ C(X,L)
is called a linear extender if it is a linear map and ϕ[f ] is an extension of f
whenever f ∈ C(A,L).

The following result is actually due to E. Michael. The proof in the
special case of L = R can be found in Starbird [29].

Lemma 2.1. Let X be a topological space, and let B be a closed subset
of a metric space M . Then, for every locally convex linear topological space
L, there exists a linear extender ϕ : C(X ×B,L)→ C(X ×M,L) such that
ϕ[f ]({x} ×M) is a subset of the the convex hull of f({x} × B) whenever
x ∈ X and f ∈ C(X ×B,L).

O u t l i n e o f p r o o f. With every map f ∈ C(X×B,L) and point x∈X
we associate another map fx∈C(B,L) defined by fx(t)=f(x, t), t∈B. Let
ψ : C(B,L) → C(M,L) be a Dugundji extender constructed in a standard
way [5], i.e. ψ is a linear extender such that, for every g ∈ C(B,L) and
t ∈ M , the point ψ[g](t) belongs to the convex hull of g(F ) for some finite
F ⊂ B. Then, for every f ∈ C(X × B,L), define ϕ[f ] ∈ C(X ×M,L) by
setting ϕ[f ](x, t) = ψ[fx](t), (x, t) ∈ X ×M . The map ϕ : C(X × B,L)→
C(X ×M,L) so obtained is as required.

A cozero-set in X is a set U ⊂ X of the form U = {x ∈ X : f(x) 6= 0}
for some f ∈ C(X), and a cozero-set cover of X is a cover of X consisting
of cozero-sets in X.

Every σ-locally finite cozero-set cover of a space X has a locally finite
cozero-set refinement ([17, Theorem 1.2] and [18, Theorem 1.2]). Modulo
this fact, the next lemma was obtained by Morita (see the proof of [19,
Corollary 10]), while the special case of P -embedding is due to Aló and
Sennott [1, Corollary 2.4]. For a simple proof, we refer the interested reader
to Przymusiński [22, Proposition 3.1].

Lemma 2.2. Let A be a subset of a topological space X, and let λ be
an infinite cardinal. Then A is Pλ-embedded in X if and only if for every
locally finite cozero-set cover V of A of cardinality |V| ≤ λ, there exists a
σ-locally finite cozero-set cover W of X such that V is refined by W ∩ A =
{W ∩A : W ∈ W}.

The first statement of the next lemma is due to Aló and Sennott [2]; the
second one to Morita and Hoshina [20, Theorem 1.5] and Przymusiński [22,
Theorem 3].

Lemma 2.3. Let λ be an infinite cardinal , and A be a subset of a topo-
logical space X. If A is Pλ-embedded in X, then A× Y is Pλ-embedded in
X × Y for every compact Hausdorff space Y with w(Y ) ≤ λ. If Y is an
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infinite compact Hausdorff space, then A is Pw(Y )-embedded in X if and
only if A× Y is C∗-embedded in X × Y .

A zero-set in X is the complement of a cozero-set in X. Concerning the
union of zero-sets, we need the following lemma which coincides with [20,
Lemma 2.3].

Lemma 2.4. Let Z be a family of zero-sets of a topological space X which
admits a locally finite family {UZ : Z ∈ Z} of cozero-sets of X with Z ⊂ UZ
for every Z ∈ Z. Then

⋃Z is a zero-set of X.

A family S of subsets of X is uniformly locally finite in X [12, 15] if
there exists a locally finite cozero-set cover U of X such that every U ∈ U
meets at most finitely many members of S.

We complete the list of the preliminary results with the following char-
acterization of Uω-embedding. For a similar characterization, we refer the
reader to [8, Corollary 1.4].

Lemma 2.5. For a subset A of a topological space X, the following con-
ditions are equivalent :

(i) A is Uω-embedded in X.
(ii) Every countable family S of subsets of A which is uniformly locally

finite in A is also uniformly locally finite in X.
(iii) For every decreasing sequence {Fn : n < ω} of zero-sets of A with⋂{Fn : n < ω} = ∅, there exists a sequence {Zn : n < ω} of zero-sets of X

such that
⋂{Zn : n < ω} = ∅ and Fn ⊂ Zn, n < ω.

P r o o f. (i)⇒(ii). Let S = {Sn : n < ω} be a family of subsets of A which
is uniformly locally finite in A. By [8, Lemma 1.1], there exists a locally
finite family {Gn : n < ω} of cozero-sets of A and a family {Fn : n < ω}
of zero-sets of A such that Sn ⊂ Fn ⊂ Gn, n < ω. For every n < ω,
take a continuous function fn : A → [0, n] such that Fn ⊂ f−1

n (n) and
A \ Gn ⊂ f−1

n (0). Next, define another continuous function f : A → R
by f =

∑{fn : n < ω}. According to (i), there exists g ∈ C(X) with
f(x) ≤ g(x) for all x ∈ A. Then U = {g−1((−n, n)) : n < ω} defines a
countable cozero-set cover of X such that each U ∈ U meets at most finitely
many members of S. Since every countable cozero-set cover has a locally
finite cozero-set refinement, S is uniformly locally finite in X.

(ii)⇒(iii). Let {Fn : n < ω} be a decreasing sequence of zero-sets of A
such that

⋂{Fn : n < ω} = ∅. Then V = {A \ Fn : n < ω} is a countable
cover of A which consists of cozero-sets of A and each member of V misses
some Fn. Hence, {Fn : n < ω} is uniformly locally finite in A and therefore,
by (ii), also in X. That is, there exists a locally finite cozero-set cover U of
X such that each U ∈ U meets at most finitely many Fn’s. Then, for every
n < ω, we may set Zn =

⋂{X \U : U ∈ U and U ∩Fn = ∅}. In this way, we
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get a sequence {Zn : n < ω} of zero-sets of X such that
⋂{Zn : n < ω} = ∅

and Fn ⊂ Zn, n < ω.
(iii)⇒(i). Let f ∈ C(A), and let Fn = {x ∈ A : f(x) ≥ 2n} for every

n < ω. By (iii), there exists a decreasing sequence {Zn : n < ω} of zero-sets
of X such that

⋂{Zn : n < ω} = ∅ and Fn ⊂ Zn, n < ω. Then, for
every n < ω, there exists a continuous function hn : X → [

0, 2−(n+1)
]

with
Zn = h−1

n (0). Define a function h : X → R by h =
∑{hn : n < ω}. Since

h ∈ C(X) and h(x) > 0 for all x ∈ X, we can define another continuous
function g on X by setting g = 1/h. For x ∈ A, let n(x) = min{n < ω :
x 6∈ Zn}. Then h(x) ≤ 2−n(x) and, at the same time, x 6∈ Fn(x). That is,
g(x) ≥ 2n(x) > f(x).

In [8] Hoshina has defined a subset A of X to be Uλ-embedded in X if
every uniformly locally finite (in A) family F of subsets of A with |F| ≤ λ is
uniformly locally finite in X. The equivalence stated by Lemma 2.5 justifies
the use of the same name for the embedding property in the Introduction
defined as “Uω-embedding”.

3. Subdividing and generating embedding-like properties. We
discuss some weaker embedding-like properties which will be used in the
next section. A subset A of a topological space X is z-embedded in X if
each zero-set of A is the restriction to A of a zero-set of X. Further, we say
that A is well-embedded in X if for every zero-set Z of X with Z ∩ A = ∅,
there exists h ∈ C(X) such that A ⊂ h−1(0) and Z ⊂ h−1(1). The following
useful characterization of C-embedding was proven in [4, Corollary 3.6.B].

Lemma 3.1. A subset A of a topological space X is C-embedded in X if
and only if it is both z-embedded and well-embedded in X.

On the other hand, concerning rectangular subsets of product spaces, we
have the following example of well-embedded subsets.

Lemma 3.2. Let A be a subset of a topological space X, M a metric space
and let F be a countable closed cover of M such that A× F is C-embedded
in X × F for every F ∈ F . Then A×M is well-embedded in X ×M .

P r o o f. Let Z be a zero-set of X × M such that Z ∩ (A × M) = ∅.
According to Lemma 3.1, for every F ∈ F we can fix an fF ∈ C(X × F )
such that A×F ⊂ f−1

F (0) and Z ∩ (X×F ) ⊂ f−1
F (1). Then, by Lemma 2.1,

we can extend each fF to gF ∈ C(X×M) so that A×M ⊂ g−1
F (0). Finally,

W =
⋃{

g−1
F (R \ {0}) : F ∈ F} is a cozero-set of X ×M which contains Z

and W ∩ (A×M) = ∅. That is, A×M is well-embedded in X ×M .

As Proposition 3.5 will show, well-embedding plays an important role as
a component of another embedding-like property. Following [13], we shall say
that A is C1-embedded in X if for every zero-set F of A and every zero-set
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Z of X with F ∩ Z = ∅, there exists h ∈ C(X) such that F ⊂ h−1(0)
and Z ⊂ h−1(1). It should be mentioned that every Uω-embedded subset
is C1-embedded and every C1-embedded subset is well-embedded while, in
general, none of the converse statements hold (see [8, 13]). As a consequence
of our results, we shall obtain another example in this direction which is
related to rectangular subsets of product spaces (see Example 3.4). Our
special interest in C1-embedding is inspired by the following property.

Lemma 3.3. Let λ be an infinite cardinal , A be a C1-embedded subset
of a topological space X, and let F be a countable family of zero-sets of X
which covers A and F ∩A is Pλ-embedded in X for each F ∈ F . Then A is
also Pλ-embedded in X.

P r o o f. Let U be a locally finite cozero-set cover of A with |U| ≤ λ.
For every F ∈ F , by hypothesis and Lemma 2.2, there exists a σ-locally
finite cozero-set cover {G(U,F ) : U ∈ U} of X with G(U,F ) ∩ (F ∩ A) ⊂ U
whenever U ∈ U . Hence, for every F ∈ F , there also exists a zero-set
cover {Z(U,F ) : U ∈ U} of X and a cozero-set one {V(U,F ) : U ∈ U} such
that V(U,F ) ⊂ Z(U,F ) ⊂ G(U,F ), U ∈ U . Since A is C1-embedded in X, for
every (U,F ) ∈ U × F there now exists a cozero-set W(U,F ) of X such that
W(U,F )∩((Z(U,F )∩A)\U) = ∅ and F ⊂W(U,F ). ThenW0 = {V(U,F )∩W(U,F ) :
(U,F ) ∈ U × F} is a σ-locally finite and cozero-set (in X) cover of A such
that U is refined by W0 ∩A. Since A is C1-embedded in X and W0 =

⋃W0

is a cozero-set of X which contains A, there exists a cozero-set W1 of X such
that W1 ∩ A = ∅ and X \W0 ⊂ W1. Hence, W =W0 ∪ {W1} is a σ-locally
finite cozero-set cover of X such that U is refined by W ∩ A. Therefore, by
Lemma 2.2, A is Pλ-embedded in X.

We are now ready for the following example which shows that “Uω-
embedded” cannot be weakened to “well-embedded” in condition (c) of
Theorem 1.1.

Example 3.4. There exist a normal space X, a closed subset A of X,
and a metric space M such that A×M is well-embedded in X ×M but not
C1-embedded.

P r o o f. According to [25, 26], there exists a normal space X and a closed
subset A of X such that A×J(ω) is not C-embedded in X×J(ω). Here, J(ω)
is the metrizable hedgehog with ω spines. Note that J(ω) admits a countable
cover F of compact subsets. Since A is C-embedded in X, it follows from
Lemma 2.3 that each A × F , F ∈ F , is C-embedded in X × F and hence,
by Lemma 2.1, in X × J(ω) as well. Therefore, by Lemma 3.2, A× J(ω) is
well-embedded in X × J(ω) while, by Lemma 3.3, it is not C1-embedded in
X × J(ω).
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In what follows, we say that a subset A is CU -embedded in X if for
every zero-set F of A and every zero-set Z of X with Z∩F = ∅, there exists
h ∈ C(X) such that F ⊂ h−1(0) and Z ∩ A ⊂ h−1(1). According to the
definitions of well-embedding and C1-embedding, we now get the following
immediate proposition.

Proposition 3.5. A subset A of a topological space X is C1-embedded
in X if and only if it is both CU -embedded and well-embedded in X.

We conclude this section with the following important example of CU -
embedded subsets.

Proposition 3.6. Let A be a subset of a topological space X which is
either C∗-embedded or Uω-embedded in X. Then A is CU -embedded in X.

P r o o f. In case A is C∗-embedded in X, this is obvious. On the other
hand, every Uω-embedded subset is C1-embedded as we have stated before
Lemma 3.3. Hence, in case A is Uω-embedded, this follows from Proposi-
tion 3.5.

4. A reduction to “nice” metric factors. Here, we show how the
proof of Theorem 1.1 can be reduced to metric spaces M which are weight-
homogeneous, i.e. w(U) = w(M) for every non-empty open subset U of M .
The following theorem, which may have some independent interest, will be
proved.

Theorem 4.1. Let X be a topological space, M be a metric space, λ
be an infinite cardinal , and let A be a Pλ-embedded subset of X such that
A×M is CU -embedded in X×M . Also, let A×S be Pλ-embedded in X×S
for every weight-homogeneous and nowhere locally compact closed subspace
S of M . Then A×M is Pλ-embedded in X ×M .

To prepare for the proof of Theorem 4.1, we need a bit more terminology.
For a space Y we use P(Y ) to denote the set of all subsets of Y , and C(Y ) to
denote that of all closed subsets of Y . Also, we write T(Y ) for the topology
of Y . Finally for S ⊂ Y and U ⊂ S, we denote by clS(U) the closure of U
in S.

Suppose that S ∈ P(Y ) and P ⊂ P(Y ). By transfinite induction, for
each ordinal α we define a subset S(P,α) of S by setting S(P,0) = S and, for
α > 0,

S(P,α) = S \
⋃{

U ∈ T(S) : clS(U) ∩ S(P,β) ∈ P for some β < α
}
.

We say that S is P-scattered if S(P,α) = ∅ for some α. For such S we also
define the P-scattered height κP(S) as the first ordinal α with S(P,α) = ∅.
Sometimes, for convenience, we write S(α) instead of S(P,α).
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Lemma 4.2. Let S be a subset of a metric space M , and let P ⊂ P(M) be
such that C(P ) ⊂ P whenever P ∈ P. Then for each ordinal α the following
holds:

(1) S(α) is closed in S.
(2) If U ∈ T(S), then U (α) ⊂ S(α).
(3) S \ S(α) is P-scattered.

P r o o f. (1) follows from the definition of S(α) while (3) is a consequence
of (1) and (2). So, it remains to prove (2). Suppose, on the contrary, that (2)
fails for some U ∈ T(S), and let α be the first ordinal such that U (α) \ S(α)

6= ∅. Since U (0) = U ⊂ S = S(0), it follows that α > 0. Then, by definition,
there exists G ∈ T(S) such that G ∩ U (α) 6= ∅ and clS(G) ∩ S(β) ∈ P for
some β < α. Take H ∈ T(G) such that H ∩U (α) 6= ∅ and clS(H) ⊂ U . Then
clS(H)∩U (β) ∈ C(clS(H)) because clS(H) ⊂ U and U (β) is closed in U . On
the other hand, U (β) ⊂ S(β) because β < α. Therefore,

clS(H) ∩ U (β) ∈ C(clS(H) ∩ S(β)) ⊂ C(clS(G) ∩ S(β)) ⊂ P.

However, this is impossible because H ∩ U (α) 6= ∅.
Suppose that S ⊂M and P ⊂ P(M). We say that a family F of subsets

of S is a σ-discrete closed P-cover of S if F is a σ-discrete (in S) cover of S
such that F ⊂ P ∩ C(S).

Lemma 4.3. Let M be a metric space, and let P ⊂ P(M) be such that
∅ ∈ P and C(P ) ⊂ P whenever P ∈ P. Then every P-scattered subspace S of
M has a σ-discrete closed P-cover.

P r o o f (by transfinite induction on κP(S) of the P-scattered subspaces
S of M). If κP(S) = 0, then S = ∅ and {S} is a σ-discrete closed P-
cover of S. Suppose that, for some α > 0, every P-scattered subspace S of
M with κP(S) < α has a σ-discrete closed P-cover. Next, let T ⊂ M be
such that κP(T ) = α. For every β < α we set Uβ = T \ T (β). Note that
κP(Uβ) ≤ β because, by Lemma 4.2, U (β)

β ⊂ T (β) ∩ Uβ = ∅. Hence, by
the inductive hypothesis, for every β < α there exists a σ-discrete closed
P-cover Gβ of Uβ . On the other hand, the open family {Uβ : β < α} has a
σ-discrete closed (in T ) refinement L with

⋃
L =

⋃{Uβ : β < α} because
M is a metric space. For every L ∈ L, pick a fixed β(L) < α such that
L ⊂ Uβ(L). Then D =

{
L ∩G : L ∈ L and G ∈ Gβ(L)

}
is a σ-discrete closed

(in T ) family such that D ⊂ P because each D ∈ D is a subset of some
G ∈ ⋃{Gβ : β < α} ⊂ P. Now, let Tα = T \⋃D =

⋂{T (β) : β < α}. Since
T (α) = ∅, by definition, there exists a cover H ⊂ T(T ) of Tα such that to
every H ∈ H there corresponds a β(H) < α with clT (H) ∩ T (β(H)) ∈ P.
Hence, in particular, clT (H)∩Tα ∈ P because Tα is closed in T (β(H)). Then,
let E ⊂ C(Tα) be a σ-discrete (in T ) cover of Tα which refines H. This
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certainly implies that E ⊂ P. Therefore, F = D ∪ E is a σ-discrete closed
P-cover of T .

Proof of Theorem 4.1. Let X, A, λ and M be as in that theorem. Also,
let

P =
{
S ∈ P(M) : A× S is Pλ-embedded in X × S} .

The family P has the following two important properties.

(i) ∅ ∈ P and C(S) ⊂ P whenever S ∈ P.
(ii)

⋃
D ∈ P whenever D ⊂ P is discrete in

⋃
D.

Indeed, the empty set is P -embedded in any space and, in particular,
∅ ∈ P. The rest of (i) follows from Lemma 2.1. As for (ii), it follows from the
fact that, in this case, the family {X ×D : D ∈ D} is discrete in X ×⋃D.

The conclusion of our theorem becomes now equivalent to the statement
that M ∈ P. Suppose on the contrary that M 6∈ P, and let S ∈ C(M) \P be
such that w(S) = min{w(F ) : F ∈ C(M) \ P}. Let us show that

(iii) S has a countable closed cover F with F ⊂ P.

According to (i), (ii) and Lemma 4.3, it suffices to show that S is a P-
scattered subspace of M . Suppose on the contrary that we can find γ such
that S(P,γ) = S(P,γ+1) 6= ∅. Then, by Lemma 2.3, S(P,γ) is nowhere locally
compact while, by the choice of S, S(P,γ) is weight-homogeneous. Moreover,
S(P,γ) is closed in M by Lemma 4.2. Hence, by hypothesis of our theorem,
S(P,γ) ∈ P and therefore, by definition, S(P,γ+1) = ∅. The contradiction so
obtained completes the verification of (iii).

We now complete the proof as follows. By Lemma 3.2, (iii) implies that
A × S is well-embedded in X × S. On the other hand, A × S is a zero-set
of A×M and X × S is a zero-set of X ×M . Thus, it follows from Lemma
2.1 that every zero-set of A × S is a zero-set of A ×M and every zero-set
of X × S is a zero-set of X ×M . Hence, A × S is also CU -embedded in
X × S because, by hypothesis, A ×M is CU -embedded in X ×M . Then,
by Proposition 3.5, A × S is C1-embedded in X × S. Moreover, it follows
from Lemma 2.1 again that A×F is Pλ-embedded in X×S for each F ∈ F.
However, according to (iii) and Lemma 3.3, these finally imply that S ∈ P,
which contradicts the choice of S.

5. A further reduction of separating the factors. For sets D and
R, we use RD to denote the set of all maps from D to R and, in the special
case of R = 2, we identify 2D with the power P(D) of D. If T is a set, B ⊂ R
and G : T → P(B)D, then we say that H : T → P(R)D is an expansion of
G provided G[t](d) ⊂ H[t](d) for every t ∈ T and d ∈ D. Finally, with every
map H : T → P(R)D we associate another map 〈H, D〉 : T → P(R) defined
by 〈H, D〉(t) =

⋃H[t](D) for every t ∈ T .
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As usual, an ordinal is the set of smaller ordinals and a cardinal is an
initial ordinal. For cardinals κ and µ, let κ<µ =

⋃{κδ : δ < µ}. For
convenience, we regard κ0 as the singleton {∅}. With every σ ∈ κδ and
α < κ we associate another map σ α̂ ∈ κδ+1 defined by σ α̂|δ = σ and
σ α̂(δ) = α. We say that a map H : κ<ω → P(R)D is decreasing if, for
every σ ∈ κ<ω and α < κ, the family H[σ α̂](D) refines H[σ](D), i.e. each
member of H[σ α̂](D) is included in some member of H[σ](D).

We also need the following terminology. If Y and M are topological
spaces and S : κ<ω → P(M), then we say that H : κ<ω → P(Y )κ is S-free
provided

⋂
{clY (〈H,κ〉(t|n))× clM (S(t|n)) : n < ω} = ∅ for every t ∈ κω.

We say that a map S : κ<ω → T(M) is a sieve on M if S(∅) = M and
S(σ) =

⋃{S(σ α̂) : α < κ} for every σ ∈ κ<ω. For a sieve S : κ<ω → T(M)
on a space M and a point z ∈M , let

Σn(z) = {σ ∈ κn : z ∈ clM (S(σ))}, n < ω,

Σω(z) = {t ∈ κω : t|n ∈ Σn(z) for every n < ω},
and

Sn(z) =
⋃
{S(σ) : σ ∈ Σn(z)}, n < ω.

We say that a sieve S : κ<ω → T(M) is strong if

(i) ∅ 6∈ S(κ<ω),
(ii) each family {S(σ) : σ ∈ κn}, n < ω, is locally finite in M , and

(iii) whenever z ∈ M , the collection {Sn(z) : n < ω} is a local base at z
in M .

Finally, for a space Y , we write T0(Y ) for the collection of all cozero-sets
of Y , and C0(Y ) for that of the zero-sets of Y .

Theorem 5.1. Let λ be an infinite cardinal , A be a Pλ-embedded subset
of a topological space X, and let M be a weight-homogeneous nowhere locally
compact metric space. Also, let κ = w(M). Then A ×M is Pλ-embedded
in X ×M provided for every strong sieve S : κ<ω → T(M) on M , every
decreasing S-free map G : κ<ω → T0(A)κ admits an S-free expansion H :
κ<ω → T0(X)κ.

To prepare for the proof of Theorem 5.1, we arrange a few preliminary
facts into separate statements.

Lemma 5.2. Let κ be a cardinal number , M and Y be topological spaces,
S : κ<ω → T(M) be a strong sieve on M , and let G : κ<ω → P(Y )κ

be a decreasing map. For every z ∈ M the following two conditions are
equivalent :
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(a)
⋂{clY (〈G,κ〉(t|n)) : n < ω} = ∅ for every t ∈ Σω(z).

(b)
⋂{⋃{clY (〈G,κ〉(σ)) : σ ∈ Σn(z)} : n < ω} = ∅.

P r o o f. Let y ∈ Y be such that for every n < ω there is σ ∈ Σn(z) with
y ∈ clY (〈G,κ〉(σ)). Then, for every n < ω, we may define a non-empty subset
Σn of Σn(z) by Σn = {σ ∈ Σn(z) : y ∈ clY (〈G,κ〉(σ))}. Note that σ ∈ Σn+1

implies σ|n ∈ Σn because G is decreasing. In addition, each Σn is finite
because so is Σn(z). Hence, by König’s Lemma (see Lemma 5.7 in Chapter
II of [16]), there exists a point t ∈ κω such that t|n ∈ Σn ⊂ Σn(z) for every
n < ω. In particular, t ∈ Σω(z) and y ∈ ⋂{clY (〈G,κ〉(t|n)) : n < ω}, which
demonstrates that (a) implies (b). Since the converse implication is obvious,
this completes the proof.

We now turn to statements which concern relationships between the basic
concepts involved in our Theorem 5.1. The first one sheds a bit more light
on S-free maps and their role as components of embedding-like properties
in product spaces. It will be found to be very useful in the next section.

Lemma 5.3. Let κ be a cardinal number , M and Y be topological spaces,
S : κ<ω → T(M) be a strong sieve on M , and let G : κ<ω → P(Y )κ be a
decreasing map. Then G is S-free if and only if the family {〈G,κ〉(σ)×S(σ) :
σ ∈ κ<ω} is locally finite in Y ×M .

P r o o f. Suppose that G is S-free, and let (y, z) ∈ Y × M . Then, by
definition,

⋂{clY (〈G,κ〉(t|n)) : n < ω} = ∅ for every t ∈ Σω(z). According
to Lemma 5.2, this implies that

⋂{⋃
{clY (〈G,κ〉(σ)) : σ ∈ Σn(z)} : n < ω

}
= ∅.

Hence, there exists m < ω and a neighbourhood V of y in Y such that

(5.1) V ∩ 〈G,κ〉(σ) = ∅ for every σ ∈ Σm(z).

We now consider the set

(5.2) Lm(z) = M \
⋃
{clM (S(σ)) : σ ∈ κm \Σm(z)}.

Thus, we get a neighbourhood Lm(z) of z such that

(5.3) Σm(x) ⊂ Σm(z) for every x ∈ Lm(z).

Whenever n ≥ m and τ ∈ κn, note that, by (5.3), x ∈ S(τ) ∩ Lm(z)
implies τ |m ∈ Σm(x) ⊂ Σm(z). Therefore, S(τ) ∩ Lm(z) 6= ∅ implies τ |m ∈
Σm(z). Since G is decreasing, by (5.1), this finally implies that (V ×Lm(z))∩
(〈G,κ〉(τ) × S(τ)) = ∅ for every τ ∈ κn with n ≥ m. Since each family
{S(σ) : σ ∈ κn} is locally finite, z has a neighbourhood U in M such that
U ⊂ Lm(z) and {σ ∈ κ<m : U ∩ S(σ) 6= ∅} is finite. Then V × U is a
neighbourhood of (y, z) in Y ×M which meets only finitely many members
of {〈G,κ〉(σ)× S(σ) : σ ∈ κ<ω}.
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To show the converse, take a point z ∈ M and t ∈ Σω(z). Since the
family {〈G,κ〉(σ) × S(σ) : σ ∈ κ<ω} is locally finite, for every y ∈ Y
there exists a neighbourhood of (y, z) in Y ×M which meets only finitely
many members of {〈G,κ〉(t|n)×S(t|n) : n < ω}. This certainly implies that
y 6∈ clY (〈G,κ〉(t|m)) for some m < ω, i.e.

⋂{clY (〈G,κ〉(t|n)) : n < ω} = ∅,
which completes the proof.

Our next lemmas are related to the existence of strong sieves on weight-
homogeneous nowhere locally compact metric spaces.

Lemma 5.4. Let M be a weight-homogeneous non-compact metric space.
Then there exists a family U of non-empty open subsets of M which is
discrete in M and |U| = w(M).

P r o o f. Since M has a σ-discrete base, the proof reduces to the case
of w(M) = κ > ω and cf(κ) = ω. In this case, there exists a sequence
{κn : n < ω} of regular cardinals such that κ = supκn. Since M is not
compact, there is a discrete (in M) family {Un : n < ω} of non-empty
open subsets of M . Since M is weight-homogeneous, w(Un) = κ > κn for
each n < ω. Hence, for every n < ω, there is a family Un of non-empty
open subsets of Un which is discrete in clM (Un) and |Un| ≥ κn. Finally, the
family U =

⋃{Un : n < ω} is discrete in M and |U| = κ.

Lemma 5.4 fails if M is not weight-homogeneous. For example, endow
M = ωω+1 with the following topology. A basic neighbourhood of the point
ωω is a set of the form M \ ωn for n < ω, while each point of M \ {ωω} is
isolated. Then M is a metric space with w(M) = ωω but the cardinality of
any discrete (in M) family U of open subsets of M is less than ωω. This was
kindly pointed out by S. Fujii.

Lemma 5.5. Let M be a weight-homogeneous nowhere locally compact
metric space, and let κ = w(M). Then there exists a strong sieve S : κ<ω →
T(M) on M .

P r o o f (by induction on n < ω). Take a compatible metric d on M such
that d(y, z) ≤ 1 for every y, z ∈ M . Next, set S(∅) = M , and then suppose
that S(σ) is a non-empty open subset of M for some σ ∈ κn and n < ω. Let
D be a non-empty open subset of S(σ) with diamd(D) < 1/2n+1. According
to Lemma 5.4, there exists a discrete (in M) family U of non-empty open
subsets of D such that |U| = κ. On the other hand, there exists a locally
finite (in M) family V of non-empty open subsets of M such that

⋃V = S(σ)
and diamd(V ) < 1/2n+1, V ∈ V. Since |U ∪ V| = κ, we may now fix a
bijection Sσ : κ → U ∪ V. Then, for every α < κ, just set S(σ α̂) = Sσ(α).
In this way, we get a sieve S : κ<ω → T(M) such that ∅ 6∈ S(κ<ω) and
diamd(clM (S(σ))) ≤ 1/2n whenever σ ∈ κn. Also, {S(σ) : σ ∈ κn} is
locally finite for every n < ω. That is, S is a strong sieve on M .
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It should be mentioned that a metric space M which has a strong sieve
S : κ<ω → T(M) for some κ ≥ ω is weight-homogeneous and nowhere
locally compact. This fact will not be used in the paper and we leave the
arguments to the interested reader.

We conclude the preparation for the proof of Theorem 5.1 with another
lemma concerning special partitions of unity subordinate to strong sieves.
Following the notation of Section 2, let C(M, I) denote the subset of C(M)
of all continuous functions on M with values in I = [0, 1]. We say that a
map ξ : κ<ω → C(M, I) is a sieve-partition of unity on M if ξ[∅] is the
constant function on M with value 1, and ξ[σ] =

∑{ξ[σ α̂] : α < κ} for
every σ ∈ κ<ω. For h ∈ C(M, I), denote by supp(h) the supporting set of h,
i.e. supp(h) = clM (h−1((0, 1])).

Lemma 5.6. Let κ be an infinite cardinal , and let S : κ<ω → T0(M)
be a strong sieve on a metric space M . Then there exists a sieve-partition
of unity ξ : κ<ω → C(M, I) on M such that supp(ξ[σ]) ⊂ S(σ) for every
σ ∈ κ<ω.

P r o o f. Since each {S(σ α̂) : α < κ}, σ ∈ κ<ω, is a locally finite cozero-
set cover of S(σ), there exists a sieve L : κ<ω → T0(M) on M such that
clM (L(σ)) ⊂ S(σ) for every σ ∈ κ<ω . Take a map η : κ<ω → C(M, I) such
that η[σ]−1(0) = M \ L(σ) for every σ ∈ κ<ω. Then define another map
ξ : κ<ω → C(M, I) by setting ξ[∅] = η[∅]/η[∅] and, for every σ ∈ κ<ω and
α < κ,

ξ[σ α̂] =





ξ[σ] · η[σ α̂]∑{η[σ δ̂] : δ < κ} provided L(σ) 6= ∅,

η[σ α̂] otherwise.

This ξ satisfies all our requirements.

Proof of Theorem 5.1. Let (Y, ‖ · ‖) be a Banach space with w(Y ) ≤ λ,
and let f : A ×M → Y be a continuous map. We now show that f has a
continuous extension g : X ×M → Y .

For this purpose, with every space T we associate an exponential corre-
spondence ∆T : C(T ×M,Y ) → C(T, Y )κ

<ω

defined in the following way.
Let S : κ<ω → T(M) be a strong sieve on M which exists by Lemma 5.5.
Pick a fixed dense subset D of M with |D| = κ, and then define a map
θ : κ<ω →M by θ(σ) ∈ D ∩S(σ) for every σ ∈ κ<ω. Finally, ∆T is defined
by ∆T (h)[σ](x) = h(x, θ(σ)) for every h ∈ C(T × M,Y ), σ ∈ κ<ω and
x ∈ T .

Now, let Φ = ∆A(f) : κ<ω → C(A, Y ). Since the correspondence ∆T is
injective, the statement that f has a continuous extension g to the whole of
X ×M becomes equivalent to the existence of a map Γ : κ<ω → C(X,Y )
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subject to the extension condition

(EC) Γ [σ]
∣∣A = Φ[σ] for every σ ∈ κ<ω,

and, in addition, to the continuity condition

(CC) Γ ∈ ∆X(C(X ×M,Y )).

Namely, a map g ∈ C(X ×M,Y ) is an extension of f if and only if the
corresponding map Γ = ∆X(g) satisfies both (EC) and (CC). It is now
clear that the hypothesis on A to be Pλ-embedded in X implies “many”
solutions of (EC). In contrast, (CC) has no visible relationship with our
hypotheses. In this regard, a key step in the proof is given by the following
equivalent setting of (CC). Let ξ : κ<ω → C(M, I) be a sieve-partition of
unity on M as in Lemma 5.6 applied to the sieve S. Then, as we demonstrate
at the end of this proof, h ∈ C(X ×M,Y ) implies

(†) h = lim
n→∞

∑
{ξ[σ] ·∆X(h)[σ] : σ ∈ κn} .

In view of this, (CC) becomes now equivalent to the condition on Γ that

(CC)† lim
n→∞

∑
{ξ[σ] · Γ [σ] : σ ∈ κn} ∈ C(X ×M,Y ).

Having (CC)† in mind, the final separating of the factors of the product
X × M will be achieved by a condition on Γ that concerns only X and
involves S-free expansions of a sequence of decreasing S-free maps generated
by Φ.

Turning to this, for every σ ∈ κ<ω we pick a fixed map Dσ : κ → D2

such that

(5.4) Dσ(κ) = (D ∩ S(σ))2.

Next, for every k < ω we define a map Gk : κ<ω → T0(A)κ by letting, for
σ ∈ κ<ω and α < κ,

(5.5) Gk[σ](α) =
{
x ∈ A : diam(f({x} × Dσ[α](2))) > 1/2k+1} .

Note that, by (5.4), β < κ implies Dσ β̂ [κ] ⊂ Dσ[κ]. Therefore Gk[σ β̂](κ)
always refines Gk[σ](κ). That is, each Gk, k < ω, is a decreasing map.
Finally, observe also that, by (5.4) and (5.5), σ ∈ κ<ω implies

(5.6) 〈Gk,κ〉(σ) = {x ∈ A : diam(f({x} × S(σ))) > 1/2k+1}.
Since our sieve S is strong and f is continuous, by (5.6), each Gk, k < ω,
is an S-free map. Then each Gk has a decreasing S-free expansion Hk :
κ<ω → T0(X)κ . Indeed, by hypothesis, Gk has an S-free expansion H′k :
κ<ω → T0(X)κ. Then for every σ ∈ κ<ω and α, τ < κ just set Hk[∅](α) =
H′k[∅](α) and Hk[σ τ̂ ](α) = H′k[σ τ̂ ](α) ∩ Hk[σ](β), where β < κ is such
that Gk[σ τ̂ ](α) ⊂ Gk[σ](β).
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The maps Hk, k < ω, will play an important role in our proof. So,
we summarize some of their properties. For convenience, whenever k < ω,
we define maps Fk : κ<ω → C(X) and Zk : κ<ω → C0(X)κ by setting
Fk(σ) = X \ 〈Hk,κ〉(σ) and Zk[σ](α) = X \ Hk[σ](α) for σ ∈ κ<ω and
α < κ. Note that

(5.7) Fk(σ) =
⋂
{Zk[σ](α) : α < κ} for every σ ∈ κ<ω.

Since Hk is an expansion of Gk, it follows from (5.5) and (5.6) that, for every
σ ∈ κ<ω and α < κ,

(5.8) diam(f({x} × Dσ[α](2))) ≤ 1/2k+1 for every x ∈ Zk[σ](α) ∩A,

and

(5.9) diam(f({x} × S(σ))) ≤ 1/2k+1 for every x ∈ Fk(σ) ∩A.

We also need the following properties of Fk, k < ω, which are not directly
related to the map f . Namely, since each Hk is decreasing, the following
holds for every t ∈ κω:

(5.10) Fk(t|m) ⊂ Fk(t|n) whenever m ≤ n < ω.

Since Hk is S-free,
⋂{clX(〈Hk,κ〉(t|n)) : n < ω} = ∅ for every t ∈ Σω(z)

and every z ∈M . Hence, by Lemma 5.2, for every point z ∈M we have

(5.11) X =
⋃{⋂

{intX(Fk(σ)) : σ ∈ Σn(z)} : n < ω
}
.

Here, intX(Z) means the interior of Z in X. To these properties, we add
another one related to the map Φ = ∆A(f) : κ<ω → C(A, Y ) which is
sufficient to restore in full the former map f . Namely, according to the
definition of Φ, (5.9) and (5.10), we see that, for every k < ω, m ≤ n < ω
and σ ∈ κn,

(‡) ‖Φ[σ](x)− Φ[σ|m](x)‖ ≤ 1/2k+1 whenever x ∈ Fk(σ|m) ∩A.

We are now ready to construct the promised Γ : κ<ω → C(X,Y ) satisfying
both (EC) and (CC). In view of (CC)†, our final reduction of (CC) is given
by the requirement on Γ that, for every k ≤ m ≤ n < ω and σ ∈ κn,

(CC)‡ ‖Γ [σ](x)− Γ [σ|m](x)‖ ≤ 1/2k whenever x ∈ Fk(σ|m).

Construction of Γ . By induction on n < ω, we shall construct a sequence
of maps Γn : κn → C(X,Y ) such that, for every k ≤ m ≤ n < ω and σ ∈ κn,

(5.12) Γn[σ]
∣∣A = Φ[σ]

and

(5.13) ‖Γn[σ](x)− Γm[σ|m](x)‖ ≤ 1/2k whenever x ∈ Fk(σ|m).



Does C∗-embedding imply C-embedding 257

If this is done, then we may define Γ : κ<ω → C(X,Y ) by Γ |κn =
Γn for every n < ω. According to (5.12) and (5.13), it will satisfy all our
requirements.

Thus, it only remains to define these Γn’s. Since A is Pλ-embedded in
X, by definition, there is a map Ω : κ<ω → C(X,Y ) satisfying (EC), i.e.

(5.14) Ω[σ]
∣∣A = Φ[σ] for every σ ∈ κ<ω.

Then, setting Γ0 = Ω|κ0, we may suppose that, for some n < ω, the maps
Γm : κm → C(X,Y ), m ≤ n, have already been defined so that (5.12) and
(5.13) hold, and let us now demonstrate how Γn+1 : κn+1 → C(X,Y ) can
be constructed. To prepare for this, we need the following observation.

Claim 1. For every σ ∈ κn+1 and k ≤ m ≤ n, there exists a zero-set
Bkm(σ) of X such that Bkm(σ) ∩A = ∅ and

‖Ω[σ](x)− Γm[σ|m](x)‖ < 1/2k for every x ∈ Fk(σ|m) \Bkm(σ).

P r o o f. We consider the set O = {x ∈ X : ‖Ω[σ](x) − Γm[σ|m](x)‖ <
1/2k}. Note that, by (5.14) and (5.12), we have Ω[σ](x) = Φ[σ](x) =
f(x, θ(σ)) and Γm[σ|m](x) = Φ[σ|m](x) = f(x, θ(σ|m)) for every x ∈ A. On
the other hand, θ(σ) ∈ D ∩ S(σ) ⊂ D ∩ S(σ|m) and θ(σ|m) ∈ D ∩ S(σ|m).
Hence, by (5.4), there exists β < κ such that Dσ|m[β](2) = {θ(σ), θ(σ|m)}.
For this particular β, by (5.7) and (5.8), we finally get

Fk(σ|m) ∩A ⊂ Zk[σ|m](β) ∩A ⊂ O.
Then Bkm(σ) = Zk[σ|m](β) \O is as required.

Whenever σ ∈ κn+1, let Bkm(σ), k ≤ m ≤ n, be as in Claim 1. Then
B(σ) =

⋃{Bkm(σ) : k ≤ m ≤ n} is a zero-set of X as a finite union of
zero-sets of X and, by Claim 1, A ∩ B(σ) = ∅. Since A is C-embedded
in X, by Lemma 3.1, there is hσ ∈ C(X, I) such that A ⊂ h−1

σ (1) and
B(σ) ⊂ h−1

σ (0). Now, define Γn+1[σ] ∈ C(X,Y ) by letting, for every x ∈ X,

Γn+1[σ](x) = (1− hσ(x)) · Γn[σ|n](x) + hσ(x) ·Ω[σ](x).

In this way, we get a map Γn+1 : κn+1 → C(X,Y ). To show that it is
as required, take σ ∈ κn+1. Then, by (5.14), Γn+1[σ]

∣∣A = Ω[σ]
∣∣A = Φ[σ]

because A ⊂ h−1
σ (1). That is, (5.12) holds. In order to check (5.13), let

k ≤ m < n+ 1 and x ∈ Fk(σ|m). Since Γn and Γm are as in (5.13), we have

(5.15) ‖Γn[σ|n](x)− Γm[σ|m](x)‖ < 1/2k.

If x ∈ B(σ), then Γn+1[σ](x) = Γn[σ|n](x) because B(σ) ⊂ h−1
σ (0). There-

fore, by (5.15), ‖Γn+1[σ](x) − Γm[σ|m](x)‖ < 1/2k. In case x 6∈ B(σ), it
follows from Claim 1 that ‖Ω[σ](x) − Γm[σ|m](x)‖ < 1/2k. This, together
with (5.15), finally implies that



258 V. Gutev and H. Ohta

‖Γn+1[σ](x)− Γm[σ|m](x)‖ = ‖(1− hσ(x)) · (Γn[σ|n](x)− Γm[σ|m](x))

+ hσ(x) · (Ω[σ](x)− Γm[σ|m](x))‖
≤ (1− hσ(x)) · ‖Γn[σ|n](x)− Γm[σ|m](x)‖

+ hσ(x) · ‖Ω[σ](x)− Γm[σ|m](x)‖
< (1− hσ(x)) · 1/2k + hσ(x) · 1/2k = 1/2k.

Thus, (5.13) holds as well.

Construction of g ∈ C(X ×M,Y ) with ∆X(g) = Γ . Let ξ : κ<ω →
C(M, I) be as in Lemma 5.6. Note that, for every m ≤ n < ω, τ ∈ κm and
z ∈M ,

(5.16) ξ[τ ](z) =
∑
{ξ[σ](z) : σ ∈ κn and σ|m = τ}.

Then, for each n < ω, we define a map gn : X ×M → Y by setting, for
(x, z) ∈ X ×M ,

gn(x, z) =
∑
{ξ[σ](z) · Γ [σ](x) : σ ∈ κn}.

According to Lemma 5.6, the above definition is correct because Y is a
Banach space and each family {S(σ) : σ ∈ κn}, n < ω, is locally finite.
Moreover, gn is a continuous map. In order to check this, for every n < ω
and z ∈M , let Ln(z) be as in (5.2). Then Ln(z) is a neighbourhood of z in
M such that, by (5.3), Σn(y) ⊂ Σn(z) for every y ∈ Ln(z). On the other
hand, by Lemma 5.6,

(5.17) ξ[σ](y) = 0 for every σ ∈ κn \Σn(y).

This finally implies that

gn(x, y) =
∑
{ξ[σ](y) · Γ [σ](x) : σ ∈ Σn(z)} for (x, y) ∈ X × Ln(z).

Hence, gn is continuous because Σn(z) is finite.
The following two claims collect a bit more information about the

maps gn.

Claim 2. Whenever (x, z) ∈ X ×M and m ≤ n < ω, we have

gm(x, z) =
∑
{ξ[σ](z) · Γ [σ|m](x) : σ ∈ Σn(z)} .

P r o o f. It follows from (5.16) and (5.17) that

gm(x, z) =
∑
{ξ[τ ](z) · Γ [τ ](x) : τ ∈ Σm(z)}

=
∑{∑

{ξ[σ](z) : σ ∈ κn and σ|m = τ} · Γ [τ ](x) : τ ∈ Σm(z)
}

=
∑
{ξ[σ](z) · Γ [σ|m](x) : σ ∈ κn and σ|m ∈ Σm(z)} .

Since Σn(z) ⊂ {σ ∈ κn : σ|m ∈ Σm(z)}, (5.17) completes the proof.
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Claim 3. For every (x, z) ∈ X×M and k < ω, there exists a neighbour-
hood U of (x, z) in X ×M and an m < ω such that

‖gn(y, s)− gm(y, s)‖ < 1/2k whenever (y, s) ∈ U and m ≤ n < ω.

P r o o f. By (5.11), there exists m < ω such that

x ∈ V =
⋂
{intX(Fk+1(σ)) : σ ∈ Σm(z)}.

Let us show that U = V × Lm(z) satisfies all our requirements, where
Lm(z) is as in (5.2). To this end, take a point (y, s) ∈ U . Then, by (5.3),
Σm(s) ⊂ Σm(z), and therefore y ∈ ⋂{Fk+1(τ) : τ ∈ Σm(s)}. Hence, by
(CC)‡, n ≥ m implies

‖Γ [σ](y)− Γ [σ|m](y)‖ < 1/2k+1 for every σ ∈ Σn(s)

because Σn(s) ⊂ {σ ∈ κn : σ|m ∈ Σm(s)}. Then, by (5.17) and Claim 2,
this finally implies that, for every n ≥ m,

‖gn(y, s)− gm(y, s)‖ ≤
∑
{ξ[σ](s) · ‖Γ [σ](y)− Γ [σ|m](y)‖ : σ ∈ Σn(s)}

≤
∑{

ξ[σ](s) · 1
2k+1 : σ ∈ Σn(s)

}

=
1

2k+1

∑
{ξ[σ](s) : σ ∈ κn}

=
1

2k+1 · ξ[∅](s) =
1

2k+1 .

For (x, z) ∈ X ×M , it follows from Claim 3 that {gn(x, z) : n < ω} is
a Cauchy sequence in the Banach space (Y, ‖ · ‖). So, it must converge to
some point of Y . Hence, we can define a map g : X ×M → Y by

g(x, z) = lim
n→∞

gn(x, z) for every (x, z) ∈ X ×M.

This map g is continuous. Indeed, take a point (x, z) ∈ X×M and an ε > 0.
According to Claim 3, there exists a neighbourhood V of (x, z) ∈ X ×M
and an m < ω such that n ≥ m implies

‖gn(y, s)− gm(y, s)‖ < ε/3 for every (y, s) ∈ V .

Hence, in particular, ‖g(y, s)−gm(y, s)‖ ≤ ε/3 for every (y, s) ∈ V . Because
of the continuity of gm, there also exists a neighbourhood W of (x, z) ∈
X ×M such that ‖gm(x, z) − gm(y, s)‖ < ε/3 for every (y, s) ∈W . Thus,
whenever (y, s) ∈ V ∩W , we get

‖g(x, z)− g(y, s)‖ ≤ ‖g(x, z)− gm(x, z)‖
+ ‖gm(x, z)− gm(y, s)‖+ ‖gm(y, s)− g(y, s)‖

< ε/3 + ε/3 + ε/3 = ε,

which certainly implies that g is continuous.



260 V. Gutev and H. Ohta

We complete the proof of Theorem 5.1 by showing that g is an extension
of f . Let (x, z) ∈ A ×M , and let ε > 0. Since our sieve S is strong, the
collection {Sn(z) : n < ω} constitutes a local base at the point z in M .
Hence, there exists m < ω with ‖f(x, z)− f(x, y)‖ < ε for every y ∈ Sm(z).
On the other hand, by (EC), Γ [σ](x) = Φ[σ](x) = f(x, θ(σ)) for every
σ ∈ κ<ω. Since θ(σ) ∈ S(σ) ⊂ Sn(z) ⊂ Sm(z) for every σ ∈ Σn(z) and
n ≥ m, this implies that

‖f(x, z)− Γ [σ](x)‖ < ε whenever σ ∈ Σn(z) and n ≥ m.
In addition, by (5.17), we have

f(x, z) =
∑
{ξ[σ](z) · f(x, z) : σ ∈ Σn(z)} for every n < ω.

This finally implies that, for every n ≥ m,

‖f(x, z)− gn(x, z)‖ ≤
∑
{ξ[σ](z) · ‖f(x, z)− Γ [σ](x)‖ : σ ∈ Σn(z)}

<
∑
{ξ[σ](z) · ε : σ ∈ Σn(z)}

= ε ·
∑
{ξ[σ](z) : σ ∈ κn} = ε · ξ[∅](z) = ε.

That is, f(x, z) = limn→∞ gn(x, z) = g(x, z).

6. Proof of Theorem 1.1. According to Proposition 3.6 and Theorems
4.1 and 5.1, the following two propositions finally accomplish the proof of
Theorem 1.1.

Proposition 6.1. Let A be a subset of a topological space X, and let
M be a weight-homogeneous nowhere locally compact metric space such that
A×M is C∗-embedded in X×M . Let κ = w(M) and let S : κ<ω → T(M) be
a strong sieve on M . Then every decreasing S-free map G : κ<ω → T0(A)κ

admits an S-free expansion H : κ<ω → T0(X)κ.

P r o o f. Let G : κ<ω → T0(A)κ be a decreasing S-free map. Since each
cozero-set is a countable union of zero-sets, for every σ ∈ κ<ω there exists a
map Zσ : κ → C0(A)ω such that G[σ](α) = 〈Zσ, ω〉(α) for every α < κ. On
the other hand, by [27, Lemma], there is a map p : κ<ω → M2 such that,
for every σ ∈ κ<ω and τ ∈ κ<ω \ {σ},
(6.1) p[σ](0) 6= p[σ](1) and p[σ](2) ⊂ S(σ) \ p[τ ](2).

For every σ ∈ κ<ω and i < 2, we let

Zi(σ) =
⋃
{Zσ[α](n)× {p[σ α̂ n̂](i)} : α < κ and n < ω} .

Note that Z0(σ) ∪ Z1(σ) ⊂ A× S(σ α̂ n̂) for each α < κ and n < ω, while
{A×S(σ α̂ n̂) : α < κ and n < ω} is a locally finite family of cozero-sets of
A×M . Hence, by Lemma 2.4, both Z0(σ) and Z1(σ) are zero-sets of A×M .
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Whenever σ ∈ κ<ω, we now set Wσ =
⋃{G[σ](α)× S(σ α̂) : α < κ} which

defines a cozero-set of A×M such that

Z0(σ) ∪ Z1(σ) ⊂Wσ ⊂ 〈G,κ〉(σ)× S(σ).

Then, by Lemma 5.3, {Wσ : σ ∈ κ<ω} is a locally finite family of cozero-sets
of A ×M . Relying once again on Lemma 2.4, we find that Zi =

⋃{Zi(σ) :
σ ∈ κ<ω} is a zero-set of A × M for every i < 2. Moreover, by (6.1),
Z0 ∩ Z1 = ∅. Since A × M is C∗-embedded in X × M , this implies the
existence of g ∈ C(X×M) such that Zi ⊂ g−1(i), i < 2. For every σ ∈ κ<ω
and α < κ, we now let

H[σ](α) =
⋃{{x ∈ X : diam(g({x} × p[σ α̂ n̂](2))) > 2/3} : n < ω

}
.

Thus, we get a map H : κ<ω → T0(X)κ which is an expansion of G. Indeed,
x ∈ G[σ](α) implies that x ∈ Zσ[α](n) for some n < ω. Therefore, x ∈
H[σ](α) because diam(g({x} × p[σ α̂ n̂](2))) = 1.

It only remains to show thatH is S-free. Take t ∈ Σω(z) for some z ∈M .
Also, let x ∈ X. Since g is continuous at (x, z) ∈ X ×M and S is a strong
sieve, there is a neighbourhood U of x and m < ω such that

(6.2) diam(g(U × S(t|m))) < 2/3.

By (6.1), we have p[(t|m) α̂ n̂](2) ⊂ S((t|m) α̂ n̂) ⊂ S(t|m) for all α < κ
and n < ω. According to the definition of H[t|m](σ) and (6.2), this finally
implies that U ∩H[t|m](α) = ∅ for all α < κ. That is, x 6∈ clX(〈H,κ〉(t|m)),
which completes the proof.

Proposition 6.2. Let A be a subset of a topological space X, and let
M be a weight-homogeneous nowhere locally compact metric space such that
A×M is Uω-embedded in X×M . Let κ = w(M) and let S : κ<ω → T(M) be
a strong sieve on M . Then every decreasing S-free map G : κ<ω → T0(A)κ

admits an S-free expansion H : κ<ω → T0(X)κ.

P r o o f. Let G : κ<ω → T0(A)κ be a decreasing S-free map. As before,
for every σ ∈ κ<ω there is a map Zσ : κ → C0(A)ω such that G[σ](α) =
〈Zσ, ω〉(α) for every α < κ. Also, let q : κ<ω → M be such that, for every
σ ∈ κ<ω and τ ∈ κ<ω \ {σ},
(6.3) q(σ) ∈ S(σ) \ {q(τ)}.
Following the previous proof, for every σ ∈ κ<ω, we now define a zero-set
Q(σ) =

⋃{Zσ[α](n) × {q(σ α̂ n̂)} : α < κ and n < ω} of A ×M , and a
cozero-set Wσ =

⋃{G[σ](α) × S(σ α̂) : α < κ} of A ×M . In this way, for
every σ ∈ κ<ω we have

Q(σ) ⊂Wσ ⊂ 〈G,κ〉(σ)× S(σ).
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By Lemma 5.3, {Wσ : σ ∈ κ<ω} is locally finite in A ×M . According to
Lemma 2.4, for every k < ω we can define a zero-set of A×M by letting

Fk =
⋃{

Q(σ) : σ ∈ κ<ω \ κ<k} .
Then {Fk : k < ω} is a decreasing sequence such that

⋂{Fk : k < ω} = ∅
because {Q(σ) : σ ∈ κ<ω} is locally finite. Since A ×M is Uω-embedded
in X ×M , by Lemma 2.5, we can find a decreasing sequence {Zk : k < ω}
of zero-sets of X ×M such that

⋂{Zk : k < ω} = ∅ and Fk ⊂ Zk, k < ω.
Whenever k < ω, take a continuous gk : X ×M → [0, 1/2k+1] such that
Zk = g−1

k (0), and then let g =
∑{gk : k < ω}. Thus, we get g ∈ C(X ×M)

with the property that

(6.4) g(X ×M) ⊂ (0, 1] and g(Zk) ⊂ [0, 1/2k) for every k < ω.

Whenever α < κ and σ ∈ κk for some k < ω, we may now set

H[σ](α) =
⋃{{x ∈ X : g(x, q(σ α̂ n̂)) < 1/2k} : n < ω

}
.

In fact, this defines a map H : κ<ω → T0(X)κ which is an expansion of
G. Indeed, x ∈ G[σ](α) implies x ∈ Zσ[α](n) for some n < ω. Therefore,
(x, q(σ α̂ n̂)) ∈ Q(σ) ⊂ Fk ⊂ Zk because σ ∈ κk. So, by (6.3) and (6.4),
x ∈ H[σ](α).

We finish the proof by showing that H is S-free. Take t ∈ Σω(z) for
some z ∈ M . Also, let x ∈ X. Then, by (6.4), there exists k < ω such that
g(x, z) ∈ (1/2k, 1]. Since g is continuous at (x, z) ∈ X×M and S is a strong
sieve, there exists a neighbourhood U of x and an m < ω, with k ≤ m, such
that

(6.5) g(U × S(t|m)) ⊂ (1/2k, 1] .
By (6.3), q((t|m) α̂ n̂) ∈ S((t|m) α̂ n̂) ⊂ S(t|m) for every α < κ and n < ω.
Hence, by (6.5), U ∩ H[t|m](α) = ∅ for every α < κ because k ≤ m. That
is, x 6∈ clX(〈H,κ〉(t|m)).

7. A solution to another problem of Przymusiński. The technique
developed in the paper allows one to obtain also the following solution of
[23, Problem 1].

Theorem 7.1. For a subset A of a topological space X and an infinite
cardinal κ, the following conditions are equivalent :

(a) The set A×M is C∗-embedded in X ×M for every metric space M
with w(M) ≤ κ.

(b) The set A is C-embedded in X and every decreasing map G : κ<ω →
T0(A)κ has an expansion H : κ<ω → T0(X)κ such that

⋂{clX(〈H,κ〉(t|n)) :
n < ω} = ∅ for every t ∈ κω with

⋂{clA(〈G,κ〉(t|n)) : n < ω} = ∅.
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P r o o f. Suppose that A is as in (a). Endowing κ with the discrete topol-
ogy, we may identify κω with the universal zero-dimensional Baire space of
weight κ. Then κω is weight-homogeneous and nowhere locally compact.
Define S : κ<ω → T(κω) by S(σ) = {t ∈ κω : t|n = σ} for every σ ∈ κn
and n < ω. Note that S is a strong sieve on κω, each S(σ) is a clopen subset
of κω, and

(7.1) t ∈
⋂
{S(t|n) : n < ω} for every t ∈ κω.

We also need the set T = {t ∈ κω : 0 ∈ t(ω)} which is both dense and open
in κω.

Let κ1 = {α+1 : α < κ}. Next, for every α < κ, define ϕ(α) = α+1 and
ψ(α+ 1) = α. In this way, we get two injections ϕ : κ → κ1 and ψ : κ1 → κ
such that ψ ◦ ϕ = idκ , the identity map of κ.

Suppose now that G : κ<ω → T0(A)κ is a decreasing map. With this
map G we associate another one G1 : κ<ω → T0(A)κ defined by letting, for
every σ ∈ κn and n < ω, G1[σ] = G[ψ◦σ] if σ ∈ κn1 and G1[σ](α) = ∅, α < κ,
otherwise. In this way, we get a decreasing map G1 such that for every t ∈ T
there exists an n < ω with

(7.2) 〈G1,κ〉(t|n) = ∅.
Then we define a subset M of κω by

(7.3) M =
{
t ∈ κω :

⋂
{clA(〈G1,κ〉(t|n)) : n < ω} = ∅

}
.

According to (7.2), T ⊂ M , which implies that M is weight-homogeneous
and nowhere locally compact because T is a dense open subset of κω. Finally,
define a strong sieve S1 : κ<ω → T(M) on M by S1(σ) = S(σ)∩M for every
σ ∈ κ<ω. By (7.1) and (7.3), G1 is S1-free. Then, by (a) and Proposition 6.1,
the map G1 has an S1-free expansion H1 : κ<ω → T0(X)κ . In particular,
H1 satisfies

(7.4) G1[σ](α) ⊂ H1[σ](α) for every σ ∈ κ<ω and α < κ,

and, by (7.1) and the definition of S1,

(7.5)
⋂
{clX(〈H1,κ〉(t|n)) : n < ω} = ∅ for every t ∈M .

Define another map H : κ<ω → T0(X)κ by H[σ] = H1[ϕ ◦ σ] for every
σ ∈ κ<ω. This H is as required in (b). To show that H is an expansion of
G, take a σ ∈ κn for some n < ω. Then, by (7.4), α < κ implies

H[σ](α) = H1[ϕ ◦ σ](α) ⊃ G1[ϕ ◦ σ](α) = G[ψ ◦ ϕ ◦ σ](α) = G[σ](α)

because ϕ ◦ σ ∈ κn1 and ψ ◦ ϕ = idκ .
Finally, assume that

⋂{clA(〈G,κ〉(t|n)) : n < ω} = ∅ for some t ∈ κω.
Then ϕ ◦ t ∈M , because ϕ ◦ t|n ∈ κn1 , n < ω, and
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⋂
{clA(〈G1,κ〉(ϕ ◦ t|n)) : n < ω} =

⋂
{clA(〈G,κ〉(ψ ◦ ϕ ◦ t|n)) : n < ω}

=
⋂
{clA(〈G,κ〉(t|n)) : n < ω} = ∅.

Hence, it follows from (7.5) that
⋂
{clX(〈H,κ〉(t|n)) : n < ω} =

⋂
{clX(〈H1,κ〉(ϕ ◦ t|n)) : n < ω} = ∅.

That is, H is as in (b). Since, by Lemma 2.3, A is C-embedded in X, this
completes the verification of (b).

Suppose now that A satisfies (b), and let M be a metric space with
w(M) ≤ κ. Consider the product space M0 = M×κω, where κω is the Baire
metric space of weight κ. Then M0 is weight-homogeneous and nowhere
locally compact. Hence, it follows from Proposition 3.6 and Theorems 4.1
and 5.1 that A×M0 is C∗-embedded in X×M0. If we consider M as a closed
subspace of M0, then, by Lemma 2.1, A ×M is C∗-embedded in A ×M0.
Hence, finally, A×M is C∗-embedded in X ×M .
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