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Wildness in the product groups

by

G. H j o r t h (Los Angeles, CA)

Abstract. Non-abelian Polish groups arising as countable products of countable
groups can be tame in arbitrarily complicated ways. This contrasts with some results
of Solecki who revealed a very different picture in the abelian case.

0. Group trees. The class of all Polish (completely metrizable, separa-
ble) groups may be naturally divided into two classes.

0.1. Definition. A Polish group G is tame if whenever X is a Polish
G-space (that is to say, G acts continuously on X) the orbit equivalence
relation is Borel as a subset of X ×X. A Polish group that is not tame is
wild.

On the one hand the wild groups include almost all groups of reasonable
topological complexity—for instance: S∞, the infinite permutation group in
the topology of pointwise convergence; U∞, the unitary group of Hilbert
space; RN (the infinite product of (R,+) in the product group structure and
topology); c0; l2. The main examples of tame groups are the locally compact
ones. These were not quite the only known examples—in [11] it is also shown
that ⊕

p prime

(Z(p∞)),

the infinite product of the subgroups of R/Z generated by {p−n : n ∈ N}
for p a prime, is tame.

Thus there is a gap in the spectrum of examples.
On the one hand we have the wild groups that can give rise to enormously

complicated actions. On the other hand the principal examples of tame
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2 G. Hjorth

groups give rise to actions that are only Fσ—they are not just tame but
excessively timid. The equivalence relations that can be induced by the
more exotic groups of the form

⊕
p prime(Z(p∞)) are not necessarily Fσ, but

still have low Borel complexity.
This paper paints in the gap and shows that we may have tame Polish

groups producing arbitrarily complicated Borel orbit equivalence relations.

0.2. Theorem. For every α < ω1 there is a tame Polish group G acting
continuously on a Polish space X with the resulting orbit equivalence relation
EG ⊂ X ×X not Π∼0

α as a subset of X ×X.

So we may have tame G with some EG not Fσδ, or not Gδσδ, or not
Gσδσδ, and so on.

For this purpose it is necessary to construct different tame G for different
levels in the Borel hierarchy. By the universal space construction of §2.6 of
[2] or the more recent construction of [4], G is tame if and only if there is a
bound on the Borel complexity of the possible EG.

0.3. Theorem (Becker–Kechris). A Polish group G is tame if and only
if there is an α < ω1 such that whenever G acts continuously on a Polish
space X the induced orbit equivalence relation EG ⊂ X × X is Π∼0

α as a
subset of X ×X.

The proof of 0.2 gives more information. In particular it provides a neg-
ative answer to a question from [11], where Sławek Solecki had raised the
ambitious and provocative question of whether we may be able to charac-
terize tameness algebraically for a broad class of Polish groups.

0.4. Definition. A Polish group G is said to be a product group if
there is a sequence G0, G1, G2, . . . of countable discrete groups such that
G =

∏
i∈NGi in the product topology and the product group structure (of

pointwise multiplication).

For abelian product groups, [11] does characterize wildness.

0.5. Definition (Solecki). Let p be prime and G a group. Then G is
p-compact if there is no decreasing sequence of subgroups Gk < G×Zp such
that for each k,

Zp = {n : (∃g ∈ G)((g, n) ∈ Gk)}
but

{0} =
{
n : (∃g ∈ G)

(
(g, n) ∈

⋂

k∈N
Gk

)}
.

0.6. Theorem (Solecki). Let G =
∏
i∈NGi be an abelian product group.

Then G is wild if and only if there is some prime p such that infinitely many
Gi are not p-compact.
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[11] also shows that for non-abelian G =
∏
i∈NGi the existence of some p

with infinitely many Gi not p-compact is a necessary condition for wildness
and raises the question of whether this condition is sufficient. A positive
answer would in particular show that any product group giving rise to suf-
ficiently complicated Borel orbit equivalence relations (more precisely: the
universal G-space (Tp)N of Lemma 2 of [11] has orbit equivalence relation
that is not at a finite level of the Borel hierarchy) must necessarily be wild.
Since the counterexamples from 0.2 all have the form G =

∏
i∈NGi we

obtain a negative solution.
None the less, since the constructions underlying 0.2 are lengthy and

the original question from [11] allows a simpler counterexample, we go to
trouble of showing directly in §1 that:

0.7. Theorem. There is a tame product group G =
∏
i∈NGi such that

no Gi is 2-compact.

The G from 0.7 is rank-2 solvable.

0.8. Set-theoretical notation. (i) The vector notation, ~x, indicates
a sequence (that may be either finite or infinite). If ~x = 〈x0, x1, . . . , xi, . . .〉
then for any n ∈ N, I will use (~x)n for xn. If ~x = 〈x0, x1, . . . , xi, . . . , xk−1〉
then l(~x) = k, the length of ~x. Given ~x = 〈x0, . . . , xk−1〉 and ~y = 〈y0, . . .
. . . , yi, . . .〉 the sequence ~x~y is the concatenation of ~x and ~y—so that its ith
term is xi for i < k but its (k + j)th term is yj (for j < l(~y) if l(~y) is
finite). I will extend this to ~xa = ~x〈a〉 := 〈x0, . . . , xk−1, a〉 and a~x = 〈a〉~x :=
〈a, x0, . . . , xk−1〉 (here and later := indicates equality by definition of the
terms already defined).

(ii) For me N = {0, 1, . . .} begins with zero. As with standard set-
theoretical notation, an ordinal is identified with its predecessors: n =
{0, 1, . . . , n− 1}. Ord is the class of all ordinals—infinite and finite.

(iii) A set S ⊂ X<N (:= finite sequences from X) is said to be a tree if it
is closed under subsequences. We then define a ranking function, RkS , from
S to the ordinals plus infinity:

(a) RkS(~x) = 0 if ~x has no proper extensions in S;
(b) given that we have defined RkS(~y) for all ~y strictly extending ~x we

set RkS(~x) = sup{α+ 1 ∈ Ord : (∃~y ∈ S)(~y ⊃ ~x, ~y 6= ~x, RkS(~y) = α)};
(c) for RkS(~x) not defined by transfinite iteration of the process in (b)

we let RkS(~x) =∞.

The reader can find in 2.E and appendix B of [6] a proof that RkS(~x) =
∞ if and only if there is an infinite branch f : N→ X such that f ⊃ ~x and
for all n ∈ N,

f |n (:= f |{0,1,...,n−1}) ∈ S.
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We let the rank of S be the sup of RkS(~x) for ~x ∈ S. By induction on α we
may construct for every countable successor ordinal α a tree S ⊂ N<N with
rank α.

(iv) For A a countable set we may identify 2A (:= {f : A → {0, 1}})
with P(A), the set of all subsets of A. If we give {0, 1} the discrete topology
and 2A the resulting product topology, then 2A is a compact Polish space.

At 1.9 we will need to use the following fact: If α is a countable ordinal
and ~x ∈ N<N, then the set of S ⊂ A such that RkS(~x) = α is a Borel set in
2N

<N
. This is also proved by transfinite induction on α.

0.9. Descriptive set-theoretical notation. (i) A Polish space is a
separable space that admits a complete metric. A topological group is said
to be a Polish group if it is Polish as a space. If G is a Polish group and X is
a Polish space equipped with a continuous action of G on X one says that
X is a Polish G-space. We then use EXG , or just EG when X is indicated, to
denote the orbit equivalence relation

x0E
X
G x1 ⇔ (∃g ∈ G)(g · x0 = x1).

(ii) Given a Polish space X, the Σ∼0
1 sets are the open sets, the Π∼0

1 sets
are the closed sets. For α a countable ordinal we say that a set A is Σ∼0

α if

A =
⋃

i∈N
Bi

with each Bi ∈ Π∼0
β(i) for some β(i) < α. A set is Π∼0

α if its complement is Σ∼0
α.

Thus we have a hierarchy, starting with Σ∼0
2 = Fσ, Π∼0

2 = Gδ, Σ∼0
3 = Gδσ,

and so on. For each countable α, Π∼0
α ⊂ Σ∼0

α+1 and Σ∼0
α ⊂ Π∼0

α+1. Every
Borel set appears at some point in this hierarchy, and Σ∼0

α 6= Π∼0
α for each

countable α.

0.10. Group-theoretical notation. (i) For G and H being groups,
and ψ : G→ Aut(H) a homomorphism from G to the automorphism group
of H, we form the semidirect product along ψ, HnψG, in the usual fashion.
It has H ×G as its underlying set. Multiplication is given by

(h1, g1) · (h2, g2) = (h1((ψ(g1))(h2)), g1g2).

(ii) Given a collection of groups, {Gi : i ∈ Λ}, we define
∏
i∈ΛGi to

be the infinite product in the following way. The underlying set is the col-
lection of functions f with domain Λ and each f(i) ∈ Gi (if Λ is N or a
natural number, we may use the sequence notation ~x to indicate elements
of
∏
i∈ΛGi). Given f1 and f2 in

∏
i∈ΛGi we define the product by taking

pointwise multiplication:

(f1 · f2)(i) = f1(i) · f2(i).
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⊕
i∈ΛGi is the subgroup consisting of elements with finite support—that is

to say, those f ∈ ∏i∈ΛGi such that f(i) is the identity for all but finitely
many i.

Thus for Λ finite there is no difference between
∏
i∈ΛGi and

⊕
i∈ΛGi.

(iii) I use the notations G×H and G⊕H interchangeably to mean the
product of these two groups. Given homomorphisms ψ1 : G1 → H1 and
ψ2 : G2 → H2 we define ψ1 × ψ2 (or ψ1 ⊕ ψ2) in the natural fashion from
G1 ×G2 to H1 ×H2 by

(g1, g2) 7→ (ψ1(h1), ψ2(h2)).

(iv) For abelian groups it is customary to use additive notation: + for
the group operation, −a for the inverse of a, 0 for the identity. n · a denotes
a+ . . .+ a (n times).

(v) If I do not know a group to be abelian I will use g · h or just gh
to indicate the group operation. I will use a−1 for the inverse and e for the
identity. gn denotes g · . . . · g (n times).

(vi) Zp is the cyclic group of size p. Its elements are {0, 1, . . . , p− 1}.
(vii) (See [11]) A set

S ⊂
⋃

N∈N

∏

i≤N
Gi

that actually forms a tree in the sense of 0.8(iii) above is called a group tree
if S ∩∏i≤N Gi is a subgroup of

∏
i≤N Gi whenever it is non-empty. S is

said to be a coset tree if for all N ∈ N and ~g1, ~g2, ~g3 ∈ S ∩
∏
i≤N Gi we have

~g1 · (~g2)−1 · ~g3 ∈ S.
In slight contrast to 0.8(iii), I will say that a group tree S is well founded as
a group tree if it is well founded off the identity, in the sense that whenever
~g ∈ S with some (~g)i 6= e then RkS(~g) <∞.

Group trees have been used in logic at various places: not just in Solecki’s
construction from [11] to obtain wild abelian groups, but also by Makkai
in [7] for showing that there are sentences σ with no uncountable mod-
els despite unboundedness in Scott ranks and also in [9] in refuting the
Ehrenfeucht conjecture. The real theorem in this paper is in fact a purely
combinatorial construction for group trees.

0.11. Theorem. For every countable ordinal α there is a sequence
(Gi)i∈N of countable groups such that :

(i) there is a group tree S ⊂ ⋃N∈N
∏
i≤NGi with some ~g ∈ S and

∞ > RkS(~g) > α;

(ii) but there is some further countable β > α such that whenever T ⊂
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⋃
N∈N

∏
i≤NGi is a group tree and ~h ∈ T with RkT (~h) > β then

RkT (~h) =∞.
The connection between this purely combinatorial result proved in §2

and the descriptive set-theoretic consequences in 0.2 are discussed in §3.
One can also obtain a Makkai type result from this construction. It is

perhaps somewhat strained, but I will state it to give a general impression
of how this paper compares with [7].

0.12. Theorem. For every countable ordinal α there are countable lan-
guages L ⊃ L′ and some σ ∈ L′ω1ω such that :

(i) σ has (up to isomorphism) exactly one L′ model , and thus in par-
ticular it has no uncountable models;

(ii) σ has the form
∧
i

∨
j ψi,j where each ψi,j is quantifier free;

(iii) there are L-expansions of models of σ with Scott height greater
than α;

(iv) there is some other countable β > α such that every L-expansion of
a model of σ has Scott height less than β.

While in [7] one essentially finds:

0.13. Theorem (Makkai). There are countable languages L ⊃ L′ and
some σ ∈ L′ω1ω such that :

(i) σ has (up to isomorphism) exactly one L′ model ;
(ii) σ has the form

∧
i

∨
j ψi,j where each ψi,j is quantifier free;

(iii) for all α < ω1 there are L-expansions of models of σ with Scott
height greater than α.

1. A counterexample. While all of this section is redundant, the meth-
ods of the general construction resemble those given below. In any case it
seems desirable to present the narrow counterexample directly.

1.1. Definition. Let p be a prime. Let (
∏
N Zp) n Z2 consist of pairs

(~m, i) where ~m ∈ (Zp)N, i ∈ Z2. We view (Zp)N as a group under the opera-
tion of pointwise addition, so that (~m+ ~m′)n = (~m)n+(~m′)n. Multiplication
in (
∏
N Zp)n Z2 is given by

(~m, 0) · (~m′, i′) = (~m+ ~m′, i′), (~m, 1) · (~m′, i′) = (~m− ~m′, 1 + i′).

Thus we have taken the semidirect product of
∏
N Zp and Z2 along the

homomorphism ϕ : Z2 → Aut(
∏
N Zp) given by

(ϕ(0))(~m) = ~m, (ϕ(1))(~m) = −~m.
Thus (

∏
N Zp)n Z2 is a group.
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1.2. Definition. Let (pk)k∈N enumerate in increasing order the primes
greater than 2. Let H ′k be the elements of (

∏
N Zp)nZ2 with finite support—

that is to say,

H ′k =
{

(~m, i) ∈
(∏

N
Zp
)
n Z2 : (∃N0 ∈ N)(∀n > N0)((~m)n = 0)

}
.

In other words,

H ′k =
(⊕

N
Zp
)
n Z2.

For G a group and g ∈ G let o(g) denote the order of g—the least n ∈ N for
which gn is the identity (and let it be ∞ if no such n exists).

1.3. Lemma. Let (~m, 1) ∈ H ′k. Then o((~m, 1)) = 2.

P r o o f. At once from the definitions of the group operations.

1.4. Lemma. Let (~m, 0) ∈ H ′k. Then o((~m, 0)) = pk.

P r o o f. Since every non-identity element of
∏
N Zp has order pk.

1.5. Lemma. No H ′k is p-compact for p = 2.

P r o o f. Fix k. First we define two subgroups of H ′k. For j ∈ N define

σkj ∈
(∏

N
Zpk
)
n Z2, σkj = (~m(k, j), 1),

where

(~m(k, j))n =
{

1 if n = j,
0 otherwise.

Let Ĥk be the subgroup of H ′k generated by {σkj : j ∈ N}. We then let

Ĥ0
k = {(~m, 0) : (~m, 0) ∈ Ĥk}, the subgroup of Ĥk consisting of elements

that are trivial in the Z2 coordinate.
We also need a homomorphism from Ĥ0

k to Zpk . For (~m, 0) ∈ Ĥ0
k and

N0 some (no matter which) element of N such that (~m)n = 0 for all n > N0

we let
πk((~m, 0)) = (~m)0 + (~m)1 + . . .+ (~m)N0 .

Clearly πk is a homomorphism. The distinguishing feature of this homomor-
phism is its triviality.

Claim (1). If (~m, 0) ∈ Ĥ0
k then πk((~m, 0)) = 0.

P r o o f. Write (~m, 0) = τ1 . . . τ2l where each τi ∈ {σkj : j ∈ N}. Inspecting
the definitions of the group operations we see that each πk(τ2i+1 · τ2i+2)
equals 0. Then the claim follows from πk being a homomorphism. Claim(1)

Let ~0 denote the element of
∏
N Zpk that is zero at every coordinate—so

(~0)n = 0 for all n.
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Claim (2). (~0, 1) is not element of Ĥk.

P r o o f. Otherwise we may write (~0, 1) = (~n, 0) · (~m(k, j), 1) for some
~m(k, j). Then from Claim (1) we obtain πk((~n, 0)) = 0, and hence for suffi-
ciently large N0,

(~n)0 + (~m(k, j))0 + . . .+ (~n)N0 + (~m(k, j))N0 = 0,

with a contradiction. Claim(2)

Finally then define Gn < Z2 × Ĥk to be the set of all (i, (~m, i)) such
that (~m)j = 0 for all j ≤ n. For each n the projection homomorphism
p1 : Z2 × Ĥk ³ Z2 has image p1[Gn] = Z2. But by Claim (2),

⋂

n∈N
Gn = {(0, (~0, 0))}.

1.6. Lemma (implicit in Lemma 8 of [11]). Let (Gn) be a sequence of
countable torsion groups. Let

(Gn)<N =
⋃

N∈N

∏

n<N

Gn

and let S ⊂ (Gn)<N be a group tree. Let RkS : S → ω1 ∪ ∞ be the rank
function, and for σ ∈ (Gn)<N let l(σ) indicate the unique N such that
σ ∈ ∏n<N Gn. Suppose σ ∈ S and p is a prime with o(σ) = pN for some
N ∈ {1, 2, 3, . . .}. Then for all τ ⊃ s with τ ∈ S there exists τ̂ ∈ S with

o(τ̂) ∈ {pm : m = 1, 2, . . .}, τ̂ ⊃ σ, l(τ̂) = l(τ), RkS(τ̂) ≥ RkS(τ).

P r o o f. Choose q relatively prime to p with o(τ) = pmq for some m ∈
{0, 1, 2, . . .}. Let q̂ be divisible by q with q̂ ≡ 1 mod pN . Then setting τ̂ = τ q̂

completes the proof.

1.7. Lemma. Let (H ′n) be as in 1.2. As above, let

(H ′n)<N =
⋃

N∈N

∏

n<N

H ′n,

let S ⊂ (H ′n)<N be a group tree, σ ∈ S, o(σ) = pk for some k, and let RkS :
S → ω1 ∪∞ be the rank function. Then RkS(σ) ≥ ω implies RkS(σ) =∞.

P r o o f. Note that every τ ∈ (H ′n)<N with order a power of pk has τ(i) =
e for all i 6= k, i < l(τ). Thus if RkS(σ) ≥ ω, then it has extensions of all
lengths, and therefore the element τn which takes value σ(k) at k and e at
i < n, i 6= k will be an extension of σ in S. Thus S is ill founded below σ,
and so RkS(σ) =∞.

1.8. Lemma. Let (H ′n) be as in 1.2. Let S ⊂ (H ′n)<N be a group tree,
σ ∈ S, o(σ) = 2. Then RkS(σ) ≥ ω · 2 implies RkS(σ) =∞.
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P r o o f. In light of 1.6 it suffices to show that no element σ with order
a power of 2 has RkS(σ) = ω · 2. Since the H ′n groups have no elements of
order 2l for l > 1, we may suppose for a contradiction that RkS(σ) = ω · 2
and o(σ) = 2.

Let k = l(σ). Then by 1.5 we may find cofinal strictly increasing λi with

λi → ω · 2,
each λi > ω, and τi ∈

∏
n<k+1H

′
n ∩ S with

RkS(τi) = λi, τi ⊃ σ, o(τi) = 2.

This in particular implies that

RkS(τi · (τj)−1) = λi

for i < j. We may also assume that each λi > ω.
Inspecting the definition of the group H ′k we obtain, for τi 6= τj ,

o((τi · (τj)−1)(k)) = pk.

Thus we have some element of order pk with rank exactly λi > ω, λi 6=∞,
and therefore a contradiction to 1.7.

The next result is implicit in Lemmas 2 and 6 of [11]. For the sake
of completeness I will include a short, self-contained, but somewhat left
handed, proof.

The idea of the lemma is that tameness is implied by there being a bound
in the countable ordinals associated with a ranking function for group trees
through a product group: If we can find a countable α such that no ~g in S
has rank in the open interval (α,∞), then all the orbit equivalence relations
are tame.

1.9. Lemma (Solecki). Let α be a countable ordinal. Suppose

~G∗ =
∏

i∈N
Ĝi

is a product group with each Ĝi countable. Suppose for every group tree

G ⊂
⋃

N∈N

∏

i≤N
Ĝi

and ~g ∈ G,
RkG(~g) > α⇒ RkG(~g) =∞.

Then ~G∗ is tame.

P r o o f. Let X be a ~G∗-Polish space. Let d be a complete metric for X.
For each x, y ∈ X let

Sx,y ⊂
⋃

N∈N

∏

i≤N
Ĝi
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be the set of ~g such that for all n ∈ N there is some ~h ⊃ ~g in
∏
i∈N Ĝi

with

d(~h · x, y) < 2−n.

The function from X ×X → 2
⋃
N∈N

∏
i≤N Ĝi given by (x, y) 7→ Sx,y is Borel

(in the sense that for each N ∈ N and ~g ∈ ∏i∈N Ĝi the set of x, y with
~g ∈ Sx,y is Borel). Since xEXG y if and only if Sx,y has an infinite branch
we will be done if we can show the set {(x, y) : (x, y) ∈ X × X, Sx,y
ill founded} to be Borel. This would certainly hold true if we can show
that whenever RkSx,y (~g) = α + 1 for some ~g ∈ Sx,y then Sx,y is well
founded.

So suppose that there is ~g ∈ Sx,y with RkSx,y (~g) = α + 1 and that
f ∈ [Sx,y] is an infinite branch through Sx,y. If we let G ⊂ ⋃N∈N

∏
i≤N Ĝi

be given by

G ∩
∏

i≤N
Ĝi = f |−1

N+1 · Sx,y ∩
∏

i≤N
Ĝi

then we see that G is a group tree, since G ∩∏i≤N Ĝi equals the set of ~g

such that for all n ∈ N there is ~h ⊃ ~g with

d(~h · x, x) < 2−n.

We can also see that the group tree Sx,y is isomorphic (as a tree) to G under
the isomorphism ~h 7→ f |l(~h) · ~h. Thus in particular RkG(f |l(~g)~g) = α + 1,

contradicting the assumptions on ~G∗.

Solecki also proves a converse to 1.9, for which we will have no need.

1.10. Lemma. The product group
∏
n∈NH

′
n is tame.

P r o o f. By 1.9, it suffices to show that if S ⊂ (H ′n)<N is a group tree,
σ ∈ S, RkS(σ) ≥ ω · 2 then RkS(σ) = ∞. So instead suppose τ ∈ S with
RkS = ω · 2. Note that τ must be torsion by the choice of the groups (H ′n).
Let q1, . . . , qm enumerate the prime divisors of o(τ). Note then that we may
find σ1, . . . , σm such that each σj has the form τN(j) for some N(j), each
σj has order a power of qj , and hence o(σj) = qj by choice of the (H ′n), and
such that

τ = σ1 . . . σm.

Then we must have some σj with RkS(σj) = ω · 2, a contradiction to 1.7 or
1.8.

Thus
∏
n∈NH

′
n is a tame group. By 1.5 there are infinitely many n with

H ′n not 2-compact, and so it provides the counterexample.
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2. The general construction

2.1. Notation. For each pair of primes q < p with q dividing p − 1 fix
a non-trivial homomorphism

ϕq,p : Zq ↪→ Aut(Zp).

If G is a group and g ∈ G has order p let us write

gϕq,p(j) or ϕq,p(j) · g
in place of gk or k ·g where k ∈ {0, 1, . . . , p−1} is such that (ϕp,q(j))(1) = k.
(The more literally correct alternative of g(ϕq,p(j))(1) is plainly very cumber-
some.)

For p prime, the automorphism group of Zp has size p−1, and so by the
Sylow theorems (see [5], p. 93) we may find some automorphism of Zp with
order q for every prime q dividing p− 1. It should also be remarked that if
we fix q there is no shortage of potential p: By Dirichlet’s theorem (see [10],
p. 129) for each prime q there will be infinitely many primes of the form
kq + 1.

The next couple of lemmas make the point that we can generalize the
construction of §1 to semidirect products of the form (

∏
Zp)nZq for primes

q > 2. This is not quite sufficient for the general construction, since we will
also need to increase the algebraic depth of the group—obtaining a group
tree consisting of rank n solvable groups for arbitrarily large n.

2.2. Lemma. Let p and q be primes, q dividing p− 1. The element (1, 1)
has order q in Zp nϕq,p Zq.

P r o o f. Clearly the order can be no smaller than q, so we need to show
that (1, 1)q = e, which amounts to claiming that

1 + (ϕq,p(1))(1) + (ϕq,p(2))(1) + . . .+ (ϕq,p(q − 1))(1) = 0.

But note that this element is in the subgroup of Zp fixed by ϕq,p—which,
since p is prime and ϕq,p non-trivial, must be just {0}.

2.3. Lemma. Let p and q be as above. Let Ĝ(〈p, q〉) = (
∏
N Zp)n~ϕ Zq be

the semidirect product obtained along ~ϕ =
∏
N ϕq,p so that for (a0, a1, . . .) =

~a ∈∏N Zp and n ∈ Zq we have

((~ϕ(n))(~a))i = (ϕq,p(n))(ai).

Let Ĝ0(〈p, q〉) < Ĝ(〈p, q〉) be the subgroup generated by elements of the form
(~ak, 1), where (~ak)m = 1 if m = k, and (~ak)m = 0 if m 6= k. Define π :
Ĝ0(〈p, q〉)→ Zp by

π((~a, n)) =
∑

i∈N
(~a)i.
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(Note: this is well defined, since all elements in Ĝ0(〈p, q〉) have finite sup-
port.) Then for all (~a, n) ∈ Ĝ0(〈p, q〉) we have

π((~a, n)) = 0 if and only if n = 0.

P r o o f. First consider the “if” direction. Here it suffices to consider the
case where

(~a, 0) = (~ak(1), 1)(~ak(2), 1) . . . (~ak(q), 1).
But then

π((~a, 0)) = 1 + (ϕq,p(1))(1) + (ϕq,p(2))(1) + . . .+ (ϕq,p(q − 1))(1),

which we saw in the course of 2.2 to be 0.
So we are left with “only if”. Using the first part of the proof it suffices

to show that for any k strictly between 0 and q we have

1 + (ϕq,p(1))(1) + (ϕq,p(2))(1) + . . .+ (ϕq,p(k − 1))(1) 6= 0,

which amounts to showing that it is not fixed by ϕq,p(1), which in turn
amounts to showing that (ϕq,p(k))(1) 6= 1. This follows since (ϕq,p(k)) is
not the identity for k 6= 0 in Zq.

2.4. Lemma. Let p and q be as above. Let

Ĥ(〈p, q〉) = (Zp × Zp)nψ Zq
be the semidirect product obtained by taking ψ = ϕq,p × ϕq,p, so that for
(a, b) ∈ Zp × Zp and n ∈ Zq we have

(ψ(n))(a, b) = ((ϕq,p(n))(a), (ϕq,p(n))(b)).

Let Ĥ0(〈p, q〉)<Ĥ(〈p, q〉) be the subgroup generated by the elements ((1, 0), 1)
and ((0, 1), 1). Define σ : Ĥ0(〈p, q〉)→ Zp by

σ((a, b), n) = a+ b.

Then for all ((a, b), n) ∈ Ĥ0(〈p, q〉) we have

σ((a, b), n) = 0 if and only if n = 0.

P r o o f. Exactly as in 2.3.

Before proceeding, some comment should be made on the underlying
motive in the long mass of definitions that lie ahead. Of course any general
discussion is likely to be vague and inexact, but it seems better to have a
rough guide than none at all.

We want to iterate the construction of 2.3 and 2.4. Given primes p >
q > r, with q dividing p− 1, r dividing q− 1, we wish to somehow conjoin a
group resembling many products of (

∏
N Zp)n~ϕ Zq with Zr. The hope here

is that we would have many generating elements of order r, many of whose
differences would have order q, which in turn by taking differences would
give rise to elements of order p. This is the spirit of the construction below,
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though not quite the letter since it is unclear how we would say arrive at
a non-trivial homomorphism from Zr to Aut((

∏
N Zp) n~ϕ Zq). Instead we

more or less replace (
∏
N Zp)n~ϕ Zq with
⊕

0≤i<r

((∏

N
Zp
)
n~ϕ Zq

)

and let Zr be injected into the automorphisms of this group in the most
obvious manner imaginable—simple rotation of the coordinates.

It remains then to define the analogue of the Ĝ0 and Ĥ0 groups, which we
do at 2.7. The spirit of 2.3 is captured in a non-triviality lemma at 2.10. The
process that enables us to form an entire tree of suitable groups is presented
at 2.11–14.

2.5. Definition. A finite sequence ~p = 〈p1, . . . , pn〉 of primes is said to
be good if each pi+1 divides pi. With each good ~p we associate countable
groups G(~p) and H(~p) defined by induction on l(~p) (:= the length of ~p),
starting with the case l(~p) = 2.

Base Case: l(~p) = 2, ~p = 〈p, q〉. We then let

G(~p) =
(⊕

i∈N

( ⊕

0≤j<q
Zp
))
nψ Zq,

where ψ is obtained by rotating each copy of
⊕

0≤j<q Zp—so for

(~a0,~a1,~a2, . . .) = ~a ∈
⊕

i∈N

( ⊕

0≤j<q
Zp
)

and n ∈ Zq we define (ψ(n))(~a) = ~b = (~b0,~b1, . . .) by the specification

(~bi)j = (~ai)j+nmod q.

Analogously we define

H(~p) =
( ⊕

0≤j<q
Zp ×

⊕

0≤j<q
Zp
)
nψ′ Zq,

where again ψ′ is obtained as the product of the natural rotation homo-
morphisms from Zq to Aut(

⊕
0≤j<q Zp)—so that for (~a,~b) ∈⊕0≤j<q Zp ×⊕

0≤j<q Zp and n ∈ Zq we define (ψ′(n))((~a,~b)) = (~c, ~d) where

(~c)j = (~a)j+nmod q, (~d)j = (~b)j+nmod q.

Inductive Step. Assume that we have defined G(~p) and H(~p) for some
~p = (p1, . . . , pn), n ≥ 2, and that the sequence ~pq := (p1, . . . , pn, q) is good.
We then define

G(~pq) =
( ⊕

0≤i<q
G(~p)×

⊕

0≤i<q
Zpn

)
nψ Zq,
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where ψ is the familiar rotation homomorphism, now defined by the re-
quirement that if n ∈ Zq and (~a,~b) ∈ ⊕0≤i<q G(~q) ×⊕0≤i<q Zpn , then

(ψ(n))(~a,~b) = (~c, ~d), where

(~c)j = (~a)j+nmod q, (~d)j = (~b)j+nmod q.

We let

H(~pq) =
( ⊕

0≤i<q
H(~p)×

⊕

0≤i<q
Zpn

)
nψ′ Zq,

where ψ′ is again generated by rotation, so that if n ∈ Zq and (~a,~b) ∈⊕
0≤i<q G(~p)×⊕0≤i<q Zpn , then (ψ′(n))(~a,~b) = (~c, ~d), with

(~c)j = (~a)j+nmod q, (~d)j = (~b)j+nmod q.

For ~p = 〈p0, p1, . . . , pn〉 the group G(~p) has been carefully chosen so that
given any infinite group G0 ⊂ G(~p) we may find an infinite sequence of
distinct hi ∈ G0 with order p0—in some sense, all the infinite growth of
G(~p) occurs in the ℵ0 copies of Zp0 . We could think of elements of G(~p) and
H(~p) as a tree of points chosen from

⊕
0≤i<pj+1

Zpj for j < n—the main
difference between the two being that G(~p) terminates with one final infinite
split while the tree corresponding to H(~p) is purely binary. We need some
method of discussing the various nodes of these trees, and for this purpose
it is necessary to define “projection” or “coordinate” functions.

The functions appearing in the next definition are not in general ho-
momorphisms. That is not the purpose of the definition. Rather we are
interested in defining by induction on the length of ~p various analogues of
the π map from 2.3.

2.6. Definition. For ~p = 〈p1, . . . , pn〉 we define by induction on n func-
tions from the group G(~p) to

⋃
i≤n Zpi ∪

⋃
~r⊂~p G(~r).

Base Case: l(~p) = 2, ~p = 〈p, q〉. For (~a,m) ∈ G(~p), ~a = (~a0,~a1, . . .), and
k ∈ N we let

π~p,k,〈i〉((~a,m)) = (~ak)i, π~p,0,b,∅((~a,m)) = π~p,0,b((~a,m)) = m.

(Here the b is intended to be a formal symbol standing for “back”; it is not
a variable ranging over N.)

Inductive Step. Assume that we have completed the various definitions
for G(~p) for some good ~p = 〈p1, . . . , pn〉, n ≥ 2, and assume that the sequence
~pq := 〈p1, . . . , pn, q〉 is good. Let

((~a,~b),m) ∈ G(~pq) =
( ⊕

0≤i<q
G(~p)×

⊕

0≤i<q
Zpn

)
nψ Zq,
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~a = 〈a0, a1, . . . , aq−1〉, ~b = 〈k0, k1, . . . , kq−1〉. Then for l(~u) = l(~p) − 1 and
k ∈ N we define

π~pq,k,~uj(((~a,~b),m)) = π~p,k,~u(aj), π~pq,0,m,〈j〉(((~a,~b),m)) = kj ,

π~pq,0,b,∅(((~a,~b),m)) = π~pq,0,b(((~a,~b),m)) = m, π~pq,0,f,〈j〉(((~a,~b),m))=aj ,

while for l(~w) = i+ 1 < l(~p)− 1,

π~pq,i+1,f, ~wj(((~a,~b),m)) = π~p,i,f, ~w(aj),

π~pq,i+1,m, ~wj(((~a,~b),m)) = π~p,i,m, ~w(aj),

and for l(~v ) = i < i+ 1 < l(~p)− 1,

π~pq,i+1,b,~vj(((~a,~b),m)) = π~p,i,b,~v(aj).

(Again b, f, and m are formal symbols, standing for “back”, “forward”, and
“middle”.)

Now we iterate the construction of the groups Ĝ0(〈p, q〉). Inductively we
define “descendants” of the group elements (~ak, 1) from 2.3.

2.7. Definition. We define group elements in G(~p) by induction on the
length of ~p.

Base Case: l(~p) = 2, ~p = 〈p, q〉, ~p good. For each k ∈ N we let g~p,k ∈
G(~p) be defined by

g~p,k = (~a, 1),

where (~a)m is the identity for m 6= k (i.e. each ((~a)m)j = 0) and

((~a)k)j = (ϕq,p(j))(1) for each j ∈ {0, 1, . . . , q − 1}.

Inductive Step: Suppose ~pq is good, l(~p) ≥ 2, and we have established
the above definitions for ~p = 〈p1, . . . , pn〉. Then let

g~pq,k = ((~a,~b), 1) ∈ G(~pq)

where~b = 0, the identity in
⊕

0≤i<q Zpn (that is to say, each π~pq,0,m,〈j〉(g~pq,k)

=0), and each (~a)j =(g~p,k)ϕq,pn (j) (i.e. each π~pq,0,f,〈j〉(g~pq,k)=(g~p,k)ϕq,pn (j));
for each i < l(~p)− 3,

g~pq,i+1,r = ((~a, 0), 1) where each (~a)j =(g~p,i,r)ϕq,pk (j)

(i.e. each π~pq,0,f,〈j〉(g~pq,i+1,r) = (g~p,i,r)ϕq,pn (j));

g~pq,0,r = ((e,~b), 1) ∈ G(~pq) where each (~b)j = (ϕq,pn(j))(1)
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(thus each π~pq,0,m,〈j〉(g~pq,0,r) = ϕq,pn(j)). (The r is, in parallel to what
has gone before, a formal symbol which can be thought of as standing for
“right”.)

We then define for each good ~p the group G0(~p) < G(~p) to be the sub-
group generated by the elements {g~p,n, g~p,i,r : n ∈ N, i < l(~p)− 2}.

Before presenting the next lemma it might be helpful to isolate a simple
part of this construction.

If q divides p− 1 and we define

g = (~a, 1) ∈
( ⊕

0≤i<q
Zp
)
nψ Zq

(where ψ is the rotating homomorphism from 2.5) by the specification that
(~a)j = (ϕq,p(1))(j), then the subgroup generated by g may be naturally
mapped into Zp nϕq,p Zq. The main point here is that

(ψ(i))(~a) = (ϕq,p(i)) · ~a
(i.e. k · ~a = ~a + . . . + ~a [k times] where (ϕq,p(i))(1) = k ∈ Zp)—and hence
for any ~b in the subgroup of

⊕
0≤i<q Zp generated by ~a and for any i ∈ Zq

we have

(ψ(i))(~b) = (ϕq,p(i)) ·~b.
Therefore a map such as (~b, j) 7→ ((~b)0, j) defines an injective homomor-
phism from 〈g〉 to Zp nϕq,p Zq. In particular g has order q by Lemma 2.2.
Similarly for ~p = 〈p, q〉 and any k ∈ N we have o(g~p,k) = q.

This same consideration is relevant to determining the orders of the vari-
ous generators in G0(~p). Notationally the general argument is more involved
than the brief remark in the preceding paragraph only because these groups
are significantly more complicated, and to even discuss them we require the
ungainly coordinate functions from 2.6.

2.8. Lemma. Let ~p = 〈p1, . . . , pn〉 be good.

(A) Each g~p,n and g~p,i,r, has order pn.
(B) Each g ∈ G0(~p) which is a power of one of the generators has the

property P (~p, g), defined by the following four equations:

π~p,0,m,〈l+1〉(g) = (ϕpn,pn−1(1))(π~p,0,m,〈l〉(g)),

π~p,0,m,〈0〉(g) = (ϕpn,pn−1(1))(π~p,0,m,〈pn−1〉(g)),

π~p,0,f,〈l+1〉(g) = (ϕpn,pn−1(1))(π~p,0,f,〈l〉(g)),

π~p,0,f,〈0〉(g) = (ϕpn,pn−1(1))(π~p,0,f,〈pn−1〉(g)).
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(C) Every g ∈ G0(~p) has the following property Q(~p, g):

π~p,0,m,〈l+1〉(g) = (ϕpn,pn−1(1))(π~p,0,m,〈l〉(g)),

π~p,0,m,〈0〉(g) = (ϕpn,pn−1(1))(π~p,0,m,〈pn−1〉(g)),

π~p,1,b,〈l+1〉(g) = (ϕpn,pn−1(1))(π~p,1,b,〈l〉(g)),

π~p,1,b,〈0〉(g) = (ϕpn,pn−1(1))(π~p,1,b,〈pn−1〉(g)).

P r o o f. By simultaneous induction on l(~p).
The only role of (A) in supporting the proof of (B) is to ensure that

(~a)0 = ((~a)pn−1)ϕpn,pn−1 (1). For this we need that the order of (~a)0 is pn−1.
Logically the proof goes that we assume (A), (B), and (C) for 〈p1, . . . , pn−1〉,
then deduce (B) and (C), and only then (A) for 〈p1, . . . , pn〉.

So suppose we have proved 2.8 for 〈p1, . . . , pn−1〉 and we wish to extend it
to ~p = 〈p1, . . . , pn〉. (In the case n = 3, which is the base of the induction, we
rely not on the inductive hypothesis but on the remarks about (

⊕
Zp1)nZp2

from the paragraphs prior to the statement of 2.8.) First for (B), a moment’s
reflection indicates that if g = (~a, i), h = (~b, j), with P (~p, g), P (~p, h),

~a,~b ∈
( ⊕

0≤i<pn
G(〈p0, p1, . . . , pn−1〉)

)
⊕
( ⊕

0≤i<pn
Zpn−1

)
,

with ~a~b = ~b~a, then P (~p, gh). Therefore using (A) for 〈p1, . . . , pn−1〉 for the
final clause of

π~p,0,f,〈pn−1〉(g) = (ϕpn,pn−1(1))(π~p,0,f,〈0〉(g))

we conclude that each generator of G0(~p) has P (~p, g) as do all its powers.
By a similar argument we obtain (C). The point is that (C) only makes

reference to an abelian quotient of (
⊕

0≤i<pn G(〈p0, p1, . . . , pn−1〉)) ⊕
(
⊕

0≤i<pn Zpn−1), and thus the considerations marshaled in (B) continue
marching through. (This is the reason why in (C) we pass to the coordinate
functions π~p,0,m,〈l〉(g) and π~p,1,b,〈l〉(g).)

Finally for (A), let g = ((~a,~b), 1) be a basis element of G0(~p). We deduce
from (B) that every element in 〈g〉 has the form ((~aj ,~bj), i). Therefore we
can go ahead and define

π : 〈g〉 → Zpn−1 nϕpn,pn−1
Zpn

by the specification that

π((~aj ,~bj), i) = (j, i)

and use (B) for 〈p1, . . . , pn〉 and o(~a) = pn−1 to guarantee this is well defined
as a homomorphism. Then by 2.2 we conclude that g has order pn.
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2.9. Lemma. For any good ~p = 〈p1, . . . , pn〉 with length > 2, any l < pn,
and for any g ∈ G0(~p), we have π~p,0,b,〈l〉(g) 6= 0 if and only if

π~p,1,b,〈l〉(g) + π~p,0,m,〈l〉(g) 6= 0.

P r o o f. Using 2.8(C) for g having property Q(~p, g) we have a homomor-
phism

π : G0(~p)→ (Zpn−1 × Zpn−1)n(ϕpn,pn−1

⊕
ϕpn,pn−1 ) Zpn

given by

g 7→ ((π~p,1,b,〈l〉(g), π~p,0,m,〈l〉(g)), π~p,0,b(g)).

This granted, the lemma is a corollary of 2.4.

2.10. Lemma. Let ~p = 〈p, q〉 be good , l < q, and g ∈ G0(~p). Then
π~p,0,b(g) 6= 0 if and only if

∑

n∈N
π~p,n,〈l〉(g) 6= 0.

P r o o f. This follows from 2.3 as 2.9 followed from 2.4.

There is a clear sense in which the H(~p) groups are just simpler than the
G(~p). We can think of each element of the former as being a finite branching
tree of values in various Zpi ; the pattern of branching is precisely the same
for the latter, except at the various end stages when there are an infinite
number of copies of Zp1 . So it should be clear that there are many possible
homomorphisms from G0(~p) to H(~p). We will parameterize a subclass of
the possibilities by n ∈ N. Intuitively, the nth homomorphism will send the
nth copy of

⊕
i<p2

Zp1 to the leftmost copy of this group in H(~p); all the
other copies of

⊕
i<p2

Zp1 will have their values summed up and sent to the
rightmost copy in H(~p).

This intuitive description is not yet quite accurate, since we multiplied
the various copies of

⊕
i<p2

Zp1 every time we increase the length of ~p. But
despite the inherent inaccuracy, the rough description should at least serve
as a guide in what follows below.

We use these homomorphisms in describing the relatively high rank
group trees in the eventual construction.

2.11. Definition. We define homomorphisms

ϕ~p,n : G0(~p)→ H(~p), ϕ̂q~p : G0(q~p)→ H(~p)

for ~p = 〈p1, . . . , pN 〉 and q~p = 〈q, p1, . . . , pN 〉, both good; we do that by
induction on N .
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Base Case: l(~p) = 2, ~p = 〈p1, p2〉. The first of the two constructions is
described easily enough with

ϕ~p,n((~a, k)) =
((

(~a)n,
∑

j 6=n
(~a)j

)
, k
)
.

Now suppose that q is prime with q~p good. Then for

g ∈
(( ⊕

0≤i<p2

G(~p)
)⊕( ⊕

0≤i<p2

Zp1

))
n Zp2

with g = ((~a,~b), k), each (~a)i = (~ci, li), we let

ϕ̂q~p(g) = ((~l,~b), k)

where ~l is defined by (~l)i = li for 0 ≤ i < p2. (In other words, we discard the
very tip of g inside the ~a where infinitely many copies of Zq are arranged.)

Inductive Step: Let ~p = 〈p1, . . . , pN 〉 and suppose that q and r are
primes with q~pr := 〈q, p1, . . . , pN , r〉 good. Suppose we have defined the
various ϕ~p,n and ϕ̂q~p and we wish to extend the definition to the next stage.

Given

((~a,~b), k) ∈ G0(~pr) ⊂
(( ⊕

0≤i<r
G(~p)

)
⊕
( ⊕

0≤i<r
ZpN

))
n Zr = G(~pr),

we let

ϕ~pr,n(((~a,~b), k)) = ((~c,~b), k)

where ~c ∈⊕0≤i<rH(~p) is given by

(~c)i = ϕ~p,n((~a)i) for each i ∈ {0, 1, . . . , r − 1}.
Similarly given

((~a,~b), k) ∈ G0(q~pr) ⊂
(( ⊕

0≤i<r
G(q~p)

)
⊕
( ⊕

0≤i<r
ZpN

))
n Zr = G(q~pr),

we let

ϕ̂q~pr(((~a,~b), k)) = ((~c,~b), k) ∈ H0(~pr)

where ~c ∈⊕0≤i<rH0(~p) is defined by (~c)i = ϕ̂q~p((~a)i) for each i ∈ {0, 1, . . .
. . . , r−1}.

2.12. Lemma. Let ~pq = 〈p1, . . . , pN , q〉 be good. If ((~a,~b), k) ∈ G0(~pq)
then ~a ∈⊕i<pN

G0(~p).

P r o o f. Suppose we have some generators g1, . . . , gM for G0(~pq), with
each gj = ((~aj ,~bj), 1). Then by inspecting the definition of group multipli-
cation and the definition of the generators we have

g1 . . . gM = ((~a,~b),M)
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where

~a = (~a1)(~a2)ϕq,pn (1) . . . (~aj)ϕq,pn (j−1) . . . (~aM )ϕq,pn (M−1).

Note that the inclusion of 2.12 is natural with respect to the homomor-
phisms of 2.11: If ((~a,~b), l) ∈ G0(~pr) and ((~c, ~d), l) ∈ G0(q~pr) with

ϕ~pr,n((~a,~b), l) = ϕq~pr((~c, ~d), l)

then for each i < r,

ϕ~p,n((~a)i) = ϕq~p((~c)i).

This is a consequence of the inductive definitions of the homomorphisms:
they are set just so.

2.13. Notation. For each successor ordinal α < ω1 choose a well founded
tree (i.e. a set closed under subsequences) Tα ⊂ N<N consisting of increasing
sequences such that:

(i) if 〈r0, r1, . . . , rN 〉 ∈ Tα then 〈rN , rN−1, . . . , r0〉 is good;
(ii) given 〈r0, r1, . . . , rN 〉, 〈q0, q1, . . . , qM 〉, both in Tα, with ri 6= qi we

have rj1 6= qj2 for all j1, j2 ≥ i;
(iii) for any ~r ∈ Tα, if ~r is not terminal there are infinitely many q ∈ N

with ~rq ∈ Tα;
(iv) the rank of Tα is α.

As remarked at the start of this section, Dirichlet promises for each prime
rN infinitely many prime q with rN dividing q−1. In light of this it is routine
to construct for each successor α a tree as above. The main point here is
that we demand a disjointness condition on the sequences in (ii)—once ~q
and ~r begin to disagree at some point they proceed to diverge totally.

2.14. Definition. Let (si)i∈N enumerate N<N so that si ⊂ sj implies
i ≤ j. If si = 〈pn, . . . , p0〉 we let (si)∗ := 〈p0, p1, . . . , pn〉 be obtained from si
by reversing the order in which the range appears. For α < ω1 a successor
and i ∈ N, l(si) ≥ 2, let

Gi,α =
{G0((si)∗) when si ∈ Tα,
{0} otherwise.

For each si ∈ Tα that is non-terminal in Tα we let {tn,α(si) : n ∈ N}
enumerate the immediate successors of si in Tα, so that each tn,α(si) has
the form siq for some q ∈ N.

We then define
~G(Tα) ⊂

⋃

N

∏

i≤N
Gi,α.

For ~g ∈∏i≤N Gi,α we let ~g be in ~G(Tα) if and only if:
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(i) for all i < j ≤ N with tn,α(si) = sj , (si)∗ = 〈p0, p1, . . . , pl〉 := ~p,
(sj)∗ = 〈q, p0, . . . , pl〉, we have

ϕ̂q~p((~g)j) = ϕ~p,n((~g)i);

(ii) if j < N with sj terminal, then for every n ∈ N and ~u of length
l(sj)− 1 we have

π(sj)∗,n,~u((~g)j) = 0.

Thus we have built an infinite product group that at each level consists
of some G0(~p) for good ~p. Inside the group tree we have a further tree
~G(Tα), which we later see to be well founded off the identity but have rank
at least α. The definition of ~G(Tα) is that at each stage when we extend an
element we must respect the relationships suggested by the ϕ~p,n and ϕ̂q~p
homomorphisms; as soon as we reach a terminal sj = 〈pl, . . . , p0〉, the group
elements in ~G(Tα) ∩∏i≤j Gi,α must be the identity at every copy of Zp0 in
order to have any extensions at all.

It should be remarked that ~G(Tα) ∩∏i≤N Gi,α is indeed a subgroup of∏
i≤N Gi,α for every N . To see that (i) is closed under the group operations

in
∏
i≤N Gi,α we observe that for any group H and homomorphisms π0, π1 :

H → Ĥ the set {h ∈ H : π0(h) = π1(h)} is a subgroup of H.

2.15. Definition. For sl = 〈pN , pN−1, . . . , p0〉 ∈ Tα, l(sl) ≥ 2, and
n ∈ N we define

~gsl,n ∈
∏

i≤l
Gi,α

by the following conditions:

(i) ~gsl,n(l) = g(sl)∗,n (as defined at 2.7); for k < l the element ~gsl,n(k)
does not depend on n:

(ii) if sk ⊂ sl, k < l, and n′ is such that tn′(sk) ⊂ sl, then ~gsl,n(k) =
g(sk)∗,n′ ;

(iii) if sk does not include 〈pN , pN−1〉 then ~gsl,n(k) = e;
(iv) if sk ⊃ 〈pN , pN−1, q〉, q 6= pN−2, then ~gsl,n(k) = g(sk)∗,0,r;
(v) if sk ⊃ 〈pN , pN−1, . . . , pN−M , q〉, q 6= pN−M−1, then ~gsl,n(k) =

g(sk)∗,M−1,r.

2.16. Lemma. (A) For q~p = 〈q, p0, . . . , pl〉 good and n, n′ ∈ N,

ϕ̂q~p(gq~p,n′) = ϕ~p,n(g~p,n).

(B) If n 6= m and l(~p) = 2 + i, then

ϕ̂q~p(gq~p,i,r) = ϕ~p,m(g~p,n).

(C) For l(~p) > 2 and 0 ≤ i < l(~p)− 2,

ϕ̂q~p(gq~p,i,r) = ϕ~p,m(g~p,i,r).
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P r o o f. (A) Induction on l(~p), starting with the base case, l(~p) = 2. For
the base case, unwinding the definitions yields

g〈q,p0,p1〉,n′ = ((〈g〈q,p0〉,n′ , (g〈q,p0〉,n′)
ϕp1,p0 (1) . . .〉, 0), 1),

with
g〈q,p0,p1〉,n′ = (~a, 1)

(where ~a is as in 2.7, taking 0 except at the n′ coordinate) while

g〈p0,p1〉,n = (~b, 1),

where ~b = (b0, b1, b2, . . .). The requirement that ϕ̂q~p(gq~p,n′) = ϕ~p,n(g~p,n)
amounts to asserting that ∑

m 6=n
bm = 0 ∈

⊕

j<p1

Zp0 ,

and
bn = 〈1, (ϕp1,p0(1))(1), (ϕp1,p0(2))(1), . . .〉 ∈

⊕

j<p1

Zp0 ,

which is just as in the definition in the base case of 2.7.
The inductive step follows since the inductive definitions of g~p,n and ϕ̂q~p

and ϕ~p,n all parallel one another.
(B) By induction on l(~p) as in (A).
(C) Induction on i, with the base case of i = 0 following by inspection

of the definitions.

2.17. Corollary. ~gsl,n ∈ ~G(Tα) whenever sl ∈ Tα.

P r o o f. 2.16 states exactly that the various levels of ~gsl,n respect the
various homomorphisms used to define membership in ~G(Tα).

Note then that for tn(sk) ⊂ sl we have ~gsk,n ⊂ ~gsl,m for all m ∈ N. Thus
by transfinite induction we deduce that if tn(sk) ⊂ sl ∈ Tα with l(sl) ≥ 2
then Rk~G(Tα)(~gsk,n) ≥ RkTα(sl). In particular for each α > 6 we may find

some ~g ∈ ~G(Tα) with Rk~G(Tα)(~g) ≥ α− 4 and ~g(i) 6= e for some i < l(~g).

We have covered much of the distance towards showing that ~G(Tα) has
well founded elements of relatively high rank. It is still necessary to show that
the above ~gsl,n and the elements they generate do not have Rk~G(Tα) =∞.

2.18. Lemma. Each ~G(Tα) is well founded (off the identity).

P r o o f. This is essentially proved by induction on α. I only say “essen-
tially proved” since we take as our inductive hypothesis not exactly that
each Tβ for β < α is well founded, but rather that for each β < α any group
tree Sβ constructed according to the general requirements of 2.13 be well
founded.
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Suppose that ~g ∈ ~G(Tα) has ~g(i) 6= e for some i. Then we can assume
~g ∈ ∏i′≤iGi′,α. Suppose (si)∗ = ~p = 〈p0, p1, . . . , pN 〉, N ≥ 1. Logically we
prove this with a split in cases, (B1) being the main case to which the others
reduce.

Case (A): N = 1. It suffices to show that ~G(Tα) is well founded below
every ~h strictly extending ~g.

Then 2.10 gives some l and n with π~p,n,〈l〉(~g(i)) 6= 0. By 2.14(ii) we may
assume si is not terminal in Tα. If we fix l and n with

π~p,n,〈l〉(~g(i)) 6= 0,

and we fix si′ with tn(si) = si′ , si′ = 〈p1, p0, r〉, then for any ~h ⊃ ~g in∏
m≤M Gm,α with M ≥ i′ we have

πr~p,0,f,〈l〉(~h(i′)) 6= e

by the requirement that ϕ~p,n(~g(i)) = ϕ̂r~p(~h(i′)), and then this case reduces
to case (B1) below.

Case (B): Now assume that N ≥ 2. Whether or not π~p,0,b(~g(i)) = 0
we can use the assumption on ~g(i) and 2.9 to obtain some l with either
π~p,0,f,〈l〉(~g(i)) 6= 0 or π~p,0,m,〈l〉(~g(i)) 6= 0. The first of these possibilities leads
at once to case (B1).

Case (B1): π~p,0,f,〈l〉(~g(i)) 6= e for some l. Let S be the tree of {s ∈ N<N :
pNs ∈ Tα}. Then S has rank strictly less than α—say it is β < α. Now if
we go ahead and construct ~G(S) according to the recipe of 2.14 then we can
obtain a map πS : ~G(Tα)→ ~G(S) given by the rule that

(π(~h))(j) = π~p,0,f,〈l〉(~h(j′))

where j′ is such that pNsj = sj′ . Each such π(~h) is in ~G(S) by Lemma 2.12
and the remark it precedes. (π(~g))(̂i) 6= e for î chosen such that pNsi = sî.

Then the inductive assumption on β, the rank of S, yields that ~G(S) is
well founded below π(~g), and hence ~G(Tα) is well founded below ~g.

Case (B2): π~p,0,m,l(~g(i)) 6= 0 for some l. Let sj = 〈pN , pN−1〉. Then for
j′ such that sj′ = 〈pN , pN−1, pN−2〉 and n such that tn(sj) = sj′ we see by
2.14(i) that

∑

k 6=n
π〈pN−1,pN 〉,k,〈l〉(~g(j)) = π〈pN−2,pN−1,pN 〉,0,m,〈l〉(~g(j′)),

and then by induction on l(sj′′) we obtain, for j′′ with sj′ ⊂ sj′′ ,
π(sj′′ )∗,0,m,〈l〉(~g(j)) = π(sj′ )∗,0,m,〈l〉(~g(j′)) = π~p,0,m,〈l〉(~g(i)) 6= 0,

and thus we obtain ~G(Tα) well founded below ~g|i+1 by (A) above.
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2.19. Lemma. Suppose that (gn)n∈N ∈ G0(~p), ~p = 〈p0, p1, . . . , pN 〉, p a
prime, each gn having order p. Then:

(A) p = pi for some i;
(B) there is an infinite subset A ⊂ N such that o(gng−1

m ) ∈ {1, p0} for all
m,n ∈ A.

P r o o f. (A) follows from an examination of the definitions.
For (B), first for notational simplicity consider the caseN = 1. Then each

gn has the form (~bn, kn), where ~bn ∈
⊕

i∈N(
⊕

0≤j<p1
Zp0) and kn ∈ Zp1 .

Thus we may find k with kn = k for infinitely many n, and let A = {n :
kn = k}.

The general case N > 1 is exactly similar. We go to infinite A ⊂ N so
that all the coordinate functions of the form π~p,i,b, ~w(gn) and π~p,i,m, ~w(gn)
are constant.

2.20. Lemma. Suppose ~H ⊂ ~G(Tα) is a group tree. Suppose that si is
terminal in Tα with (si)∗ = 〈p0, p1, . . . , pN 〉. Let i′ ≥ i and ~g ∈ ∏j≤i′ Gj,α
with o(~g) = p0 and Rk ~H(~g) ≥ ω. Then Rk ~H(~g) =∞.

P r o o f. By the assumption on Rk ~H(~g) we may find for each k ∈ N some
~hk ⊃ ~g, ~hk ∈ ~H with

~hk ∈
∏

j≤i′+k
Gj,α.

We may assume o(~hk) = p0 (compare Lemma 8 of [11] or 1.6 above). Then
by 2.19(A) and since p0 does not appear in sj for j > i we have ~hk(j) = e
all j > i. Thus if we define f(j) = ~g(j) for j ≤ i and f(j) = e for j > i then
we obtain an infinite branch through ~H below ~g.

2.21. Lemma. Suppose ~H ⊂ ~G(Tα) is a group tree. Suppose that RkTα(si)
< β with (si)∗ = 〈p0, p1, . . . , pN 〉. Let i′ ≥ i and ~g ∈∏j≤i′ Gj,α with o(~g) =
p0 and Rk ~H(~g) ≥ ω · β. Then Rk ~H(~g) =∞.

P r o o f. Note that the case β = 1 is taken care of at 2.20 above. Suppose
as part of a transfinite induction that the lemma holds for all s ⊃ (si),
RkTα(si) < β, o(~g) = p0 and Rk ~H(~g) ≥ ω · β. For a contradiction assume
Rk ~H(~g) 6=∞.

By assumption on rank of ~g we may find k > i and an infinite sequence of

~hn ∈
∏

j≤k
Gj,α ∩ ~H

with

(i) Rk ~H(~hn)→ ω · β;
(ii) o(~hn) = p0;
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(iii) Rk ~H(~hn) < ω · β;

(iv) Rk ~H(~hn) < Rk ~H(~hn+1).

Note that from (ii) and 2.19(A) we see that for each n and m if ~hn(j) 6= e
then sj ⊃ si.

Now suppose that (sk)∗ = 〈q0, . . . , qM , p0, p1, . . . , pN 〉; necessarily
RkTα(sk) < β. Applying 2.19 we obtain an infinite A ⊂ N such that for
all n,m ∈ A and j ≤ k,

o(~hn(j)~h−1
m (j)) = ql for some l ∈ {0, 1, . . . ,M}.

We still have

Rk ~H(~hn~h−1
m )→ ω · β

as n 6= m→∞. For each n,m ∈ A observe that o(~hn(j)~h−1
m (j)) is finite and

has (a subset of) qM , qM−1, . . . , q0 as its prime factors. Thus we may write

~hn~h
−1
m = ~gn,m,M~gn,m,M−1 . . . ~gn,m,0

where for j ≤ M we have o(~gn,m,j) = qj , 1 and ~gn,m,j is a power of
~hn(j)~h−1

m (j). Thus we may find some single j and ~gn,m,j with

(i) Rk ~H(~gn,m,j) > ω · RkTα(sj);
(ii) o(~gn,m,j) = qj ;

(iii) Rk ~H(~gn,m,j) < ω · β.
This provides us with a contradiction to the inductive assumption that

the lemma holds for all s ⊃ sl ∈ Tα.

2.22. Corollary.
∏
i∈N Gi,α is a tame group.

P r o o f. By 1.9.

3. The road home. The remainder of the journey is downhill, inasmuch
as it simply consists in collecting various known facts.

I will make the link between the combinatorial properties of the group
and the descriptive set theory of its actions by passing through the connec-
tions with countable model theory. It is not clear that this detour should
be necessary, but it has precisely the convenience of requiring absolutely no
new ideas.

For this section fix a countable ordinal κ. We will show that∏

i∈N
Gi,ω·(κ+ω+2)

gives rise to continuous actions on Polish spaces where not every equivalence
class is Π∼0

κ. It will be convenient to suppress the parameter κ, and use Gi
to denote Gi,ω·(κ+ω+2).
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3.1. Definition. For L a countable relational language we let Mod(L)
be the space of all L-structures with underlying set N. We equip this space
with the zero-dimensional topology generated by quantifier free formulas, so
that for R ∈ L and n1, . . . , nk we take

{M :M |= R(n1, . . . , nk)} and {M :M |= ¬R(n1, . . . , nk)}
as subbasic open sets.

Mod(L) in this topology is a compact Polish space.

3.2. Definition. From now on let M denote the “affine” structure of
the group tree

⋃
n∈N

∏
i≤nGi. More precisely, let M have in its language

unary predicates (Pi) and binary relations {Fg : g ∈ ⋃i∈NGi} such that:

(i) M is the disjoint union of {(Pi)M : i ∈ N};
(ii) for all i ∈ N and all a, b ∈ (Pi)M there is a unique g ∈ Gi with

M |= Fg(a, b);
(iii) for all i ∈ N, all a ∈ (Pi)M and all g ∈ Gi there is a unique b ∈ (Pi)M

with M |= Fg(a, b);
(iv) for all i, j, k ∈ N and all a ∈ (Pi)M, b ∈ (Pj)M and g ∈ Gk, if

M |= Fg(a, b) then i = j = k;
(v) for all i ∈ N, all a, b, c ∈ (Pi)M and all g, h ∈ Gi, if M |= Fg(a, b)

and M |= Fh(b, c), then M |= Fhg(a, c).

For future reference let L0 be the language of M.

Of course the Fg’s are functions in disguise. There are minor technical
advantages in restricting ourselves to relational languages, and so we only
have the functions implicit.

It should be commented that we have not defined M uniquely, since
there has been not a word said regarding the underlying set, or even how
M is arranged over that set. 3.2 only defines M up to isomorphism, and
this suffices for the construction below.

This method of taking the “affine structure” of the group tree appears
already in [9].

3.3. Definition. Fixing a sequence of ai ∈ (Pi)M we let πi : Gi ∼= (Pi)M

be given by

πi(g) = b where b is unique such that M |= Fg(ai, b).

We then define Ψ :
∏
i∈NGi → Sym(M). Given ~g = (g0, g1, g2, . . .) ∈∏

i∈NGi we let Ψ(~g) be as follows: For any b ∈ M we let ib be such that
b ∈ (Pib)

M, then we let h ∈ Gib be such that M |= Fh(aib , b), and we let
(Ψ(~g))(b) be the unique c such thatM |= Fhg−1(aib , c). (In other words, we
define Ψ(~g) to be the unique automorphism that sends each ai to the d with
Fg−1(ai, d).)
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Let L ⊃ L0 be the extension of L0 that contains for each n an n-ary
relation Rn. Given

S ⊂
⋃

N∈N

∏

i≤N
Gi

we define NS to be the expansion of M such that

NS |= Rn(b0, b1, . . . , bn−1)

if and only if bi ∈ (Pi)m and (π0(b0), π1(b1), . . . , πn−1(bn−1)) ∈ S.
For N ∈ N and S ⊂ ⋃N∈N

∏
i≤NGi we define NS,N to be the set
⋃

i≤N
(Pi)M

equipped with the predicates {Pi : i ≤ N}, relations {Fg : g ∈ ⋃i≤N Gi} and
{Ri : i ≤ N} with each (Pi)NS,N = (Pi)M for i ≤ N , each (Fg)NS,N = (Fg)M

for g ∈ ⋃i≤N Gi, and each (Ri)NS,N = (Ri)NS for i ≤ N . Similarly we define
MN to be the restriction of N∅,N to L0 = {Pi, Fg : i ∈ N, g ∈ ⋃i∈NGi}.

By analogy with the above we may define ΨN :
∏
i≤N Gi → Sym(MN ) by

the requirement that for each i ≤ N and h ∈ Gi and ~g = (g0, g1, . . . , gN ) ∈∏
i≤N Gi,

(ΨN (~g))(πi(h)) = πi(h(gi)−1).

We are most interested in the case where S forms a group tree.

3.4. Lemma. (A) ΨN defines an isomorphism between
∏
i≤N Gi and the

automorphism group of MN .
(B) Ψ defines an isomorphism between

∏
i∈NGi and the automorphism

group of M.

P r o o f. (A) Every automorphism of M must have the form ΨN (~g) in
virtue of respecting the relations of the form Fh(·, ·). Conversely, any per-
mutation ofMN that fixes setwise each (Pi)MN and preserves each (Fh)MN

will be an automorphism.
(B) Now (B) follows as a corollary to (A) since the structure of M is

just the union of the MN ’s.

3.5. Lemma. Let S ⊂ ⋃M∈N
∏
i≤M Gi be a group tree.

(A) Let N ∈ N. Suppose that S ∩∏i≤N Gi is non-empty. Then

Aut(NS,N ) = ΨN

[
S ∩

∏

i≤N
Gi

]
.

(B) Suppose S ∩∏i≤N Gi is non-empty for every N ∈ N. Then

Aut(NS) = Ψ [[S]].
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P r o o f. (A) Suppose that ~g ∈∏i≤N Gi. Then for all M ≤ N and

~h = (h0, h1, . . . , hM ) ∈
∏

i≤M
Gi ∩ S

we have

NN,S |= RM ((ΨN (~g))(π0(h0)), (ΨN (~g))(π1(h1)), . . . , (ΨN (~g))(πM (hM )))

⇔ (h0(g0)−1, h1(g1)−1, . . . , hM (gM )−1) ∈ S ⇔ ~g ∈ S,
and thus membership in S is a necessary and sufficient condition for ΨN (~g)
to move each (RM )NS into (RM )NS . Conversely, by considering (~g)−1 ∈∏
i≤N Gi we find that membership in S is necessary and sufficient to fix

each (RM )NS setwise. In light of 3.4 we then obtain the lemma.
(B) (Here [S] is the set of all infinite branches through S and Ψ [[S]] is

the image of this set under Ψ .) This now follows from (A).

3.6. Definition. For A a model and ~a a finite sequence from A we define
ϕ~a,Aα by induction on the ordinal α:

ϕ~a,A0 =
∧
{ψ(~x) : ψ(~x) quantifier free, ~a |= ψ(~a)},

ϕ~a,Aα+1 =
∧
{(∃~y)ϕ~a

~b,A
α+1 (~x, ~y) : ~b ∈ A<N} ∧ (∀~y )

∨
{ϕ~a~b,Aα+1 (~x, ~y) : ~b ∈ A<N}.

For λ a limit we set

ϕ~a,Aλ =
∧

α<λ

ϕ~a,Aα .

As discussed in [1], since for α < β,

ϕ~a,Aβ = ϕ
~b,A
β ⇒ ϕ~a,Aα = ϕ

~b,A
α

we must necessarily come to an ordinal δ such that for all ~a,~b ∈ A,

(∃γ)(ϕ~a,Aγ 6= ϕ
~b,A
γ )⇔ ϕ~a,Aδ 6= ϕ

~b,A
δ .

The least such δ is the Scott height of A and is denoted by α(A). Moreover,
ϕ∅,Aα(A)+2 =: ϕA is the (canonical) Scott sentence of A; ϕ~a,Aα(A)+2 =: ϕ~a,A (or

just ϕ~a when context indicates A) is the Scott sentence of ~a (in A); each
ϕ~a,Aα is the αth approximation of the Scott sentence for ~a.

A formula in L∞ω (the infinitary language obtained from L by admitting
arbitrarily large conjunctions and disjunctions, as well as the usual negation
operation and ∃ and ∀ quantifiers) is said to be Σ∼0

1 if it has the form
∨
i∈I ψi

with each ψi quantifier free. A formula is Π∼0
1 if it has the form

∧
i∈I ψi with

each ψi quantifier free.
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Inductively we say a formula of the form
∨
i∈I ψi is Σ∼0

α if each ψi is Π∼0
β(i)

for some β(i) < α, and a formula
∧
i∈I ψi is Π∼0

α if each ψi is Σ∼0
β(i) for some

β(i) < α.

3.7. Theorem (Scott). If A,B are countable models then

(A,~a) ∼= (B,~b)⇔ ϕ~a,A = ϕ
~b,B.

P r o o f. By a back and forth construction, based on the idea that if
ϕ~a,A = ϕ

~b,B and c ∈ A then we may find d ∈ B with ϕ~ac,A = ϕ
~bd,B. The

details may be found in [1].

3.8. Lemma. If A,B are models, ψ a Π∼0
α formula, ~a a finite sequence

from A, and ~b a finite sequence from B, then

ϕ~a,Aα = ϕ
~b,B
α ⇒ (A |= ψ(~a)⇔ B |= ψ(~b)).

P r o o f. By induction on α, resembling the proof of 3.7. Again a detailed
proof can be found in [1].

3.9. Theorem (Vaught). Let L1 be a countable language. Let B ⊂
Mod(L1) be Π∼0

α and invariant (i.e. for A′,B′ ∈ Mod(L1) with A′ ∼= B′
we have A′ ∈ B if and only if B′ ∈ B). Then there is a Π∼0

α formula ψ such
that for A ∈ Mod(L1) we have A ∈ B if and only if A |= ψ.

P r o o f. The main idea of the proof presented in [12] is to show by in-
duction on α that for A a Σ∼α0 set and B a Π∼α0 set and En1,...,nk = {π ∈ S∞ :
π(n1) = n1, π(n2) = n2, . . . , π(nk) = nk} there is a Σ∼α0 formula ψA,~n and a
Π∼α0 formula ψB,~n such that

{A ∈ Mod(L1) : A |= ψA,~n(n1, . . . , nk)}
= {A ∈ Mod(L1) : (∃∗π ∈ En1,...nk)(π · A ∈ A)}

and

{A ∈ Mod(L1) : A |= ψB,~n(n1, . . . , nk)}
= {A ∈ Mod(L1) : (∀∗π ∈ En1,...nk)(π · A ∈ B)}.

(Here ∃∗ and ∀∗ are the categoricity operators: “there exist non-meagerly
many” and “there exist comeagerly many”.)

3.10. Lemma. Let L1 be a countable language and A,B ∈ Mod(L1). Let
B ⊂ Mod(L1) be Π∼0

α and invariant. If ϕ∅,Aα = ϕ∅,Bα then

A ∈ B ⇔ B ∈ B.
P r o o f. From 3.9 we find that there is a Π∼0

α formula ψ such that B =
{C ∈ Mod(L1) : C |= ψ}. Now the lemma follows by 3.8.
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Something like the following has been proved in [8]. In any case [2] has
undertaken a more general analysis along these lines for arbitrary group
actions.

3.11. Lemma (Nadel). Let L1 be a countable language and A ∈ Mod(L1).
The Scott height of A provides the following lower bound on the Borel com-
plexity :

{B ∈ Mod(L1) : B ∼= A} ∈ Π∼
0
α implies α(A) ≤ α+ ω.

P r o o f. By 3.10,

{B ∈ Mod(L1) : B ∼= A} = {B ∈ Mod(L1) : B |= ϕ∅,Aα }.
Thus if we take F ⊂ (L1)∞,ω to be the fragment generated by ϕ∅,Aα and
if we let T ⊂ F be the theory of A in that fragment, then there are ≤ ℵ0

(complete) types over F consistent with T . In particular, T has an atomic
model, B0, which is necessarily isomorphic to A by the above and necessarily
has α(B0) ≤ α+ ω by atomicity.

3.12. Notation. Let Exp(M) be the set {N ∈ Mod(L) : N is (isomor-
phic to) an expansion of M}.

By definition Exp(M) is an invariant subspace of Mod(L). Since the
isomorphism type of M is a Π∼0

2 subset of Mod(L) we see that Exp(M) is a
Polish space in the topology generated by first order logic.

3.13. Lemma (Becker–Kechris). (A) There is a Polish
∏
i∈NGi-space X

and a continuous map θ : Exp(M)→ X such that for all N0,N1 ∈ Exp(M),

N0
∼= N1 ⇔ θ(N0)EX∏

i∈N Gi
θ(N1).

(B) Conversely , for any Polish
∏
i∈NGi-space Y there is a countable

language L1 ⊃ L0 and % : Y → Mod(L1) such that :

(i) % is Borel , and in fact Baire class 1 (the inverse image under %
of an open set will be Σ∼0

2);
(ii) for all y0, y1 ∈ Y ,

y0E
Y∏
i∈NGi

y1 ⇔ %(y0) ∼= %(y1);

(iii) for all y ∈ Y the model %(M) is isomorphic to an expansion
of M.

P r o o f. (A) (In the statement of the theorem, EX∏
i∈NGi

is the orbit equiv-
alence relation induced by the action of

∏
i∈NGi.) We let X be the space of

all actual L-expansions ofM with the topology generated by quantifier free
formulas. The usual proof that Mod(L) is Polish yields that X is Polish.

Then given N ∈ Mod(L) and i ∈ N we let ci be the first element in N
(under the usual ordering of N, its underlying set) such that N |= Pi(ci).
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Then define πN : N→M by the specification that for each i, remembering
the definition of 3.3,

πN (ci) = ai

and then for each g ∈ Gi and c ∈ (Pi)N with N |= Fg(ci, c) we let

πN (c) = a

where a ∈M is the unique element of M with Fg(ai, d).
From this we obtain an expansion of M isomorphic to N by requiring

that for each n,

θ(N ) |= Rn(πN (b0, . . . , bn−1))⇔ N |= Rn(b0, . . . , bn−1).

The map θ is continuous since each finite part of θ(N ) depends solely
on finitely many coordinates of N .

(B) Since we will not use this direction, we do not prove it. It is actually
implicit in Theorem 2.7.3 and Section 7.4 of [2].

More or less the following is performed for the product group (Z)N in
[7]. The proof there adapts without trouble to the present context.

3.14. Lemma (Makkai). Suppose S ⊂ ⋃
N∈N

∏
i≤N Gi is a group tree.

Suppose N ∈ N, α is an ordinal greater than 1, and ~g = (g0, g1, . . . , gN )
∈ ∏

i≤N Gi with RkS(~g) ≥ ω · α. Suppose ~b = (b0, b1, . . . , bN ), ~c =

(c0, c1, . . . , cN ), with each bi, ci ∈ (Pi)NS , and NS |= Fgi(bi, ci). Then ϕ
~b,NS
α

= ϕ~c,NSα .

P r o o f. If RkS(~g) ≥ 1, in other words ~g ∈ S, then 3.5(B) certainly gives
that ~a and ~b have the same quantifier free type. This much granted, the
rest of the lemma follows routinely by induction on α. (The reason for the
erosion—needing RkS(~g) ≥ ω · α instead of the more natural RkS(~g) ≥
α—is that in showing ϕ

~b,NS
α = ϕ~c,NSα we need to show that for all M and

all b ∈ (PM )M and all β < α we may find c with ϕ
~bb,NS
β = ϕ~cc,NSβ ; if we

only needed to consider the case of M = N + 1 then we could obtain the
conclusion of the lemma assuming RkS(~g) ≥ α.)

3.15. Corollary. There is NS ∈ Exp(M) with α(M) > κ+ ω.

P r o o f. As remarked after 2.17, if we take S = ~G(Tω·(κ+ω+2)) then we
may find ~g = (g0, g1, . . . , gN ) ∈ S with

ω · (κ+ ω + 1) < RkS(~g) <∞.
Then if we take ~b = (b0, b1, . . . , bN ) such that M |= Fgi(ai, bi) for each i
then for ~a = (a0, a1, . . . , aN ) we have

ϕ~a,NSκ+ω = ϕ
~b,NS
κ+ω .
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On the other hand since RkS(~g) <∞ there is no infinite branch extend-
ing ~g, and so by 3.5 there is no automorphism of NS which sends ~a to ~b,
and thus by 3.7,

ϕ~a,NSα(NS) = ϕ
~b,NS
α(NS).

Hence α(NS) (the Scott height of NS) will have rank at least κ+ ω + 1.

3.16. Corollary. Let X be as in 3.13(A). Then EX∏
i∈NGi

is not Π∼0
α.

P r o o f. By 3.15 and 3.11 we see that there are models NS ∈ Exp(M)
with {N ∈ Exp(M) :M∼= N} not Π∼0

κ. Since there is a continuous reduction
of ∼= |Exp(M) to EX∏

i∈NGi
we conclude that there is an orbit in X that is not

Π∼0
α.

So actually we deduce that not every orbit in X is Π∼0
α.

4. Recap. Given κ, the construction of §2 enabled us to produce a
product Polish group

∏

i∈N
Gi,ω·(κ+ω+2)

which:

(i) allows group trees ~G(Tω·(κ+ω+2)) with well founded elements of rank
greater than ω · (κ+ ω + 1) (2.17 and 2.18); but

(ii) is tame (2.22).

In §3, (i) was exploited to show that the group
∏
i∈NGi,ω·(κ+ω+2) gives rise

to continuous actions where the orbit equivalence relation is not Π∼0
κ. Here

the main method was in showing that high rank group trees give rise to
models NS which

(iii) have relatively high Scott ranks (3.15); and hence
(iv) have isomorphism types of relatively high Borel complexity (3.11);

and
(v) are all expansions of a modelM with automorphism group naturally

isomorphic to
∏
i∈NGi,ω·(κ+ω+2) (3.4); and hence

(vi) show that a corresponding Polish
∏
i∈NGi,ω·(κ+ω+2)-space X must

have orbits of high Borel complexity (3.13).

Thus we are finished: For any κ < ω1 there is a product group of the
form ~G =

∏
i∈NGi which is tame but has orbit equivalence relations that

are not Π∼0
κ.
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