
FUNDAMENTA
MATHEMATICAE

164 (2000)

Near metric properties of function spaces

by

P. M. G a r t s i d e (Oxford) and E. A. R e z n i c h e n k o (Moscow)

Abstract. “Near metric” properties of the space of continuous real-valued functions
on a space X with the compact-open topology or with the topology of pointwise conver-
gence are examined. In particular, it is investigated when these spaces are stratifiable or
cometrisable.

1. Introduction. For any topological space X it is customary to denote
by C(X) the set of all continuous real-valued function on X. This structure
supports a number of natural topologies, but the most commonly studied are
the topology of pointwise convergence (C(X) with this topology is written
Cp(X)), and the compact-open topology (C(X) with this topology is written
Ck(X)). A basic open neighbourhood of a point f in C(X) is of the form
B(f, F, ε), where F is a finite subset of X, in the case of the pointwise
topology, and of the form B(f,K, ε) here K is a compact subspace of X, in
the case of the compact-open topology; here ε > 0, and B(f, S, ε) = {g ∈
C(X) : |f(x) − g(x)| < ε, ∀x ∈ S} (S is some subset of X). Since we are
concerned with these function spaces, henceforth we restrict our attention
to Tikhonov spaces. A convenient source of information about the pointwise
and compact-open topology is McCoy and Ntantu’s book [McNt].

Both Cp(X) and Ck(X) are rarely metrisable. The space X has to be
countable in the case of the pointwise topology, and X has to be hemicom-
pact (in other words, the family K(X) of compact subspaces of X has to have
countable cofinality) for Ck(X) to be metrisable. Since Cp(X) and Ck(X)
are such fundamental objects, it is of some importance to determine when
they are “nearly metrisable”. There are perhaps two senses in which a space
can be “nearly metrisable”. First, the topology of the space in question may
be “close” in some sense to a metrisable topology, or, second, the space may
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have sufficient structure that it shares many of the desirable properties of
metrisable spaces. Gruenhage’s articles on generalised metric spaces [Gr1,
Gr2] are excellent surveys on near metric properties.

The aim of this paper is to consider two such “near metrisable” proper-
ties, one of each type, in the context of the function spaces Cp(X) and
Ck(X). It turns out that the situation with respect to Cp(X) is fairly
straightforward, but Ck(X) presents a harder challenge, and interesting
problems remain.

2. Cometrisability and stratifiability. Recall that a space is sub-
metrisable if it has a coarser metrisable topology. Submetrisability is a weak
condition to place on a space because the original and metrisable topologies
are only loosely related. A more stringent condition is that of cometrisabil-
ity [Gr2]. A space X is cometrisable if there is a metric d on X so that the
metric topology is coarser than the original topology, and if U is open, x is
in U , then there is an open V containing x so that the closure of V in the
metric topology is contained in U .

Observe that both Cp(X) and Ck(X) are locally convex topological vec-
tor spaces (and so, a fortiori , topological groups). As is very well known,
any first countable topological group is metrisable. Consequently, many of
the “near metric” structures considered (for example, Moore spaces [Gr1])
are not relevant to the study of function spaces. However, the intensively
studied class of stratifiable spaces (see [Gr1]) shares very many properties
with the class of metrisable spaces, but does not (necessarily) imply first
countability. A space X is stratifiable if it is “monotonically perfectly nor-
mal”, that is to say, for each closed set A and n in ω, there is an open set
U(n,A) so that

⋂
n∈ω U(n,A) = A =

⋂
n∈ω U(n,A), and if A ⊆ A′ and

n ≤ n′, then U(n,A) ⊆ U(n′, A′).
It is known that the class of stratifiable spaces is closed under taking

countable products, closed images and arbitrary subspaces. Every stratifi-
able space is monotonically normal and hereditarily paracompact. Another
useful feature of stratifiable spaces, especially in the context of locally con-
vex topological vector spaces, are their powerful extension properties. Here,
and at a couple of subsequent points, it is convenient to consider C(X,Y ),
the set of all continuous maps from a space X into another space Y , either
with the pointwise topology, or the compact-open topology.

Theorem (Borges–Dugundji, [Bo, Du]). Let X be stratifiable, A a closed
subspace of X and let L be a locally convex topological vector space. Then
there is a map e : C(A,L)→ C(X,L) such that

(1) e(f)¹A = f ;
(2) e(f)(X) is contained in the closed convex hull of f(A);
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(3) e is linear ;
(4) e is continuous when the function spaces are both given either the

pointwise or compact-open topologies.

We will shortly see that every stratifiable space is cometrisable, but we
first need an alternative characterisation of stratifiable spaces. (See Theo-
rems 5.25 and 5.27 of [Gr1].)

Theorem. A space (X, τ) is stratifiable if and only if there is a function
g : ω ×X → τ such that

(i) {x} =
⋂
n g(n, x);

(ii) x ∈ g(n, xn) ⇒ xn → x;
(iii) if H is closed and y 6∈ H, then y 6∈ ⋃{g(n, x) : x ∈ H} for some n;
(iv) y ∈ g(n, x) ⇒ g(n, y) ⊆ g(n, x).

Consider a stratifiable space (X, τ) with function g as above. We may
suppose that g(n+ 1, x) ⊆ g(n, x) for every x in X and n ∈ ω. Let σ be the
topology on X generated by all the g(n, x)’s. By property (iv), for each x
in X, the collection {g(n, x)}n∈ω is a local base in σ at x. Also by (iv), it
is clear that these local bases satisfy the conditions of the Collins–Roscoe
metrisation theorem [CR]. Thus we derive the following proposition.

Proposition 1. A space (X, τ) is stratifiable if and only if there is a
function g : ω ×X → τ and a continuous metric d on X such that

(1) {x} =
⋂
n g(n, x);

(2) if H is closed and y 6∈ H, then y 6∈ ⋃{g(n, x) : x ∈ H} for some
n ∈ ω;

(3) g(n, x) is open in (X, d).

Thus, every stratifiable space is cometrisable.

Cometrisable spaces certainly need not be stratifiable.

Example 2. There is a countable cometrisable space which is not strat-
ifiable.

P r o o f. Let (X, τ) be the first example from [NP]. It is a countable
(regular) non-stratifiable space. The underlying set of X is (ω+1)2\ω×{ω}.
Let σ be the natural metrisable topology on X inherited as a subspace of
the product (ω + 1)2. The topology τ refines σ, and differs from it only at
(ω, ω). Plainly, σ “cometrises” τ .

Example 3. There is a cometrisable space with countable netweight and
weight equal to ω1, which is not stratifiable.

P r o o f. Let {xα}α∈c\{0} be an enumeration of the irrational numbers,
and let x0 = 0. Set A = {xα}α∈ω1 . For each c ∈ R, set ∂ ./c = {(x, y) : |y| =
|x−c|} and ./c = {(x, y) : |y| ≤ |x−c|}. Set X = (A×{0})∪(R2\⋃a∈A ∂ ./a).
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Refine the usual topology on X (as a subspace of the plane) by declaring
all ./a, for a in A, to be open. This topology is clearly “cometrised” by
the original topology (and hence is T3). As X is the union of two separable
metrisable spaces, it clearly has a countable net; and, by construction, has
weight precisely ω1.

In the case when ω1 = c (and so A consists of all the irrationals), it is
well known that X is not stratifiable [H]. A similar argument (but using the
fact that every uncountable closed subspace of the reals has size c, rather
than a category argument) will show that X is not stratifiable in the case
when ω1 < c.

However, under tight restrictions the implication can be reversed. Below
b is the minimal cardinality of an unbounded family in ωω.

Lemma 4. Let X = {xn : n ∈ ω} be a countable metrisable space, τ be
the topology of X, B be a family of open subsets of X, and |B| < b. Then
there exists g : X → τ such that

(1) x ∈ g(x) for x ∈ X;
(2) for any U ∈ B, there is a finite M ⊆ X such that

⋃{g(x) : x ∈
U \M} ⊆ U .

P r o o f. Let d be a metric on X, Bε(x) = {y ∈ X : d(x, y) < ε} for
ε > 0, and x ∈ X. Define a function fU : ω → ω for U ∈ B. If xn 6∈ U , then
define fU (n) = 0, otherwise choose fU (n) > 0 such that B1/fU (n)(x) ⊆ U .
Since |B| < b, there exists f : ω → ω such that f is larger than fU almost
everywhere for any U ∈ B. Put g(xn) = B1/f(n)(x) for n ∈ ω.

Proposition 5. Let X be a cometrisable countable space such that
w(X) < b. Then X is stratifiable.

P r o o f. Enumerate X = {xn : n ∈ ω}. Let B be a base of X, |B| < b,
τ be a “cometric” topology of X. By the preceding lemma, there exists
h : X → τ such that

(1) x ∈ h(x) for x ∈ X;
(2) for any U ∈ B, there is a finite M ⊆ X such that

⋃{h(x) : x ∈
V \M} ⊆ V , where V = X \ Uτ .

For n ∈ ω and x ∈ X, there is an open f(n, x) such that x ∈ f(n, x) and
xi 6∈ f(n, x) for i < n, xi 6= x. Put g(n, x) = h(x) ∩ f(n, x). We then have

(i) {x} =
⋂
n g(n, x);

(ii) if H is closed and y 6∈ H, then y 6∈ ⋃{g(n, x) : x ∈ H} for some
n ∈ ω.

Hence, X is stratifiable.
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2. The space Cp(X). It turns out that Cp(X) is stratifiable or cometris-
able only in rather uninteresting circumstances. We observe that it is now
well known that Cp(X) is stratifiable only if X is countable (see [Ga], for
example), but the proof below is new, and the result is entirely new for the
cometrisable case. We start with some definitions and easy lemmas.

A continuous map f : X → Y is a g-map if and only if for any x ∈ X
and any neighbourhood U of x there is a neighbourhood V of x such that
f(V ) ⊆ f(U). A continuous map f : X → Y is said to be almost open (or
d-open) if and only if f(U) ⊆ int f(U) for every U open in X.

Lemma 6. Let f : X → Y be a continuous map. If f is an almost open
g-map, then f is open.

For M ⊆ A let πM :
∏{Xα : α ∈ A} → ∏{Xα : α ∈ M} be the natural

projection.

Lemma 7. The restriction of an open map to a dense subspace is al-
most open. In particular , the restriction of a projection map πM to a dense
subspace of the product

∏{Xα : α ∈ A} is almost open.

Lemma 8. Let X be a space. X is cometrisable if and only if there is a
1-to-1 g-map from X onto a metrisable space.

Lemma 9. Let X, Y , Z be spaces, f : X → Y , k : Y → Z be continuous
maps. If k ◦ f is a g-map and k is 1-to-1 , then f is a g-map.

Proposition 10. Let {Xα : α ∈ A} be a family of separable metrisable
spaces and X be a dense subspace of

∏{Xα : α ∈ A}. If X is cometrisable,
then A is countable.

P r o o f. Lemma 8 implies that there is a 1-to-1 g-map h : X → Z, where
Z is metrisable. There is a countable B ⊆ A such that h = k ◦ f , where
Y = πB(X), f = πB¹X : X → Y , and k : Y → Z is continuous. Lemma 9
implies that f is a g-map. Lemma 7 implies that f is almost open. Lemma
6 implies that f is open. Hence, f is a homeomorphism and B = A.

Corollary 11. Let X be a space. Then the following are equivalent :

(i) Cp(X) has a dense cometrisable subspace;
(ii) Cp(X) has a dense stratifiable subspace;

(iii) X is countable;
(iv) Cp(X) is metrisable.

To see this it suffices to observe that Cp(X) is dense in RX .

3. Completions of cometrisable groups. The completion of a topo-
logical group G is denoted by Ĝ. Shkarin has an example demonstrating that
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the completion of a separable stratifiable locally convex topological vector
space need not be stratifiable; however, he was able to prove the following.

Proposition (Shkarin, [Shk]). Let G be a separable stratifiable topolog-
ical group. Then Ĝ is submetrisable.

On learning Shkarin’s proof, we were able to improve both his precon-
ditions and conclusion. We apply this result in the following section. (Note
that a space X is a Lindelöf Σ-space if and only if it is the perfect preimage
of a separable metrisable space.)

Proposition 12. Let G be a dense subgroup of a topological group H.
Then H is cometrisable provided G is cometrisable and either G is Lindelöf
or H is a Lindelöf Σ-space.

We say that a topological group G is invariantly cometrisable if and only
if there is a continuous left-invariant metric d on G such that d “cometrises”
G. (Left-invariance of d means d(a.x, a.y) = d(x, y) for all a, x and y in G.
Every metrisable topological group has a compatible left-invariant metric—
for this, and other basic results on topological groups, see Comfort’s article
in [KV].) Recall that a topological group G is R-factorizable if and only if
for any continuous function f : G → R, there exists a second countable
topological group H, a continuous homomorphism ϕ : G → H, and a con-
tinuous map h : H → R such that f = h ◦ ϕ. Evidently, we may replace the
real line here with any second countable space. Tkachenko [Tk] has shown
that every Lindelöf topological group is R-factorisable, as is any subgroup
of a Lindelöf Σ-group.

Lemma 13. If G is a R-factorisable topological group with a second count-
able cometric topology , then G is invariantly cometrisable.

P r o o f. Let f : G → X be a continuous 1-to-1 g-map of G onto a
separable metrisable space X. Since G is R-factorisable, there is a second
countable topological group H, a continuous homomorphism ϕ : G → H,
and a continuous map h : H → X such that f = h ◦ ϕ. By Lemma 9, ϕ
is a 1-to-1 g-map. Let d′ is a left-invariant metric on H and let d(x, y) =
d′(ϕ(x), ϕ(y)) for x, y ∈ G. Then d is a left-invariant continuous metric on
G and d cometrises G.

Lemma 14. A topological group G is invariantly cometrisable if and only
if there exists a sequence {Un : n ∈ ω} of neighbourhoods of the identity such
that the following condition holds: For any neighbourhood W of the identity
there is a neighbourhood V of the identity such that

⋂
n∈ω V Un ⊆W .

P r o o f. Observe first, that if x ∈ G, V is an open neighbourhood of the
identity, and {Un : n ∈ ω} is a sequence of symmetric open neighbourhoods
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of the identity, then

(∗) ∀n ∈ ω(xUn ∩ V 6= ∅)⇔
(
x ∈

⋂
n∈ω

V Un

)
.

So let d be an invariant cometric. Define Un = B(e, 1/n) (where e is
the identity). Given open W containing e, choose, by cometrisability, open

V containing the identity so that V
d ⊆ W . Since x ∈ V

d
if and only if

xUn ∩ V 6= ∅ for every n ∈ ω, the claim for the sequence {Un : n ∈ ω}
follows from (∗).

Now suppose we are given a sequence {Un : n ∈ ω} as in the statement
of the lemma. We may suppose that the Un’s are symmetric and U3

n+1 ⊆
Un. Hence we may find a left-invariant metric d so that the Un’s form a
neighbourhood base at the identity. For a given open W containing e, there
is an open V containing the identity so that

⋂
n∈ω V Un ⊆W . Since we again

have x ∈ V d if and only if xUn ∩ V 6= ∅ for every n ∈ ω, the claim follows
from (∗).

Let us agree to call a sequence of open neighbourhoods of the identity as
in the statement of Lemma 14 an invariantly cometrising sequence. Observe
that we may assume the sequence to consist of basic open neighbourhoods,
and may add any countable family of open neighbourhoods of the identity
to a cometrising sequence.

Proposition 15. Let G be an invariantly cometrisable dense subgroup
of a topological group H. Then H is invariantly cometrisable.

P r o o f. Denote the neighbourhoods of unity in G by O and the neigh-
bourhoods of unity in H by Ô. Lemma 14 implies that there is a sequence
{Un : n ∈ ω} ⊂ O such that the following condition holds:

(1) For any W ∈ O there is a V ∈ O such that
⋂
n∈ω V Un ⊆W .

Put Pn = H \G \ Un
H

for n ∈ ω. We show that statement (2) below holds,
and so may deduce from Lemma 14 that H is cometrisable.

(2) For any W ∈ Ô there is a V ∈ Ô such that
⋂
n∈ω V Pn ⊆W .

Let W ∈ Ô. There is a W ′ ∈ Ô such that W ′W ′
H ⊆ W . Condition (1)

implies that there exists V ′ ∈ O such that
⋂
n∈ω V

′Un ⊆ W ′ ∩ G. Put

V = H \G \ V ′H . One can verify that
⋂
n∈ω V Pn ⊆W .

Proof of Proposition 12. From Lemma 13 we see that G is invariantly co-
metrisable. So from Proposition 15 it follows that H is invariantly cometris-
able. Thus H is cometrisable.
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4. Cometrisability of Ck(X). McCoy & Ntantu have shown that
Ck(X) is submetrisable if and only if X contains a dense σ-compact sub-
space. Let Y be an uncountable separable space, all of whose compact sub-
sets are finite. Then Ck(Y ) is submetrisable, but by Corollary 11 is not
cometrisable. We now give a characterisation of spaces X such that Ck(X)
is cometrisable. (Denote the zero function by 0.)

Theorem 16. The function space Ck(X) is invariantly cometrisable if
and only if

(CK) there is a σ-compact subset Y of X such that for every compact
subset K of X, there is a compact subset L satisfying K ⊆ L ∩ Y .

P r o o f. Let us start by supposing that X satisfies (CK), so that there is
a Y =

⋃
n∈ωKn, the Kn’s compact, such that for every compact subspace

K of X, there is a compact L with K ⊆ L ∩ Y . We aim to show that
{B(0,Kn, 1/m) : m,n ≥ 1} is an invariantly cometrising sequence as in
Lemma 14.

Claim. For each compact subspace K and ε > 0,⋂

n,m≥1

(B(0, L, ε/3) +B(0,Kn, 1/m)) ⊆ B(0,K, ε).

P r o o f. Take any continuous map h in the left hand side. We need to
show that |h(x)| < ε for all x ∈ K. By continuity of h and the fact that
L ∩ Y contains K, it suffices to show that |h(x)| ≤ 2ε/3 for all x ∈ L ∩Kn

and all n ≥ 1.
Fix n. Choosing m large enough, we get h ∈ B(0, L, ε/3)+B(0,Kn, ε/3).

Then h = f + g, where |f(x)| < ε/3 for all x ∈ L and |g(x)| < ε/3 for all
x ∈ Kn. Thus, for every x in L∩Kn, |h(x)| = |f(x)+g(x)| ≤ |f(x)|+|g(x)| ≤
2ε/3.

Now suppose that Ck(X) is invariantly cometrisable. Then Ck(X) has
an invariantly cometrising sequence as in Lemma 14, which we may assume
to be of the form {B(0,Kn, 1/m) : m,n ≥ 1}. Let Y =

⋃
n≥1Kn. Take any

compact K ⊆ X. By the definition of an invariantly cometrising sequence,
there is a compact L (which we may assume to contain K) and a δ > 0 so
that ⋂

n,m≥1

(B(0, L, δ) +B(0,Kn, 1/m)) ⊆ B(0,K, 1).

Claim. The closure of L ∩ Y contains K.

P r o o f. Suppose not. So there is an x0 in K, and an open U containing
x0 with U ∩ (L ∩ Y ) = ∅. Pick a continuous h : X → [0, 1] such that
h(x0) = 1 and h(y) = 0 for y 6∈ U . So h 6∈ B(0,K, 1). We show that
h ∈ ⋂n,m≥1(B(0, L, δ) +B(0,Kn, 1/m)).
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Fix m and n. Note that h(y) = 0 for all y ∈ Kn ∩L. By continuity of h,
pick open V containing Kn∩L such that |h(y)| < δ for all y ∈ V . Also, pick
continuous φn : X → [0, 1] so that φn(y) = 1 for y ∈ L \ V and φn(y) = 0
for y ∈ Kn.

Set gn = φn.h and fn = h− gn. Obviously, h = fn + gn. Since φn(y) = 0
for all y ∈ Kn, we have gn(y) = 0 for all y ∈ Kn, and gn ∈ B(0,Kn, 1/m).
We show that |fn(y)| < δ for every y in L, and so fn ∈ B(0, L, δ).

Take any y in V . Then |fn(y)| = |h(y)|·|1−φn(y)| ≤ |h(y)|, and |h(y)| < δ
by choice of V . So now suppose, y is a point of L \ V . Then fn(y) = h(y)−
φn(y)h(y) = 0, since φn(y) = 1 by choice of φn.

Evidently, σ-compact (and, a fortiori , countable) spaces have property
(CK). To aid identification of other spaces with property (CK) we have the
following tests.

Let F be a family of subsets of ω. Recall that F has the strong intersec-
tion property if the intersection of any finite subfamily of F is infinite, and
that a subset A of ω is a pseudo-intersection of F if F \A is finite for every
F in F . The cardinal p is defined to be

p = min{|F| : F is a subfamily of [ω]ω with strong finite intersection

property which has no infinite pseudo-intersections}.
A convenient source of information about p is van Douwen’s survey article
in [KV].

Lemma 17. Let X be a space, χ(X) < p, C be a countable dense subset
of X, and suppose K is a compact subspace of X, with χ(K,X) < p, and
d(K) < p. Then there exists D ⊆ C such that K is the set of cluster points
of D.

P r o o f. Let E ⊆ K be a dense subset of K such that |E| < p, and let
U be an outer base of K such that |U| < p. Since p = pχ (see [KV], p. 129,
Theorem 6.2) and χ(X) < p, there is a sequence ξx ⊆ C converging to x for
any x ∈ E. Put A = {C ∩ U : U ∈ U} and B = {ξx : x ∈ E}. Since p = p2

(see [KV], p. 119, Theorem 3.8), there is D ⊆ C such that D ∩B is infinite
for B ∈ B and D is a pseudo-intersection of A.

Proposition 18. Let X be a separable space. If χ(K,X) < p and
d(K) < p for every compact K ⊆ X, then X has property (CK).

P r o o f. This follows from Lemma 17 and the definition of property
(CK).

Let us observe that a spaceX satisfies the preconditions of Proposition 18
if and only if χ(Z(X)) < p, where Z(X) is the space of compact subsets of
X with the Vietoris topology.



106 P. M. Gartside and E. A. Reznichenko

Corollary 19. Let X be a separable space. If either X has a perfectly
normal hereditarily separable compactification, or w(X) < p, then X has
property (CK).

Example 20. The Sorgenfrey line, S, has property (CK), and so Ck(S)
is (invariantly) cometrisable.

A space X is said to be an ℵ0 space if there is a countable family N of
subsets of X such that if K is a compact subspace of X, and U is an open
set containing K, then there is an N ∈ N such that K ⊆ N ⊆ U . A map
f from a topological space X onto a space Y is said to be compact-covering
if it is continuous and for every compact subset L of Y there is a compact
subset K of X such that f(K) = L. Compact-covering maps are useful in
the study of Ck(X) because if f : X → Y is compact-covering then the
natural map of Ck(Y ) into Ck(X) is a linear topological embedding. It is
known that a space is ℵ0 if and only if it is the compact-covering image of
a separable metrisable space (see [Gr1]).

Proposition 21. Every ℵ0 space, X, has property (CK), and so Ck(X)
is (invariantly) cometrisable.

P r o o f. Every ℵ0 space is the compact-covering image of a separable
metrisable space. So if X is ℵ0, then Ck(X) embeds as a linear subspace of
Ck(Y ) for some separable metrisable space Y . Thus, it suffices to show that
every separable metrisable space Y has property (CK). This can easily be
done directly, but since every separable metrisable space has a metrisable
compactification, this also follows from Corollary 19.

The situation with dense cometrisable subspaces of Ck(X) is less clear.
It is quite possible for a nonsubmetrisable Ck(X) to have a dense subgroup
which is countable (and hence submetrisable). For example, we may take
X to be the uncountable discrete space of size ω1. For dense cometrisable
subgroups of Ck(X) we have a positive result, albeit only in certain cases.

Proposition 22. If Ck(X) contains a dense cometrisable subgroup, G,
and either G is Lindelöf or Ck(X) is a Lindelöf Σ-space, then Ck(X) is
invariantly cometrisable.

P r o o f. Apply Proposition 12, with H = Ck(X).

Question A. If Ck(X) contains a dense cometrisable subspace, is it
true that the entirety of Ck(X) is cometrisable?

Question B. For which spaces X is Ck(X) a Lindelöf Σ-space?

5. Local conditions for stratifiability of topological groups. A
topological group is metrisable if and only if it is first countable. In this
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section we give a similar local condition for topological groups to be strati-
fiable. Since the topology of Ck(X) is given in terms of a local basis this is
of practical importance—as will be demonstrated in the following section.

Let X be a space. A collection P of pairs of subsets of X is said to be a
local pairbase at a point x in X if whenever U is an open neighbourhood of x
there is a P = (P1, P2) ∈ P such that P1 is open and x ∈ P1 ⊆ P2 ⊆ U ; and
P is a pairbase (for the whole of the space X) if it is a local pairbase for every
point of X. A collection P of pairs of subsets of X is said to be cushioned if
for every P ′ ⊆ P, we have

⋃{P1 : (P1, P2) ∈ P ′} ⊆ ⋃{P2 : (P1, P2) ∈ P ′},
and σ-cushioned if it can be written as a countable union of cushioned
subcollections. A point in a space which has a σ-cushioned local pairbase
is called a σ-m3 point ; and a point which has a cushioned local pairbase is
called an m3 point . Finally, a space each of whose points is a (σ-) m3 point,
is said to be (σ-) m3. It can easily be shown that every monotonically normal
space is an m3 space. Also, it is well known that a space is stratifiable if
and only if it has a σ-cushioned pairbase. (See [Bu] for further information
about m3 spaces.)

A useful method of checking for cushioning is contained in the following
lemma.

Lemma 23. Let X be a space, and let P be a collection of pairs of subsets
of X. Then P is cushioned if , and only if , for each x in X, there is an
open neighbourhood Ux of x such that Ux ∩ P1 6= ∅ implies x ∈ P2, for all
(P1, P2) ∈ P.

P r o o f. Suppose first that P is cushioned. Take any x in X, and define
Ux = X \ ⋃{P1 : x 6∈ P2, (P1, P2) ∈ P}. As P is cushioned, Ux is an open
neighbourhood of x. Clearly, Ux satisfies the other condition.

Now suppose, for each x in X, there is an open Ux, as in the state-
ment of the lemma. Take any P ′ ⊆ P and consider an arbitrary x ∈⋃{P1 : (P1, P2) ∈ P ′}. Then Ux ∩ P ′1 6= ∅ for some (P ′1, P

′
2) ∈ P ′, and, by

hypothesis, x ∈ P ′2 ⊆
⋃{P2 : (P1, P2) ∈ P ′}.

Now we can give a local condition for separable topological groups to be
stratifiable. It is known that there are nonseparable topological groups with
an m3 point which fail to be stratifiable [Ga].

Theorem 24. Let G be a separable topological group. Then G is strati-
fiable if and only if G has a σ-m3 point.

P r o o f. We only need to show that if the separable topological group G
has a σ-m3 point, then it has a σ-cushioned pairbase. Taking translations we
may suppose that the identity has a local pairbase P which can be written
P =

⋃
n∈ω Pn, where each Pn is cushioned. Let D = {gm : m ∈ ω} be a
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dense subset of G. Define P =
⋃
m,n∈ω{〈gm.Pn1 , gm.Pn2 〉 : 〈Pn1 , Pn2 〉 ∈ Pn}.

It is immediate that P is σ-cushioned. We show that P is a pairbase for G.
Take any g ∈ G, and U an open neighbourhood of the identity. Note that

g.U is a basic neighbourhood of g. By continuity of multiplication, there is
a 〈P1, P2〉 ∈ P such that P1 is an open neighbourhood of the identity, and
P2.P2 ⊆ U . By continuity of inversion, there is an open neighbourhood V
of the identity such that V = V −1 and V ⊆ P1.

The set g.V is an open neighbourhood of g, so we may pick gm ∈ g.V ∩D.
Note that 〈gm.P1, gm.P2〉 ∈ P. From gm ∈ g.V , we have g−1gm ∈ V , so
gm
−1 ∈ V −1 = V . Now we see that:

(1) g ∈ gm.V ⊆ gm.P1, open, and
(2) gm.P1 ⊆ gm.P2 ⊆ g.V.P2 ⊆ g.P2.P2 ⊆ g.U .

This demonstrates that P is, indeed, a pairbase.

6. Stratifiability of Ck(X). In this section sufficient conditions for
Ck(X) to be stratifiable are given. A simple necessary condition follows from
Theorem 16. To see this observe that any space with a dense σ-(compact
metrisable) subspace is separable.

Lemma 25. Suppose X has a Gδ diagonal ; or has a point countable base;
or has hereditarily normal cube; or has, hereditarily , any other property
making compact spaces metrisable. Then X is separable whenever Ck(X) is
stratifiable.

We concentrate on the case whenX is (separable) metrisable. Two simple
facts about separable metrisable spaces are used repeatedly: every separa-
ble metrisable space has a metrisable compactification, and every separable
metrisable space is the perfect preimage of a zero-dimensional separable
metrisable space. The first few lemmas give methods of identifying new
spaces, X, such that Ck(X) is stratifiable, from old.

Lemma 26. Let X be a separable metrisable space and K be a metrisable
compact space. If Ck(X) is stratifiable then Ck(X ×K) is stratifiable.

P r o o f. If K is finite then the lemma is clear. Suppose that K is not
finite. Since

Ck(X ×K) ↪→ Ck(X,Ck(K)) ↪→ Ck(X,Rω) ↪→ Ck(X)ω,

we see that Ck(X ×K) is indeed stratifiable.

Proposition 27. Suppose Ck(Y ) to be stratifiable. If one of the following
conditions holds, then Ck(X) is stratifiable.

(1) X is a closed subspace of Y , and Y is stratifiable;
(2) X is a compact-covering image of Y ;
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(3) X is a perfect preimage of Y , and both X and Y are separable
metrisable.

P r o o f. The first part of the claim follows from the Borges–Dugundji
Extension Theorem. The extender given by the theorem embeds Ck(X) in
Ck(Y ).

If X is the compact-covering image of Y , then Ck(X) embeds in Ck(Y ).
For the third part let X and Y be separable metrisable. It is known that

X, as a separable metrisable space which is the perfect preimage of a separa-
ble metrisable space Y , can be embedded as a closed subspace of a product
Y ×K, where K is a compact metrisable space (in fact a compactification
of X). Thus the claim follows from the preceding lemma.

By standard techniques, from part (2) of Proposition 27, one may derive
a locally finite sum theorem.

Lemma 28. Let X be a separable metrisable space and F be a locally finite
family of closed subsets of X such that Ck(F ) is stratifiable for F ∈ F . Then
Ck(X) is stratifiable.

Let X be a space. Denote by O(X) the clopen subsets of X, set O∗(X) =
O(X) \ {∅}, write K(X) for the compact subsets of X, and set K∗(X) =
K(X)\{∅}. The following lemma yields an internal characterisation of sepa-
rable zero-dimensional spaces, X, such that Ck(X) is stratifiable. Although
highly useful as a technical result, it is not very informative about such
spaces X. It is convenient to introduce some additional notation. Write
B(0,K, ε) for {g ∈ C(X) : |g(x)| ≤ ε}, and B(f,K) for {g ∈ C(X, {0, 1}) :
g(x) = f(x) for all x ∈ K}. The B(0,K) form a local basis at 0 in
C(X, {0, 1}) as K runs over compact subsets of X.

Lemma 29. Let X be a zero-dimensional separable metrisable space. Then
the following conditions are equivalent :

(1) Ck(X) is stratifiable;
(2) Ck(X, {0, 1}) is stratifiable;
(3) there exist maps k : O∗(X)→ K∗(X) and E : K∗(X)→ K∗(X) such

that k(U) ⊆ U for U ∈ O∗(X) and if V ∩K 6= ∅ then k(V )∩E(K) 6= ∅ for
V ∈ O∗(X) and K ∈ K∗(X).

P r o o f. As Ck(X, {0, 1}) embeds in Ck(X), the first implication is im-
mediate. So let us suppose that Ck(X, {0, 1}) is stratifiable. Write B(f,K)
for {g ∈ Ck(X, {0, 1}) : g(x) = f(x) for all x ∈ K}. Then 0 has a cushioned
local pairbase P. For each K ∈ K∗(X) pick 〈B(0, E(K)), B(0,K2)〉 in P so
that B(0, E(K)) ⊆ B(0,K2) ⊆ B(0,K). This defines E : K∗(X)→ K∗(X).
Now we define k : O∗(X)→ K∗(X). So take any U ∈ O∗(X). Let fU = χU
(the characteristic function of U). As P is cushioned, there is a B(fU , k′(U))
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such that B(fU , k′(U)) ∩ P1 6= ∅ implies fU ∈ P2, for all 〈P1, P2〉 ∈ P. Let
k(U) = k′(U) ∩ U . Observe that U ∩ K 6= ∅ if and only if fU 6∈ B(0,K),
and k(U) ∩ E(K) = ∅; and B(fU , k′(U)) ∩ B(0, E(K)) = ∅ if and only if
k(U) ∩ E(K) 6= ∅. So we see that the maps k and E have the properties
required.

It remains to show that if X has maps E and k as in (3), then Ck(X) is
stratifiable. By Theorem 24 it is sufficient to show that the zero function, 0,
of Ck(X) is a σ-m3 point. Define Pn = {〈B(0, E(K), 1/(4n)), B(0,K, 1/n)〉 :
K ∈ K∗(X)}, and P =

⋃
n≥1 Pn. Clearly, P is a local pairbase at 0.

We show that Pn is cushioned for each n ≥ 1. We will apply Lemma 23.
To this end, take 0 6= f ∈ Ck(X). If ‖f(x)‖ ≤ 1/n for all points x, then
f ∈ B(0,K, 1/n) for all K ∈ K∗(X), and there is nothing to do. Otherwise,
we may pick a closed and open set U ′ such that ‖f‖−1[1/n,∞) ⊆ U ′ ⊆
‖f‖−1(1/(2n),∞). Set Uf = B(f, k(U ′), 1/(4n)).

Suppose g ∈ Uf ∩ B(0, E(K), 1/(4n)). Then for all x in k(U ′) ∩ E(K),
‖f(x)‖ < 1/(2n). Since k(U ′) ⊆ U ′, we must have k(U ′)∩E(K) = ∅. Hence,
by hypothesis, U ′ ∩ K = ∅, and thus, for all x in K, ‖f(x)‖ < 1/n, or in
other words, f ∈ B(0,K, 1/n), as required.

We are going to show that for every Polish space (in other words, a
separable completely metrisable space), X say, Ck(X) is stratifiable. Since
every Polish space is the perfect image of the irrationals P, Proposition 27(2)
allows us to concentrate on showing that Ck(P) is stratifiable. This, in turn,
is facilitated by Lemma 29.

Let T be the set of nondecreasing functions from P, and let Tb be the
set of nondecreasing bounded functions from P. Clearly, T is a closed subset
of P and T is homeomorphic to P. Partially order P by g ≤ f if and only if
g(n) ≤ f(n) for all n. For M ⊆ P, define m(M) = {f ∈ M : g 6≤ f for any
g ∈M}.

Lemma 30. For each closed subset M of P, and any g ∈M , there exists
f ∈ m(M) such that f ≤ g.

Note that if an infinite M ⊆ P is closed and discrete, then any infinite
subset of M is unbounded.

Lemma 31. Let M ⊆ Tb be a discrete closed subset of P. Then m(M) is
finite.

P r o o f. Suppose, for a contradiction, that L = m(M) is infinite. Put
n∗ = min{n ∈ ω : |{f(n) : f ∈ L}| = ω}. There exists an infinite N ⊆ L
such that for different f, g ∈ N , we have f(n∗) 6= g(n∗) and f(i) = g(i) for
i < n∗. Take f ∈ N . There exists g ∈ N such that g(n∗) > max f . One can
see that f ≤ g, hence g 6∈ m(M), a contradiction.

Lemma 32. Let U be a clopen subset of T . Then m(U) is finite.
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P r o o f. Let F be the set of all nondecreasing finite sequences of nonneg-
ative integers. For b = (b0, b1, . . . , bn) ∈ F , put U(b) = {f ∈ T : f(i) = bi
for i ≤ n}. Then B = {U(b) : b ∈ F} is a base for T such that if any two
members of the base meet, then one is contained in the other. Note that for
V ∈ B, |m(V )| = 1 and m(V ) ⊆ Tb. There exists B′ ⊆ B such that B′ is a
partition of U . Then m(U) ⊆ ⋃{m(V ) : V ∈ B′} and |m(U) ∩ V | ≤ 1 for
V ∈ B′. Hence, m(U) ⊆ Tb and m(U) is a closed discrete subspace of P.
Since m(U) = m(m(U)), Lemma 31 implies that m(U) is finite.

For f ∈ T , write K(f) for {g ∈ T : g ≤ f}.
Lemma 33. B0 = {B(0,K(f)) : f ∈ T } forms a closure-preserving

clopen neighbourhood base at 0 for Ck(T , {0, 1}).
P r o o f. Clearly, B0 is a clopen base at 0. Let B′ ⊆ B0 and χ ∈

Ck(T , {0, 1}) \ ⋃B′. We show that χ 6∈ ⋃B′. There exist R ⊆ T and a
clopen U ⊆ T such that B′ = {B(0,K(f)) : f ∈ R} and χ = χ(U). By
Lemma 32, m(U) is finite and therefore, compact. Take any f ∈ R. It is suf-
ficient to show that B(χ(U),m(U)) ∩K(f) 6= ∅. Since χ(U) 6∈ B(0,K(f)),
we have U ∩K(f) 6= ∅; in other words, there exists g ∈ U such that g ≤ f .
Lemma 30 implies that there exists h ∈ m(U) such that h ≤ g ≤ f , that is
to say, m(U) ∩K(f) 6= ∅.

Theorem 34. If the space X is the compact-covering image of a Polish
space, then Ck(X) is stratifiable.

We observe the following corollary of Theorem 34 and the Borges–Dug-
undji Theorem.

Corollary 35. Let X be the compact-covering image of a Polish space.
Then any closed convex subspace of Ck(X) is a retract. Indeed , every closed
and convex subspace of Ck(X) is an absolute retract in the class of all
stratifiable spaces.

Remark. Suppose X is such that Ck(X) is stratifiable, and Y is any
separable metrisable space. Then Ck(X)ω = Ck(X,Rω) is stratifiable, and,
since Y is (homeomorphic to) a subspace of Rω, Ck(X,Y ) is stratifiable.
Thus, for every Polish space X, and separable metrisable Y , C(X,Y ), the
space of all self maps of X, and the space of autohomeomorphisms of X (all
with the compact-open topology) are stratifiable.

The authors do not know how to characterise the compact-covering im-
ages of Polish spaces. Of course, in one direction, it is well known that a
space is analytic if and only if it is the continuous image of a Polish space.
In the other direction, it is equally well known that a space is ℵ0 if and only
if it is the compact-covering image of a separable metrisable space.
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7. Stratifiable subspaces of Ck(X). Next we give criteria for sub-
spaces of Ck(X) to be stratifiable. Let X be a space, Y ⊆ X. Set Ck(X|Y ) =
πY (Ck(X)), where πY is the natural projection Ck(X)→ Ck(Y ).

Theorem 36. Let X be a metrisable compactum, Y ⊆ X. Then Ck(X|Y )
is stratifiable.

P r o o f. We may assume that Y = X. Let d be a continuous metric on
X. There is a base B of X such that {U ∈ B : diamd U > ε} is finite for any
ε > 0. Fix x(U) ∈ U ∩Y for U ∈ B. For a compact K ⊆ Y put E(K) = K ∪
{x(U) : U ∈ B and U ∩K 6= ∅}. Observe that E(K) is compact. Put Pn =
{〈B(0,K, 1/n), B(0, E(K), 1/(2n))〉 : K ⊆ Y is compact} for n ∈ ω \ {0}.

Claim. Pn is cushioned.

P r o o f. For every f ∈ C(X) there exists a finite Bf ⊆ B such that
f−1([1/n,∞)) ⊆ ⋃Bf ⊆ f−1(3/(4n),∞). Put Mf = {x(U) : U ∈ Bf} and
Vf = B(f,Mf , 1/(4n)).

Let 〈P1, P2〉 = 〈B(0,K, 1/n), B(0, E(K), 1/(2n))〉 ∈ Pn. We show that
if f 6∈ P1 then Vf ∩ P2 = ∅. Since f 6∈ P1 there is U ∈ Bf such that
U ∩ f−1([1/n,∞)) ∩ K 6= ∅ and f(U) ⊆ (3/(4n),∞). Hence x(U) ∈ Mf

and x(U) ∈ E(K). If g ∈ Vf then g(x(U)) > 3/(4n) − 1/(4n) = 1/(2n).
Therefore g 6∈ P2. Hence Vf ∩ P2 = ∅.

Lemma 23 implies that Pn is cushioned.

Continuation of the proof of Theorem 36. Clearly, P =
⋃Pn is a pair-

base at 0. The Claim implies that P is σ-cushioned. Then Theorem 24
implies that Ck(X|Y ) is stratifiable.

Corollary 37. Let X be a separable metrisable space. If Y ⊆ Ck(X)
is countable then Y is stratifiable.

P r o o f. Since Ck(X) is homeomorphic to Ck(X, (0, 1)) we may assume
that Y ⊆ Ck(X, (0, 1)). Embedding X into a Hilbert cube via Y , and taking
the closure, we see that there exists a metrisable compactification bX of X
such that Y ⊆ Ck(bX|X). Theorem 36 implies that Y is stratifiable.

Problem C. Let X be a separable metrisable space and Y ⊆ Ck(X) be
σ-compact. Is Y stratifiable?

Naturally, another sufficient condition for all countable subspaces to be
stratifiable is given by Proposition 5.

Proposition 38. Suppose X has property (CK) and cof K(X) < b. Then
every countable subspace of Ck(X) is stratifiable.
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8. Questions. Besides the questions already mentioned, there are two
key unresolved problems. The first is whether the conditions of Theorem 34
are necessary as well as sufficient.

Conjecture D. If X is metrisable, and Ck(X) is stratifiable, then X
is completely metrisable.

The second concerns the famous “M1-M3” problem. A space is said to
be M1 if it has a σ-closure preserving base. Evidently, an M1 space has a
σ-cushioned pairbase, and so is stratifiable. Whether the converse is true
is the content of the M3-M1 problem. Interestingly, we have so far been
unable to determine if Ck(X) is M1 when it is stratifiable, not even when
X is σ-compact and completely metrisable.

Question E. If X is separable and completely metrisable, then is Ck(X)
an M1 space?

References

[Bo] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
[Bu] R. E. Buck, Some weaker monotone separation and basis properties, Topology

Appl. 69 (1996), 1–12.
[CR] P. J. Col l ins and A. W. Roscoe, Criteria for metrisability, Proc. Amer. Math.

Soc. 90 (1984), 631–640.
[Du] J. Dugundj i, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951),

353–367.
[FGMS] S. Fisher, P. M. Garts ide, T. Mizokami and N. Shimane, Near metric

properties of hyperspaces, Topology Proc. 22 (1997), 197–211.
[Ga] P. M. Garts ide, Non-stratifiability of topological vector spaces, Topology Appl.

86 (1998), 133–140.
[Gr1] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic

Topology, North-Holland, 1984, 423–503.
[Gr2] —, Generalized metric spaces and metrization, in: Recent Progress in General

Topology, North-Holland, 1992, 239–263.
[Gr3] —, Cosmicity of cometrizable spaces, Trans. Amer. Math. Soc. 313 (1989),

301–315.
[H] R. W. Heath, A paracompact semi-metric space which is not an M3 space,

Proc. Amer. Math. Soc. 17 (1966), 868–870.
[KV] K. Kunen and J. E. Vaughan, Handbook of Set-Theoretic Topology, North

Holland, 1984.
[McNt] R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous

Functions, Lecture Notes in Math. 1315, Springer, 1988.
[NP] P. J. Nyikos and S. Pur i sch, Monotone normality and paracompactness in

scattered spaces, in: Papers in General Topology and Related Category Theory
and Topological Algebra, Ann. New York Acad. Sci. 552, New York Acad. Sci.,
1989, 124–137.

[Shk] S. A. Shkar in, preprint.



114 P. M. Gartside and E. A. Reznichenko

[Tk] M. G. Tkachenko, Factorization theorems for topological groups and their
applications, Topology Appl. 38 (1991), 21–37.

[U] V. V. Uspensk i ı̆, On the topology of a free locally convex space, Dokl. Akad.
Nauk SSSR 270 (1983), 1334–1337.

Merton College
Oxford, OX1 4JD, U.K.
E-mail: gartside@maths.ox.ac.uk

Department of General Topology and Geometry
Faculty of Mechanics and Mathematics

Moscow State University
119899 Moscow, Russia

Received 6 October 1998;
in revised form 17 September 1999 and 21 January 2000


