Knots in $S^2 \times S^1$ derived from $\operatorname{Sym}(2,\mathbb{R})$

by

Sang Youl Lee (Pusan), Yongdo Lim (Taegu) and Chan-Young Park (Taegu)

Abstract. We realize closed geodesics on the real conformal compactification of the space $V = \operatorname{Sym}(2,\mathbb{R})$ of all 2×2 real symmetric matrices as knots or 2-component links in $S^2 \times S^1$ and show that these knots or links have certain types of symmetry of period 2.

1. Introduction. In [6], to complete a semisimple Jordan algebra V of classical type to a symmetric space, B. Makarevich used the notion of geodesics in V that originate at zero. In the case of the Euclidean (or formally real) Jordan algebra $V = \operatorname{Sym}(n,\mathbb{R})$ of all $n \times n$ real symmetric matrices, these geodesics are eventually of the form $\alpha(t,A) := \exp tX_A \cdot \mathbf{0}$, $A \in V$, where $X_A = \begin{pmatrix} 0 & A \\ -A & 0 \end{pmatrix} \in \mathfrak{sp}(2n,\mathbb{R})$, the Lie algebra of the symplectic group $\operatorname{Sp}(2n,\mathbb{R})$. In [5], the authors classified closed geodesics and symmetric geodesics of these types on the real conformal compactification \mathcal{M} of $V = \operatorname{Sym}(n,\mathbb{R})$. In Section 2, for convenience we give a brief review of these results and show some elementary facts.

It is known [1] that the conformal compactification \mathcal{M} of $V = \operatorname{Sym}(n, \mathbb{R})$ is diffeomorphic to the Shilov boundary Σ_n of the symmetric tube domain $T_{\Omega} = V + i\Omega$, where Ω is the open convex cone of all positive definite $n \times n$ symmetric matrices. The main interest of this paper is to give a realization of these closed geodesics in the Shilov boundary Σ_2 as knots in $S^2 \times S^1$ and to characterize their symmetry properties.

Throughout this paper, all maps and spaces will be assumed to be in the piecewise-linear (PL) category. A link L of μ components in a connected 3-manifold M is (the image of) an embedding of μ disjoint 1-spheres into M. If $\mu = 1$, then L is called a knot in M. Two links L and L' are said to be equivalent if there exists an ambient isotopy $H: M \times [0,1] \rightarrow$

 $^{2000\} Mathematics\ Subject\ Classification :\ 32M15,\ 53C35,\ 57M25.$

Key words and phrases: geodesic, symmetric matrix, Shilov boundary, 2-periodic knot. This work was partially supported by TGRC-KOSEF.

 $M \times [0,1]$, $H(x,t) = h_t(x)$ $(t \in [0,1])$, such that h_0 is the identity on M and $h_1(L) = L'$.

A knot (or link) K in a connected 3-manifold M is said to have period n of type (X,Y) (or to be an n-periodic knot of type (X,Y)) if there is an n-periodic homeomorphism $h:(M,K)\to (M,K)$ such that the fixed point set, $\operatorname{Fix}(h)$, of h is homeomorphic to X and $\operatorname{Fix}(h)\cap K$ is homeomorphic to Y. If M is a homology 3-sphere, then P. A. Smith [9] proved that the set of fixed points of a periodic homeomorphism of M is \emptyset , S^0 , S^1 , or S^2 . By the positive solution of the Smith conjecture [7], the possible types of non-trivial knots in S^3 are $(\emptyset,\emptyset),(S^0,\emptyset),(S^0,S^0),(S^1,\emptyset),(S^1,S^0)$, and (S^2,S^0) (cf. [3]).

In Section 3, we show that the closed geodesics on the conformal compactification \mathcal{M} of $\mathrm{Sym}(2,\mathbb{R})$ are knots in the Shilov boundary Σ_2 which have period 2 of type both (\emptyset,\emptyset) and $(S^1 \cup S^0,S^0)$.

In [4], [10], and [11], it was shown that $S^2 \times S^1$ admits exactly thirteen distinct involutions (up to conjugation) and the possible types of their fixed point sets are \emptyset , $S^0 \dot{\cup} S^0$, S^1 , $S^1 \dot{\cup} S^1$, $S^1 \times S^1$, Klein bottle, $S^0 \dot{\cup} S^2$, or $S^2 \dot{\cup} S^2$, where $X \dot{\cup} Y$ denotes the disjoint union of X and Y.

In Section 4, we give an explicit description of an orientable double cover $S^2 \times S^1$ of the Shilov boundary Σ_2 and show that the knots in Σ_2 corresponding to the closed geodesics lift to knots or links of 2-components in $S^2 \times S^1$; we show that these knots or links in $S^2 \times S^1$ also have period 2 of types $(S^1 \times S^1, T(m, n)), (S^1 \times S^1, S^0 \cup \ldots \cup S^0),$ or $(S^1 \cup S^1, \emptyset)$, where T(m, n) denotes the torus knot of type (m, n) [8].

2. Geodesics on the conformal compactification of $\operatorname{Sym}(n,\mathbb{R})$. Let $M_n(\mathbb{R})$ denote the space of all $n \times n$ real matrices. A symmetric (respectively, skew-symmetric) matrix $A \in M_n(\mathbb{R})$ is one satisfying $A^t = A$ (respectively, $A^t = -A$), where A^t denotes the transpose of a matrix A. Let $\operatorname{Sym}(n,\mathbb{R})$ (respectively, $\operatorname{Skew}(n,\mathbb{R})$) be the space of all symmetric (respectively, skew-symmetric) $n \times n$ matrices. Let $A \in \operatorname{Sym}(n,\mathbb{R})$ have the spectral decomposition $A = \sum_{k=1}^n \lambda_k C_k$, where $\{C_k\}$ is a complete system of orthogonal projections. Then the spectral norm |A| of A is defined by $|A| = \max\{|\lambda_1|, \ldots, |\lambda_n|\}$.

Let $(\cdot|\cdot)$ be the skew-symmetric form on \mathbb{R}^{2n} defined by $(u|v) = \langle Ju \,|\, v \rangle$ for $u,v \in \mathbb{R}^{2n}$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$. Here, I stands for the $n \times n$ identity matrix. The *symplectic group* $\operatorname{Sp}(2n,\mathbb{R})$ on \mathbb{R}^{2n} is the Lie group of all invertible transformations $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ satisfying one of the following equivalent conditions:

- (1) g preserves $(\cdot|\cdot)$.
- $(2) g^t Jg = J.$
- (3) A^tC , B^tD are symmetric and $A^tD C^tB = I$.

The Lie algebra of $\mathrm{Sp}(2n,\mathbb{R})$ is given by

$$\mathfrak{sp}(2n,\mathbb{R}) = \left\{ \begin{pmatrix} X & Y \\ Z & -X^t \end{pmatrix} \mid X \in M_n(\mathbb{R}), Y, Z \in \mathrm{Sym}(n,\mathbb{R}) \right\}.$$

It has a Cartan decomposition $\mathfrak{sp}(2n,\mathbb{R}) = \mathfrak{p} \oplus \mathfrak{k}$, where

$$\mathfrak{p} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \middle| X, Y \in \operatorname{Sym}(n, \mathbb{R}) \right\},$$

$$\mathfrak{k} = \left\{ \begin{pmatrix} X & Y \\ -Y & X \end{pmatrix} \middle| X \in \operatorname{Skew}(n, \mathbb{R}), Y \in \operatorname{Sym}(n, \mathbb{R}) \right\}.$$

Let $\tau = \binom{-I \ 0}{0 \ I} \in \mathrm{GL}(2n,\mathbb{R})$ and let $\tau(g) = \tau \cdot g \cdot \tau$ for $g \in \mathrm{Sp}(2n,\mathbb{R})$. Then τ is an involution on $\mathrm{Sp}(2n,\mathbb{R})$. The differential $d\tau$ of τ at the identity is given by

$$d\tau \begin{pmatrix} X & Y \\ Z & -X^t \end{pmatrix} = \begin{pmatrix} X & -Y \\ -Z & -X^t \end{pmatrix}.$$

The Lie algebra $\mathfrak{sp}(2n,\mathbb{R})$ can be decomposed into the (+1)-eigenspace \mathfrak{h} and the (-1)-eigenspace \mathfrak{q} of $d\tau$:

$$\mathfrak{sp}(2n,\mathbb{R}) = \mathfrak{h} \oplus \mathfrak{q} = \mathfrak{h} \oplus \mathfrak{n}^+ \oplus \mathfrak{n}^-, \quad \mathfrak{q} = \mathfrak{n}^+ \oplus \mathfrak{n}^-,$$

where

$$\mathfrak{n}^{+} = \left\{ \begin{pmatrix} 0 & Y \\ 0 & 0 \end{pmatrix} \middle| Y \in \operatorname{Sym}(n, \mathbb{R}) \right\},$$

$$\mathfrak{n}^{-} = \left\{ \begin{pmatrix} 0 & 0 \\ Z & 0 \end{pmatrix} \middle| Z \in \operatorname{Sym}(n, \mathbb{R}) \right\},$$

$$\mathfrak{h} = \left\{ \begin{pmatrix} X & 0 \\ 0 & -X^{t} \end{pmatrix} \middle| X \in M_{n}(\mathbb{R}) \right\}.$$

Let N^{\pm} be the Lie subgroups of $\mathrm{Sp}(2n,\mathbb{R})$ corresponding to \mathfrak{n}^{\pm} respectively. Then

$$N^{+} = \left\{ \begin{pmatrix} I & A \\ 0 & I \end{pmatrix} \middle| A \in \operatorname{Sym}(n, \mathbb{R}) \right\} = \exp \mathfrak{n}^{+},$$

$$N^{-} = \left\{ \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} \middle| A \in \operatorname{Sym}(n, \mathbb{R}) \right\} = \exp \mathfrak{n}^{-}.$$

Let $H = \{g \in \operatorname{Sp}(2n, \mathbb{R}) \mid \tau(g) = g\}$. We observe that

$$H = \left\{ \begin{pmatrix} A & 0 \\ 0 & (A^{-1})^t \end{pmatrix} \mid A \in GL(n, \mathbb{R}) \right\}.$$

THEOREM 2.1 (see [1]). Let $P = HN^-$. Then P is a closed subgroup of $G := \operatorname{Sp}(2n, \mathbb{R})$ and the homogeneous space $\mathcal{M} := G/P$ is a compact real manifold with $V := \operatorname{Sym}(n, \mathbb{R})$ as an open dense subset. The embedding of

V into \mathcal{M} is given by

$$X \in V \mapsto \begin{pmatrix} I & X \\ 0 & I \end{pmatrix} \cdot P \in \mathcal{M}.$$

Furthermore, for $g=\left(\begin{smallmatrix}A&B\\C&D\end{smallmatrix}\right)\in \mathrm{Sp}(2n,\mathbb{R})$ and $X\in V$ with $g\cdot X\in V$, we have

$$g \cdot X = (AX + B)(CX + D)^{-1}.$$

Let $A \in V = \operatorname{Sym}(n, \mathbb{R})$ and let $X_A := \begin{pmatrix} 0 & A \\ -A & 0 \end{pmatrix} \in \mathfrak{k}$. Then it is known [6] that the geodesic in \mathcal{M} originating at the origin $\mathbf{0}$ with direction A is of the form

$$\alpha(t, A) := \exp t X_A \cdot \mathbf{0} = \begin{pmatrix} \cos t A & \sin t A \\ -\sin t A & \cos t A \end{pmatrix} \cdot \mathbf{0}.$$

The *period* of a non-constant closed geodesic $\alpha(t, A)$ is the smallest positive number t_0 satisfying $\alpha(t_0, A) = \mathbf{0}$.

Set $j = \binom{0 - I}{I - 0} \in \operatorname{Sp}(2n, \mathbb{R})$. Then j is an involution on \mathcal{M} and for an invertible element $A \in V$ we have $j \cdot A = -A^{-1}$. A closed geodesic $\alpha(t, A)$ is said to be *symmetric* if it is invariant under the involution j on \mathcal{M} .

Let

$$E_c = \{ r(p_1, \dots, p_n) \in \mathbb{R}^n \mid r \ge 0, \ p_i \text{ integers} \},$$

$$E_s = \{ r(p_1, \dots, p_n) \in E_c \mid r > 0, \ p_i \text{ odd integers} \}$$

(in this setting, we always assume that the integers p_i have no common divisors), and let $A = \sum_{k=1}^n \lambda_k C_k$ be the spectral decomposition of A. Then $\alpha(t,A)$ is a closed geodesic if and only if $(\lambda_1,\ldots,\lambda_n) \in E_c$. If $A \neq 0$ and $(\lambda_1,\ldots,\lambda_n) = r(p_1,\ldots,p_n) \in E_c$, then π/r is the period of $\alpha(t,A)$ ([5], Theorem 4.2). Also, $\alpha(t,A)$ is a symmetric geodesic if and only if $(\lambda_1,\ldots,\lambda_n) \in E_s$ ([5], Theorem 4.4).

Now let Ω be the symmetric cone of positive definite $n \times n$ symmetric real matrices. Then the tube domain $T_{\Omega} := V + i\Omega$ can be realized as a bounded symmetric domain \mathcal{D} in the complex plane $V^{\mathbb{C}} := V + iV$ as follows: Let

$$D(p) = \{ Z \in V^{\mathbb{C}} \mid Z + iI \in \operatorname{GL}(n, \mathbb{C}) \},$$

$$D(c) = \{ W \in V^{\mathbb{C}} \mid I - W \in \operatorname{GL}(n, \mathbb{C}) \},$$

and define for all $Z \in D(p)$ and $W \in D(c)$,

$$p(Z) = (Z - iI)(Z + iI)^{-1}, \quad c(W) = i(I + W)(I - W)^{-1}.$$

Then $p: D(p) \to D(c)$ is a holomorphic bijection from D(p) onto D(c), and $c: D(c) \to D(p)$, called the *Cayley transform*, is its inverse. The closure of T_{Ω} in $V^{\mathbb{C}}$ is contained in D(p). The image $\mathcal{D} := p(T_{\Omega})$ of p is known as a bounded symmetric domain which is the open unit ball with respect to the spectral norm. We define Σ_n as the set of all invertible elements Z in $V^{\mathbb{C}}$

such that $Z^{-1} = \overline{Z}$. It is known that Σ_n is the Shilov boundary of \mathcal{D} , which is a compact connected $\frac{n(n+1)}{2}$ -dimensional manifold, and is exactly equal to $\overline{p(V)}$ (for details, see [2]).

Let $\mathbf{c} = \{C_k\}_{k=1}^n$ be a complete system of orthogonal projections and let $V(\mathbf{c})$ be the subspace of V generated by C_k 's. Then for $A = \sum_{k=1}^n \lambda_k C_k$,

(2.1)
$$p(A) = \sum_{k=1}^{n} \frac{\lambda_k - i}{\lambda_k + i} C_k.$$

Since $(\lambda_k - i)/(\lambda_k + i) \in S^1$ (the unit circle in \mathbb{C}) for k = 1, ..., n, we conclude that $p(V(\mathbf{c}))$ is diffeomorphic to the *n*-torus $T^n = S^1 \times ... \times S^1$.

For a geodesic curve $\alpha(t, A)$ on \mathcal{M} , we let $\widehat{\alpha}(t, A) := p(\alpha(t, A))$ be the corresponding geodesic on Σ_n . From (2.1), we have the following

Proposition 2.2. Let $A = \sum_{k=1}^{n} \lambda_k C_k$ be the spectral decomposition of A. Then

$$\widehat{\alpha}(t,A) = \sum_{k=1}^{n} e^{i(\pi + 2\lambda_k t)} C_k.$$

Proof. For t > 0 with $\alpha(t, A) \in V$,

$$p(\alpha(t, A)) = \sum_{k=1}^{n} \frac{\tan \lambda_k t - i}{\tan \lambda_k t + i} C_k$$

and

$$\frac{\tan \lambda_k t - i}{\tan \lambda_k t + i} = \sin^2 \lambda_k t \cos^2 \lambda_k t - 2i \sin \lambda_k t \cos \lambda_k t = e^{i(\pi + 2\lambda_k t)}. \blacksquare$$

The symmetry $\hat{j} := p \circ j \circ c$ on Σ_n corresponding to the symmetry j on \mathcal{M} is the symmetry about the origin, i.e., $\hat{j}(Z) = -Z$. Let J be the involution on Σ_n defined by $J(Z) = -\overline{Z}$. Then since $\overline{Z} = Z^{-1}$ for any $Z \in \Sigma_n$, this involution is just $J(Z) = -Z^{-1}$ and J = j on $V = \operatorname{Sym}(n, \mathbb{R})$. By Proposition 2.2, we have

COROLLARY 2.3. If $\alpha(t,A)$ is a symmetric geodesic on \mathcal{M} with $A = \sum_{k=1}^{n} r p_k C_k$ then

$$\widehat{j}\widehat{\alpha}(t,A) = \widehat{\alpha}\left(t + \frac{\pi}{2r}, A\right),$$

$$J\widehat{\alpha}(t,A) = \begin{cases} \widehat{\alpha}\left(\frac{\pi}{2r} - t, A\right) & \text{if } 0 \le t \le \frac{\pi}{2r}, \\ \widehat{\alpha}\left(\frac{3}{2r}\pi - t, A\right) & \text{if } \frac{\pi}{2r} \le t \le \frac{\pi}{r}. \end{cases}$$

In particular, $\widehat{\alpha}(t, A)$ is invariant under both involutions \widehat{j} and J on Σ_n .

Let Fix(J) denote the set of all fixed points of the involution J on Σ_n . The following lemma will be useful in what follows.

LEMMA 2.4. Let $P \in GL(n, \mathbb{R})$ be an orthogonal transformation and let $A \in Sym(n, \mathbb{R})$. Then:

- (1) $\widehat{\alpha}(t, PAP^t) = P\widehat{\alpha}(t, A)P^t$.
- (2) $P\text{Fix}(J)P^t = \text{Fix}(J)$.
- (3) $\widehat{\alpha}(t, PAP^t) \cap \text{Fix}(J) = P(\widehat{\alpha}(t, A) \cap \text{Fix}(J))P^t$.

Proof. Let $A = \sum_{k=1}^{n} \lambda_k C_k$ be the spectral decomposition of A and let P be an orthogonal transformation. Then $\{PC_kP^t\}_{k=1}^n$ is a complete system of orthogonal projections. Hence (1) follows from Proposition 2.2, (2) follows from the fact that for any $Z \in \Sigma_n$, $J(PZP^t) = -(PZP^t)^{-1} = PJ(Z)P^t$, and (3) follows from (1) and (2).

3. Closed geodesics in the Shilov boundary Σ_2 . From now on, we shall restrict our attention to the space $V = \text{Sym}(2, \mathbb{R})$. Recall that the Shilov boundary Σ_2 of V is given by

$$\Sigma_2 = \left\{ Z \in \operatorname{Sym}(2, \mathbb{C}) \,\middle|\, Z = \begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} \right.$$
 is an invertible matrix with $\overline{Z} = Z^{-1} \right\}.$

We identify $Z=\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} \in \mathrm{Sym}(2,\mathbb{C})$ with $(z_1,z_2,z_3) \in \mathbb{C}^3$. Under this identification, the Shilov boundary Σ_2 of $\mathrm{Sym}(2,\mathbb{R})$ can be written as

$$\Sigma_2 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 \overline{z}_2 + z_2 \overline{z}_3 = 0, |z_1|^2 + |z_2|^2 = |z_2|^2 + |z_3|^2 = 1\}.$$

Let $A \ (\neq 0) \in \operatorname{Sym}(2,\mathbb{R})$ and let $\alpha(t,A)$ be the closed geodesic in \mathcal{M} originating at the origin $\mathbf{0}$ with direction A. Let $A = \lambda_1 C_1 + \lambda_2 C_2$ be the spectral decomposition of A. Then, from Theorem 4.2 of [5], we know that $\lambda_1 = rp$ and $\lambda_2 = rq$ for some real r > 0 and coprime integers p and q. Set $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $E_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Note that $\mathbf{e} = \{E_1, E_2\}$ is a complete system of orthogonal projections. It is well known that the orthogonal group $\operatorname{SO}(2)$ acts transitively on the set of complete systems of orthogonal projections. Thus there exists a unique orthogonal matrix

$$P_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in SO(2) \quad (\theta \in [0, \pi])$$

such that $C_i = P_{\theta} E_i P_{\theta}^t$ (i = 1, 2), i.e., $A = P_{\theta} A_0 P_{\theta}^t$, where $A_0 := (rp)E_1 + (rq)E_2$. By Proposition 2.2 and Lemma 2.4, we obtain $\widehat{\alpha}(t, A)$

$$= \begin{pmatrix} \cos^2\theta \, e^{i(\pi+2rpt)} + \sin^2\theta \, e^{i(\pi+2rqt)} & \sin\theta\cos\theta \, \left(e^{i(\pi+2rqt)} - e^{i(\pi+2rpt)}\right) \\ \sin\theta\cos\theta \, \left(e^{i(\pi+2rqt)} - e^{i(\pi+2rpt)}\right) & \sin^2\theta \, e^{i(\pi+2rpt)} + \cos^2\theta \, e^{i(\pi+2rqt)} \end{pmatrix}.$$

DEFINITION 3.1. Let $A \ (\neq 0) \in \operatorname{Sym}(2,\mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A = (rp)C_1 + (rq)C_2$, where r > 0 is a real number and p and q are coprime integers, and let $\alpha(t,A)$ be the closed geodesic in the conformal compactification \mathcal{M} of $\operatorname{Sym}(2,\mathbb{R})$ originating at $\mathbf{0}$ with direction A.

- (1) $\kappa(A_0)$ is the knot in Σ_2 defined by $\kappa(A_0) = \{\widehat{\alpha}(t, A_0) \in \Sigma_2 \mid 0 \le t \le \pi/r\}$, i.e., $\kappa(A_0) = \{(e^{i(\pi + 2ps)}, 0, e^{i(\pi + 2qs)}) \in \Sigma_2 \mid 0 \le s \le \pi\}$.
- (2) $\kappa(A)$ is the knot in Σ_2 defined by $\kappa(A) = \{\widehat{\alpha}(t,A) \in \Sigma_2 \mid 0 \leq t \leq \pi/r\}$, i.e., $\kappa(A) = \{(z_1(s), z_2(s), z_3(s)) \in \Sigma_2 \mid 0 \leq s \leq \pi\}$, where

$$z_1(s) = -\cos^2 \theta \, e^{i(2ps)} - \sin^2 \theta \, e^{i(2qs)},$$

$$z_2(s) = \sin \theta \cos \theta \, (e^{i(2ps)} - e^{i(2qs)}),$$

$$z_3(s) = -\sin^2 \theta \, e^{i(2ps)} - \cos^2 \theta \, e^{i(2qs)},$$

and $\theta \in (0, \pi)$ satisfies $C_i = P_{\theta} E_i P_{\theta}^t$ (i = 1, 2).

PROPOSITION 3.2. Let $A \neq 0 \in \text{Sym}(2,\mathbb{R})$. Then the knots $\kappa(A_0)$ and $\kappa(A)$ in Σ_2 are equivalent.

Proof. Let $A = \lambda_1 C_1 + \lambda_2 C_2$ be the spectral decomposition of A and let $\theta \in [0, \pi]$ be such that $C_i = P_{\theta} E_i P_{\theta}^t$ (i = 1, 2). If $\theta = 0$, then the assertion is obvious. Suppose that $\theta \neq 0$. For $s \in [0, \theta]$, let $h_s : \Sigma_2 \to \Sigma_2$ be a homeomorphism of Σ_2 defined by $h_s(Z) = P_s Z P_s^t$ for $Z \in \Sigma_2$, with Σ_2 viewed as a subspace of Sym $(2, \mathbb{C})$. Then it is clear that h_0 is the identity on Σ_2 and, by Lemma 2.4, $h_{\theta}(\kappa(A_0)) = \kappa(A)$. Furthermore, the map $H : \Sigma_2 \times [0, \theta] \to \Sigma_2 \times [0, \theta]$ defined by $H(Z, s) = (h_s(Z), s)$ is obviously an ambient isotopy between $\kappa(A_0)$ and $\kappa(A)$. This completes the proof.

THEOREM 3.3. Let $A \in \operatorname{Sym}(2,\mathbb{R})$ be a 2×2 symmetric matrix such that $\alpha(t,A)$ is a symmetric geodesic in \mathcal{M} . Then the corresponding knot $\kappa(A)$ in Σ_2 has period 2 of type both (\emptyset,\emptyset) and $(S^1 \cup S^0,S^0)$.

Proof. Let $\widehat{\alpha}(t,A)$ be the symmetric geodesic corresponding to $\alpha(t,A)$. By Corollary 2.3, it is invariant under both \widehat{j} and J. Since \widehat{j} has no fixed points, it is obvious that $\kappa(A)$ has period 2 of type (\emptyset,\emptyset) in Σ_2 . Observe that the set of fixed points of the involution J on Σ_2 is

$$\operatorname{Fix}(J) = \{(i\cos\theta, i\sin\theta, -i\cos\theta) \mid \theta \in \mathbb{R}\} \cup \{\pm(i,0,i)\} \cong S^1 \cup S^0,$$
 where S^k $(k=0,1)$ denotes the k-sphere.

To prove that $\kappa(A)$ is of type $(S^1 \cup S^0, S^0)$ it suffices from Lemma 2.4 and Proposition 3.2 to show that $\kappa(A_0)$ meets Fix(J) in exactly two points. Let $A = \lambda_1 C_1 + \lambda_2 C_2$ be the spectral decomposition. Then $A_0 = \lambda_1 E_1 + \lambda_2 E_2$ and, by Theorem 4.4 of [5] and time reparametrization, we may assume that λ_1 and λ_2 are relatively prime odd integers. Then the possible points in $\kappa(A_0) \cap \text{Fix}(J)$ are of the form $\pm(i, 0, -i), \pm(i, 0, i)$ since

 $\kappa(A_0) = (e^{i(\pi+2\lambda_1 t)}, 0, e^{i(\pi+2\lambda_2 t)}) \ (0 \le t \le \pi).$ In several steps, we prove that $e^{i(\pi+2\lambda_1 t)} = e^{i(\pi+2\lambda_2 t)} = i$ for some $0 < t < \pi$ if and only if $(\lambda_1, \lambda_2) = (4m-1, 4n-1)$ or (4m-3, 4n-3) for some $m, n \in \mathbb{Z}$.

Suppose that $e^{i(\pi + 2\lambda_1 t)} = e^{i(\pi + 2\lambda_2 t)} = i$ for some $0 < t < \pi$. Then

Step 1. $t = \frac{4m-1}{4\lambda_1}\pi = \frac{4n-1}{4\lambda_2}\pi$ for some $m, n \in \mathbb{Z}$.

STEP 2. $4m-1=\lambda_1k, 4n-1=\lambda_2k$ for some $k\in\mathbb{Z}$ because λ_1 and λ_2 are relatively prime.

STEP 3. k = 1 or k = 3. Since 4m - 1 and λ_1 are odd integers, k must be an odd integer. Note that $t \in (0, \pi)$. By Step 1, k is 1 or 3.

If k = 1, then $\lambda_1 = 4m - 1$ and $\lambda_2 = 4n - 1$. If k = 3, then $\lambda_1 = (4m - 1)/3$ and $\lambda_2 = (4n - 1)/3$. In this case we may write ((4m - 1)/3, (4n - 1)/3) as (4m' - 3, 4n' - 3).

The converse argument is easily followed by taking $t=\pi/4$ (respectively, $t=3\pi/4$) for $\lambda_1=(4m-1,4n-1)$ (respectively, $\lambda_2=(4m-3,4n-3)$).

Similarly, we have $e^{i(\pi+2\lambda_1t)}=i$ and $e^{i(\pi+2\lambda_2t)}=-i$ for some $0 < t < \pi$ if and only if $(\lambda_1, \lambda_2)=(4m-1, 4n-3)$ or (4m-3, 4n-1) for some $m, n \in \mathbb{Z}$.

Furthermore, note that if $e^{i(\pi+2\lambda_1t)}=e^{i(\pi+2\lambda_2t)}=i$ for some $0< t<\pi$, then $e^{i(\pi+2\lambda_1t')}=e^{i(\pi+2\lambda_2t')}=-i$ for some $0< t'<\pi$ (in this case, $t'=\pi/4$ or $t'=3\pi/4$). Similarly, if $e^{i(\pi+2\lambda_1t)}=i$ and $e^{i(\pi+2\lambda_2t)}=-i$ for some $0< t<\pi$, then $e^{i(\pi+2\lambda_1t')}=-i, e^{i(\pi+2\lambda_2t')}=i$ for some $0< t'<\pi$.

Finally, by observing that the sets

$$X := \{ (4m - 1, 4n - 1) \in E_s \mid m, n \in \mathbb{Z} \}$$

$$\cup \{ (4m - 3, 4n - 3) \in E_s \mid m, n \in \mathbb{Z} \},$$

$$Y := \{ (4m - 1, 4n - 3) \in E_s \mid m, n \in \mathbb{Z} \}$$

$$\cup \{ (4m - 3, 4n - 1) \in E_s \mid m, n \in \mathbb{Z} \}$$

are disjoint and cover all pairs of coprime odd integers, we complete the proof. \blacksquare

Remark 3.4. Each symmetric geodesic $\widehat{\alpha}(t,A)$ meets $\mathrm{Fix}(J)$ at $t=\pi/(4r)$ and $t=3\pi/(4r)$.

4. Covering links of the closed geodesics. Let $N = S^1 \times [0,1]$ be an annulus in \mathbb{R}^3 and let Φ be the map from $N \times S^1$ to Σ_2 defined by

$$\varPhi(e^{i\phi}, r, e^{i\psi}) = (\sqrt{1 - r^2}e^{i\phi}, re^{i\psi}, -\sqrt{1 - r^2}e^{i(2\psi - \phi)})$$

for $(e^{i\phi}, r, e^{i\psi}) \in S^1 \times [0, 1] \times S^1$. Note that $\Phi(e^{i\phi}, 0, e^{i\psi}) = (e^{i\phi}, 0, -e^{i(2\psi - \phi)})$ and $\Phi(e^{i\phi}, 1, e^{i\psi}) = (0, e^{i\psi}, 0)$. Now let $(z_1, z_2, z_3) \in \Sigma_2$ with $z_1 = re^{i\phi} \in \mathbb{C}$. Then $0 \le r \le 1$ and for some $\psi \in [0, 2\pi]$, we have the following.

(4-1) If
$$r = 0$$
, then $(z_1, z_2, z_3) = (0, e^{i\psi}, 0)$ and
$$\Phi^{-1}(z_1, z_2, z_3) = \{(e^{i\phi}, 1, e^{i\psi}) \mid 0 < \phi < 2\pi\}.$$

Knots in
$$S^2 \times S^1$$

249

(4-2) If
$$r = 1$$
, then $(z_1, z_2, z_3) = (e^{i\phi}, 0, e^{i\psi})$ and $\Phi^{-1}(z_1, z_2, z_3) = (e^{i\phi}, 0, \pm e^{i(\pi + \phi + \psi)/2})$.

(4-3) If
$$0 < r < 1$$
, then $(z_1, z_2, z_3) = (re^{i\phi}, \sqrt{1 - r^2}e^{i\psi}, -re^{i(2\psi - \phi)})$ and

$$\Phi^{-1}(z_1, z_2, z_3) = \left(\frac{1}{|z_1|} z_1, \sqrt{1 - |z_1|^2}, \frac{1}{\sqrt{1 - |z_1|^2}} z_2\right) = (e^{i\phi}, \sqrt{1 - r^2}, e^{i\psi}).$$

This shows that Σ_2 is an identification space of $N \times S^1 = S^1 \times [0, 1] \times S^1$. In fact, this observation gives us the following

THEOREM 4.1. The Shilov boundary Σ_2 of $\operatorname{Sym}(2,\mathbb{R})$ is homeomorphic to the non-orientable closed 3-manifold obtained from the solid torus $D^2 \times S^1$ by identifying (w,z) with (w,-z) for each (w,z) in the boundary $\partial D^2 \times S^1$ of the solid torus.

Now let $S^2 = \{(\sqrt{1-r^2}e^{i\phi},r) \in \mathbb{C} \times \mathbb{R} \mid 0 \leq \phi \leq 2\pi, -1 \leq r \leq 1\}$ be the unit sphere in \mathbb{R}^3 and let $\widehat{N} = S^1 \times [-1,1]$ be an annulus in \mathbb{R}^3 . Let $f: \widehat{N} \to S^2$ be the map defined by $f(e^{i\phi},r) = (\sqrt{1-r^2}e^{i\phi},r)$ for $(e^{i\phi},r) \in \widehat{N}$ and let $g: \widehat{N} \to N$ be defined by $g(e^{i\phi},r) = (e^{i\phi},|r|)$ for $(e^{i\phi},r) \in \widehat{N}$. It is easy to see that S^2 is an identification space of \widehat{N} and g is a 2-fold branched covering projection with branch set $S^1 \times \{0\} \subset N$. The preimage of this branch set by g is $S^1 \times \{0\} \subset \widehat{N}$. Let $\Psi: S^2 \times S^1 \to \Sigma_2$ be the map defined by $\Psi = \Phi \circ (g \times \mathrm{Id}_{S^1}) \circ (f \times \mathrm{Id}_{S^1})^{-1}$, where Id_{S^1} denotes the identity map of S^1 :

$$(4.1) \qquad \widehat{N} \times S^{1} \xrightarrow{f \times \operatorname{Id}_{S^{1}}} S^{2} \times S^{1}$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad N \times S^{1} \xrightarrow{\Phi} \Sigma_{2}$$

We observe that for $(\sqrt{1-r^2}e^{i\phi}, r, e^{i\psi}) \in S^2 \times S^1$.

$$\varPsi(\sqrt{1-r^2}e^{i\phi},r,e^{i\psi}) = (\sqrt{1-r^2}e^{i\phi},|r|e^{i\psi},-\sqrt{1-r^2}e^{i(2\psi-\phi)}).$$

Then it is not difficult to see that the map Ψ is a 2-fold covering projection and hence $S^2 \times S^1$ is an orientable double cover of the Shilov boundary Σ_2 of $\operatorname{Sym}(2,\mathbb{R})$.

Let $\widehat{\kappa}(A_0) := \Psi^{-1}(\kappa(A_0))$ and $\widehat{\kappa}(A) := \Psi^{-1}(\kappa(A))$. From (4-1), (4-2), (4-3), and (4.1) we obtain a certain class of knots and links in $S^2 \times S^1$ as follows.

DEFINITION 4.2. Let $A \neq 0 \in \text{Sym}(2,\mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A = (rp)C_1 + (rq)C_2$, where r > 0 is a real number and p and q are coprime integers.

$$(1) \ \widehat{\kappa}(A_0) = \{ (e^{i(\pi + 2ps)}, 0, \pm e^{i(3\pi/2 + (p+q)s)}) \in S^2 \times S^1 \mid 0 \le s \le \pi \}.$$

$$(2) \ \widehat{\kappa}(A) = \{ a(s) \in S^2 \times S^1 \mid 0 \le |z_1(s)| < 1, 0 \le s \le \pi \} \cup \left\{ \Psi^{-1}(z_1(s), 0, z_3(s)) \in S^2 \times S^1 \mid s = \frac{k\pi}{p-q} \text{ for } k \in \mathbb{Z} \text{ with } 0 \le \frac{k}{p-q} \le 1 \right\},$$

where

$$a(s) = \left(z_1(s), \pm \sqrt{1 - |z_1(s)|^2}, \frac{1}{\sqrt{1 - |z_1(s)|^2}} z_2(s)\right)$$

with

$$z_1(s) = -\cos^2 \theta \, e^{i(2ps)} - \sin^2 \theta \, e^{i(2qs)},$$

$$z_2(s) = \sin \theta \cos \theta \, (e^{i(2ps)} - e^{i(2qs)}),$$

$$z_3(s) = -\sin^2 \theta \, e^{i(2ps)} - \cos^2 \theta \, e^{i(2qs)},$$

and
$$\theta \in (0, \pi) - \{\pi/2\}$$
 satisfying $C_i = P_{\theta} E_i P_{\theta}^t$ $(i = 1, 2)$.

THEOREM 4.3. Let $A \in \text{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A = (rp)C_1 + (rq)C_2$, where r > 0 is a real number and p, q are coprime integers. Let $\theta \in [0, \pi]$ be such that $A = P_{\theta}A_0P_{\theta}^{\theta}$.

- (1) If both p and q are odd integers, or equivalently, the geodesic $\alpha(t, A)$ in \mathcal{M} is symmetric, then $\widehat{\kappa}(A_0)$ is a link of 2-components in $S^2 \times S^1$ which has period 2 of type $(S^1 \times S^1, T(|p|, |p+q|/2)) \cup T(|p|, |p+q|/2))$.
- (2) If one of p and q is an even integer, or equivalently, the geodesic $\alpha(t,A)$ in \mathcal{M} is not symmetric, then $\widehat{\kappa}(A_0)$ is a knot in $S^2 \times S^1$ which has period 2 of type $(S^1 \times S^1, T(|p|, |p+q|))$.
- (3) If $\theta \neq 0, \pi/2, \pi$, then $\widehat{\kappa}(A)$ is a link in $S^2 \times S^1$ which has period 2 of type $(S^1 \times S^1, 2|p-q| \ points)$.

Proof. Let $h: S^2 \times S^1 \to S^2 \times S^1$ be an involution of $S^2 \times S^1$ defined by $h(\sqrt{1-r^2}e^{i\phi},r,e^{i\psi}) = (\sqrt{1-r^2}e^{i\phi},-r,e^{i\psi})$. Then Fix $(h) = \{(e^{i\phi},0,e^{i\psi}) \in S^2 \times S^1 \mid 0 < \phi, \psi < 2\pi\} \cong S^1 \times S^1$. Now recall that

$$\widehat{\kappa}(A_0) = \{ (e^{i(\pi + 2ps)}, 0, e^{i(\pi/2 + (p+q)s)}) \\ \cup (e^{i(\pi + 2ps)}, 0, e^{i(\pi + \pi/2 + (p+q)s)}) \mid 0 \le s \le \pi \}.$$

It is clear that $h(\widehat{\kappa}(A_0)) = \widehat{\kappa}(A_0)$ and $Fix(h) \cap \widehat{\kappa}(A_0) = \widehat{\kappa}(A_0)$.

(1) If both p and q are odd integers, then p+q must be an even integer. Hence

$$\widehat{\kappa}(A_0) = \{ (e^{i(\pi+p)t}, 0, e^{i(\pi/2 + (p+q)t/2}) \\ \dot{\cup} (e^{i(\pi+p)t}, 0, e^{i(\pi+\pi/2 + (p+q)t/2)}) \mid 0 \le t \le 2\pi \}.$$

This implies that $\widehat{\kappa}(A_0)$ is the disjoint union of two torus knots of type (|p|, |p+q|/2).

(2) If one of p and q is an even integer, then p+q must be an odd integer because (p,q)=1. So

$$\begin{split} \widehat{\kappa}(A_0) &= \{(e^{i(\pi+2ps)}, 0, e^{i(\pi/2+(p+q)s)}) \\ &\quad \cup (e^{i(\pi+2ps)}, 0, e^{i(\pi+\pi/2+(p+q)s)}) \,|\, 0 \le s \le \pi \} \\ &= \{(e^{i(\pi+p)t}, 0, e^{i(\pi+\pi/2+(p+q)t)}) \,|\, 0 \le t \le 2\pi \}. \end{split}$$

Hence $\widehat{\kappa}(A_0)$ is the torus knot of type (|p|, |p+q|).

(3) Obviously, $h(\widehat{\kappa}(A)) = \widehat{\kappa}(A)$. Let $a(s) := (z_1(s), z_2(s), z_3(s)) \in \widehat{\kappa}(A)$. Then

$$a(s) \in \text{Fix}(h) \cap \widehat{\kappa}(A) \Leftrightarrow |z_1(s)| = 1$$

 $\Leftrightarrow s = \frac{k\pi}{p-q} \text{ for } k \in \mathbb{Z} \text{ with } 0 \le \frac{k}{p-q} \le 1.$

Hence the set $\mathrm{Fix}(h) \cap \widehat{\kappa}(A)$ consists of 2|p-q| points. This completes the proof. \blacksquare

THEOREM 4.4. Let $A \in \operatorname{Sym}(2,\mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A = (rp)C_1 + (rq)C_2$, where r > 0 is a real number and both p and q are coprime odd integers. Then $\widehat{\kappa}(A_0)$ is a link in $S^2 \times S^1$ which has period 2 of type $(S^1 \cup S^1, \emptyset)$.

Proof. Let $h: S^2 \times S^1 \to S^2 \times S^1$ be an involution of $S^2 \times S^1$ defined by $h(\sqrt{1-r^2}e^{i\phi},r,e^{i\psi}) = (-\sqrt{1-r^2}e^{i\phi},r,e^{i\psi})$ for any $(\sqrt{1-r^2}e^{i\phi},r,e^{i\psi}) \in S^2 \times S^1$. Then Fix $(h) = \{(0,1,e^{i\psi}),(0,-1,e^{i\psi}) \in S^2 \times S^1 \mid 0 \le \psi \le 2\pi\} \cong S^1 \cup S^1$ and Fix $(h) \cap \widehat{\kappa}(A_0) = \emptyset$. Now let $b(s) := (e^{i(\pi+2ps)},0,e^{i(\pi+2qs)}) \in \widehat{\kappa}(A_0)$. It is easy to check that

$$h(b(s)) = \begin{cases} b(\pi/2 + s) & \text{for } 0 \le s \le \pi/2, \\ b(s - \pi/2) & \text{for } \pi \le s \le \pi. \end{cases}$$

This completes the proof. ■

References

- [1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
- [2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994.
- R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177– 182.
- [4] K. W. Kwun, Piecewise linear involutions of $S^1 \times S^2$, Michigan Math. J. 16 (1969), 93–96
- [5] S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187–201.

- B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 [6] (1974), 295–305 (in Russian).
- J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984.
- D. Rolfsen, Knots and Links, Publish or Perish, 1976. [8]
- P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690–711. Y. Tao, On fixed point free involutions of $S^1 \times S^2$, Osaka Math. J. 14 (1962), [10]
- J. L. Tollefson, Involutions on $S^1 \times S^2$ and other 3-manifolds, Trans. Amer. Math. [11] Soc. 183 (1973), 139–152.

Department of Mathematics College of Natural Sciences Pusan National University Pusan 609-735, Republic of Korea E-mail: sangyoul@hyowon.pusan.ac.kr ylim@kyungpook.ac.kr

Department of Mathematics College of Natural Sciences Kyungpook National University Taegu 702-701, Republic of Korea E-mail: chnypark@kyungpook.ac.kr

Received 23 August 1999