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Knots in S? x S! derived from Sym(2,R)
by

Sang Youl Lee (Pusan), Yongdo Lim (Taegu) and
Chan-Young P ark (Taegu)

Abstract. We realize closed geodesics on the real conformal compactification of the
space V = Sym(2,R) of all 2 x 2 real symmetric matrices as knots or 2-component links
in $2 x S' and show that these knots or links have certain types of symmetry of period 2.

1. Introduction. In [6], to complete a semisimple Jordan algebra V'
of classical type to a symmetric space, B. Makarevich used the notion of
geodesics in V' that originate at zero. In the case of the Euclidean (or for-
mally real) Jordan algebra V' = Sym(n,R) of all n x n real symmetric
matrices, these geodesics are eventually of the form «a(t, A) := exptX4 - 0,
A €V, where X4 = (_OA ‘3) € sp(2n,R), the Lie algebra of the symplectic
group Sp(2n,R). In [5], the authors classified closed geodesics and symmet-
ric geodesics of these types on the real conformal compactification M of
V' = Sym(n,R). In Section 2, for convenience we give a brief review of these
results and show some elementary facts.

It is known [1] that the conformal compactification M of V' = Sym(n, R)
is diffeomorphic to the Shilov boundary X, of the symmetric tube domain
To =V +1if2, where {2 is the open convex cone of all positive definite n x n
symmetric matrices. The main interest of this paper is to give a realization
of these closed geodesics in the Shilov boundary X5 as knots in S? x S* and
to characterize their symmetry properties.

Throughout this paper, all maps and spaces will be assumed to be in
the piecewise-linear (PL) category. A link L of p components in a con-
nected 3-manifold M is (the image of) an embedding of 1 disjoint 1-spheres
into M. If u = 1, then L is called a knot in M. Two links L and L' are
said to be equivalent if there exists an ambient isotopy H : M x [0,1] —
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M x [0,1], H(x,t) = ht(x) (t € [0,1]), such that hg is the identity on M
and h1 (L) =I.

A knot (or link) K in a connected 3-manifold M is said to have period
n of type (X,Y) (or to be an n-periodic knot of type (X,Y")) if there is an
n-periodic homeomorphism h : (M, K) — (M, K) such that the fixed point
set, Fix(h), of h is homeomorphic to X and Fix(h) N K is homeomorphic to
Y. If M is a homology 3-sphere, then P. A. Smith [9] proved that the set of
fixed points of a periodic homeomorphism of M is (), S°, S, or S2. By the
positive solution of the Smith conjecture [7], the possible types of non-trivial
knots in §% are ((Z)v @), (‘907 (D)v (507 SO)? (Sla (b)a (Sl? So)a and (521 SO) (Cf [3])

In Section 3, we show that the closed geodesics on the conformal com-
pactification M of Sym(2,R) are knots in the Shilov boundary X5 which
have period 2 of type both (0,0) and (S* U S°, S9).

In [4], [10], and [11], it was shown that S? x S! admits exactly thirteen
distinct involutions (up to conjugation) and the possible types of their fixed
point sets are 0, S°US°, S, S1UST, ST x ST, Klein bottle, SYUS?, or S2U52,
where X UY denotes the disjoint union of X and Y.

In Section 4, we give an explicit description of an orientable double cover
52 x S! of the Shilov boundary X5 and show that the knots in X5 corre-
sponding to the closed geodesics lift to knots or links of 2-components in
52 x S'; we show that these knots or links in S$? x S! also have period 2
of types (St x S*, T(m,n)), (S! x S1,8°U...US%), or (ST USL, M), where
T (m,n) denotes the torus knot of type (m,n) [8].

2. Geodesics on the conformal compactification of Sym(n,R).
Let M, (R) denote the space of all n x n real matrices. A symmetric (re-
spectively, skew-symmetric) matrix A € M, (R) is one satisfying A® = A
(respectively, A' = —A), where A" denotes the transpose of a matrix A.
Let Sym(n,R) (respectively, Skew(n,R)) be the space of all symmetric (re-
spectively, skew-symmetric) n x n matrices. Let A € Sym(n,R) have the
spectral decomposition A = >"7'_; A\yCy, where {Cj} is a complete system
of orthogonal projections. Then the spectral norm |A| of A is defined by
|A| = max{|A1], ..., | |}

Let (-]-) be the skew-symmetric form on R?" defined by (u|v) = (Ju|v)

for u,v € R?", where J = (_OI é

trix. The symplectic group Sp(2n,R) on R?" is the Lie group of all invertible
A B
Cc D

). Here, I stands for the n x n identity ma-

transformations g = ( ) satisfying one of the following equivalent condi-

tions:
(1) g preserves (-|).
(2) g"Jg = J.
(3) A*C, B'D are symmetric and A'D — C*'B = 1.
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The Lie algebra of Sp(2n,R) is given by

sp(2n,R) — {(g _§t> ‘X € My(R), Y.Z € Sym(n,R)} .

It has a Cartan decomposition sp(2n,R) = p @ €, where

(3 %)

X Y
t= {(—Y X> ‘X € Skew(n,R), Y € Sym(n,R)} )
Let 7 = (_OI (;) € GL(2n,R) and let 7(g) = 7-g -7 for g € Sp(2n,R). Then
7 is an involution on Sp(2n,R). The differential d7 of 7 at the identity is

given by
w(X Y N_(XxX -v
"Nz xt)"\-z -xt)
The Lie algebra sp(2n,R) can be decomposed into the (+1)-eigenspace b
and the (—1)-eigenspace q of dr:

X,Y € Sym(n,R)} ,

sp2n,R)=hdg=honten", g=nTa@n,

nt = {(8 }(;> ’Y € Sym(n,R)},
n = {(g 8) ‘Z € Sym(n,R)},
{5 %) e}
Let N* be the Lie subgroups of Sp(2n,R) corresponding to n* respec-
tively. Then
Nt = {<é ?) ‘A € Sym(n,R)} =expn™,

_ I 0 _
N _{<A I> ‘AGSym(n,R)}—expn .
Let H ={g € Sp(2n,R) |7(g) = g}. We observe that

= {0 aty)

THEOREM 2.1 (see [1]). Let P = HN~. Then P is a closed subgroup of
G = Sp(2n,R) and the homogeneous space M := G /P is a compact real
manifold with V' := Sym(n,R) as an open dense subset. The embedding of

where

Ae GL(n,R)}.
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V into M is given by

I X
0 I

€ Sp(2n,R) and X € V with g- X € V, we

X€V|—>< )-PEM.

Furthermore, for g = (é g)
have
g-X =(AX +B)(CX + D).
Let A € V = Sym(n,R) and let X4 := (_OA ’3) € ¢. Then it is known
[6] that the geodesic in M originating at the origin 0 with direction A is of
the form

costA sintA
ot, A) = exptXa -0 = (—sintA CostA> .
The period of a non-constant closed geodesic «(t, A) is the smallest pos-
itive number t( satisfying a(tg, A) = 0.
Set j = (? 701) € Sp(2n,R). Then j is an involution on M and for an
invertible element A € V we have j- A = —A~1. A closed geodesic af(t, A)
is said to be symmetric if it is invariant under the involution j on M.

Let
E.={r(p1,...,pn) € R"|r >0, p; integers},
Es; ={r(p1,...,pn) € E.|7 >0, p; odd integers}

(in this setting, we always assume that the integers p; have no common
divisors), and let A = >"}_; A\yCy be the spectral decomposition of A.
Then «(t, A) is a closed geodesic if and only if (A1,...,\,) € E.. If A#0
and (A1,...,An) = r(p1,...,pn) € E., then w/r is the period of «a(t, A)
([5], Theorem 4.2). Also, «(t,A) is a symmetric geodesic if and only if
(M,...,A\n) € Es ([5], Theorem 4.4).

Now let {2 be the symmetric cone of positive definite n x n symmetric real
matrices. Then the tube domain T, := V +1i{2 can be realized as a bounded
symmetric domain D in the complex plane V€ := V 4 iV as follows: Let

D(p) ={Z € V®| Z +il € GL(n,C)},
D(c)={W e V®|I - W € GL(n,C)},
and define for all Z € D(p) and W € D(c),
p(2)=(Z —il)(Z+il)™', (W) =i(I+W)I -W)".

Then p : D(p) — D(c) is a holomorphic bijection from D(p) onto D(c), and
c: D(c) — D(p), called the Cayley transform, is its inverse. The closure of
T in VC is contained in D(p). The image D := p(Ty,) of p is known as a
bounded symmetric domain which is the open unit ball with respect to the
spectral norm. We define X, as the set of all invertible elements Z in V©
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such that Z=! = Z. It is known that X, is the Shilov boundary of D, which
is a compact connected "("; ) _dimensional manifold, and is exactly equal
to p(V) (for details, see [2]).

Let ¢ = {C}}}_, be a complete system of orthogonal projections and let
V(c) be the subspace of V generated by Ci’s. Then for A =3"7_, A\Ch,

k - ’L
2.1 .
(2.1) )\k + 1 Ci
Since (A\p —1i)/( M\ +14) € S? (the unit circle in C) for k = 1,...,n, we
conclude that p(V(c)) is diffeomorphic to the n-torus 7" = S* x ... x St
For a geodesic curve a(t, A) on M, we let a(t, A) := p(a(t, A)) be the
corresponding geodesic on X,,. From (2.1), we have the following

PROPOSITION 2.2. Let A = Y ;_, \iCy be the spectral decomposition
of A. Then

n
a(t’ A) _ Zei(ﬂJrQ)\kt)Ck-

k=1
Proof. For t > 0 with a(t, A) € V,
" tan A\t — @
pla(t,A) =Y ——C

Pt tan A\pt + 14

and

tan A\pt — 14 . .. i(T+2A5t)

2 2
——————— =sin“ A\t cos® A\t — 2isin At cos A\t = e .
tan A\gt + ¢ k 4§ § § "

The symmetry 3 = pojocon XY, corresponding to the symmetry j
on M is the symmetry about the origin, i.e. E(Z) —Z. Let J be the
involution on X, defined by J(Z) = —Z. Then since Z = Z~! for any
Z € X, this involution is just J(Z) = —Z ! and J = j on V = Sym(n,R).
By Proposition 2.2, we have

COROLLARY 2.3. If a(t,A) is a symmetric geodesic on M with A =
>or_y 7P Ck then

~ T
ia(t,A)=alt+—,A
jatt,A) = a1+ 5. 4).
&(;—t,A> if0<t<
T
Ja(t, A) =
(3 T
a(w—t,A) if —<t<
2r

In particular, G(t, A) is invariant under both involutions j and J on 2.
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Let Fix(J) denote the set of all fixed points of the involution J on X),.
The following lemma will be useful in what follows.

LEMMA 2.4. Let P € GL(n,R) be an orthogonal transformation and let
A € Sym(n,R). Then:

(1) a(t, PAP') = Pa(t, A)P.

(2) PFix(J)P! = Fix(J).

(3) a(t, PAPY) NFix(J) = P(a(t, A) NFix(J))P*.

Proof. Let A= Y"}_, M\;C) be the spectral decomposition of A and let
P be an orthogonal transformation. Then { PCy P'}?_, is a complete system
of orthogonal projections. Hence (1) follows from Proposition 2.2, (2) follows
from the fact that for any Z € X, J(PZP!) = —(PZP")~! = PJ(Z)Pt,
and (3) follows from (1) and (2). =

3. Closed geodesics in the Shilov boundary X5. From now on, we
shall restrict our attention to the space V' = Sym(2,R). Recall that the
Shilov boundary Y5 of V' is given by

(2 2)
zZ9 23

Xy = {Z S Sym(Q,C)
is an invertible matrix with Z = Z _1}.

Z1 22

We identify Z = (] 23) € Sym(2,C) with (21, 22,23) € C3. Under this
identification, the Shilov boundary X of Sym(2,R) can be written as

EQ = {(21,22,23) c (Cg | 2129 + 2923 = 0, ’Z1|2 + ‘22’2 = ‘22‘2 + |2’3|2 = 1}.

Let A (# 0) € Sym(2,R) and let a(t, A) be the closed geodesic in M
originating at the origin 0 with direction A. Let A = A\{Cy + A\2C5 be the
spectral decomposition of A. Then, from Theorem 4.2 of [5], we know that
A1 = rp and Ao = rq for some real » > 0 and coprime integers p and ¢q. Set
B, = ([1) 8) and By = (8 2) Note that e = {Eq, F»} is a complete system
of orthogonal projections. It is well known that the orthogonal group SO(2)
acts transitively on the set of complete systems of orthogonal projections.

Thus there exists a unique orthogonal matrix

Py = ( cos Sme) €S0(2) (6 ¢€0,7))

—sinf cosf

such that C; = PyE; P} (i = 1,2), i.e., A = PyAoP}, where Ay := (rp)E; +
(rq)E. By Proposition 2.2 and Lemma 2.4, we obtain
a(t, A)

- cos2 6 ei(7r+2rpt) + Sil’l2 0 ei(7r—i—27“qt) Sin 6 cos @ (ei(ﬂ+2rqt) o ei(Tr+2rpt))
sin @ cos 6 (ei(w+2rqt) _ ei(w+2rpt)) sin2 4] 6i(7r+2rpt) + cos2 O ei(7r+27"qt) .
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DEFINITION 3.1. Let A (# 0) € Sym(2,R) be a 2 x 2 symmetric matrix
which has the spectral decomposition A = (rp)Cy + (rq)Ca, where r > 0 is a
real number and p and ¢ are coprime integers, and let «(t, A) be the closed
geodesic in the conformal compactification M of Sym(2, R) originating at 0
with direction A.

(1) k(Ap) is the knot in Xy defined by x(Ap) = {a(t, Ag) € X2 |0 <t <
7)1}, ie., k(Ag) = {(e!"T2P%) 0, (7 +209)) ¢ 3, |0 < s < ).

(2) k(A) is the knot in X5 defined by k(A) = {a(t,A) € Xo|0 <t <
w/r}, e, k(A) = {(21(8), 22(s), 23(s)) € X3 |0 < s < 7}, where

21(s) = — cos? 0 '?P9) — sin? g 1(229)
25(s) = sinf cos @ (¢'2P%) — ¢i(205))
z3(s) = —sin® 0 ¢'?P9) _ cog? 9 ¢(295)

and 0 € (0,7) satisfies C; = PpE; P} (i = 1,2).

PROPOSITION 3.2. Let A (# 0) € Sym(2,R). Then the knots k(Ap) and
k(A) in Xy are equivalent.

Proof. Let A = A\{Cy + A2C5 be the spectral decomposition of A and
let 6 € [0,7] be such that C; = PyE; P} (i = 1,2). If § = 0, then the
assertion is obvious. Suppose that 6 # 0. For s € [0,6], let hs : X9 — X5 be
a homeomorphism of Xy defined by hs(Z) = PsZP! for Z € Xy, with Xy
viewed as a subspace of Sym(2,C). Then it is clear that hg is the identity
on Y5 and, by Lemma 2.4, hy(k(Ao)) = k(A). Furthermore, the map H :
Yo x [0,0] — X5 x [0,60] defined by H(Z,s) = (hs(Z),s) is obviously an
ambient isotopy between x(Ap) and x(A). This completes the proof. m

THEOREM 3.3. Let A € Sym(2,R) be a 2 X2 symmetric matriz such that
a(t, A) is a symmetric geodesic in M. Then the corresponding knot k(A) in
Y5 has period 2 of type both (0,0) and (S' U S°,S°).

Proof. Let a(t, A) be the symmetric geodesic corresponding to a(t, A).
By Corollary 2.3, it is invariant under both } and J. Since 3 has no fixed
points, it is obvious that k(A) has period 2 of type (0,0) in X5. Observe
that the set of fixed points of the involution J on X5 is

Fix(J) = {(icos@,isin®, —icosh) |6 € R} U {=%(i,0,4)} = S* U S°,
where S* (k =0, 1) denotes the k-sphere.

To prove that x(A) is of type (S' U S° 8% it suffices from Lemma
2.4 and Proposition 3.2 to show that x(Ap) meets Fix(J) in exactly two
points. Let A = A{C7 + X\2C5 be the spectral decomposition. Then Ay =
M E7 + A2F> and, by Theorem 4.4 of [5] and time reparametrization, we
may assume that A\; and Ao are relatively prime odd integers. Then the
possible points in k(Ap) N Fix(J) are of the form +(4,0, —), £(¢,0,4) since
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k(Ag) = (elmH2Mat) g ei(m+2221)) (0 < ¢t < 7). In several steps, we prove
that e!("+2Mt) = ¢i(m+2X2t) — j for some 0 < t < 7 if and only if (A, \y) =
(4m — 1,4n — 1) or (4m — 3,4n — 3) for some m,n € Z.

Suppose that e!(m+2A1t) = i(7+2A21) — j for some 0 < t < 7. Then

4m—1 _ 4n-—1
iy T T T

STEP 2. 4m — 1 = Ak, 4n — 1 = Aok for some k € Z because \; and Ao
are relatively prime.

STEP 1. t =

« for some m,n € Z.

STEP 3. k =1 or kK = 3. Since 4m — 1 and A; are odd integers, k must
be an odd integer. Note that ¢ € (0, 7). By Step 1, k is 1 or 3.

If Kk =1, then Ay = 4m —1 and Ay = 4n — 1. If k = 3, then \; =
(4m —1)/3 and A2 = (4n —1)/3. In this case we may write ((4m —1)/3,
(4n —1)/3) as (4m’ — 3,4n’ — 3).

The converse argument is easily followed by taking ¢t = m/4 (respectively,
t =3m/4) for Ay = (4m — 1,4n — 1) (respectively, Ao = (4m — 3,4n — 3)).

Similarly, we have e/(™+2M8) = j and e/("+2X2) — _j for some 0 < t < 7
if and only if (A1, A\2) = (4m—1,4n—3) or (4m—3,4n—1) for some m,n € Z.

Furthermore, note that if e!("+2M1) = ¢i(m+2X2t) — j for some 0 < ¢ < ,

then ei(mt2Mt) — i(m+2Xt) — _j for some 0 < ¢ < m (in this case,
t' = /4 or t' = 31 /4). Similarly, if e/("+2M11) = 4 and e!("T2X2t) = —j for
some 0 < t < 7, then e!(™H2Mt) — _; i(m+2Xa2t") — 4 for some 0 < ¢/ < 7.

Finally, by observing that the sets
X ={dm—-1,4n—-1) € E;|m,n € Z}
U{(dm —3,4n —3) € E5|m,n € Z},
Y :={(4dm—1,4n—-3) € E;|m,n € Z}
U{(dm —3,4n—1) € Es|m,n € Z}

are disjoint and cover all pairs of coprime odd integers, we complete the
proof. m

REMARK 3.4. Each symmetric geodesic a(t, A) meets Fix(J) at t =
7w/(4r) and t = 37 /(4r).

4. Covering links of the closed geodesics. Let N = S! x [0,1] be
an annulus in R3 and let @ be the map from N x S' to Xy defined by

D' re) = (V1 —r2e re™ —\/1 — T2ei(2d’_¢))
for (e'®,r,e™) € S1x[0,1]x S'. Note that ¢(e'?,0, ') = (', 0, —e'(2¥=9))
and @(e? 1,e') = (0,e™,0). Now let (21, 20,23) € Xy with 2; = re’® € C.
Then 0 < r < 1 and for some 1 € [0,27], we have the following.
(4-1)  If r =0, then (21, 29, 23) = (0,¢¥,0) and
D (21, 29, 23) = {(",1,€) |0 < ¢ < 27}
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(4-2)  Ifr =1, then (z1, 29, 23) = ('%,0,¢e¥) and
)=

o~ (zla 22,23 ( Z¢7 07 iez(w+¢+’¢)/2)‘

(4-3)  If0 <7 < 1, then (21, 20, 23) = (r€*®, /1 — r2e'¥, —re*(?¥=%)) and
1 1 ) .

4571(21,2’2723) = <H21, V1 —]z? 1’|2752> = (€Z¢, 1- 7"27€w)-
21 — |z

This shows that Y is an identification space of N x St = S1x[0,1] x S*.
In fact, this observation gives us the following

THEOREM 4.1. The Shilov boundary X5 of Sym(2,R) is homeomorphic to
the non-orientable closed 3-manifold obtained from the solid torus D? x S*
by identifying (w, z) with (w, —z) for each (w, z) in the boundary 0D? x S*
of the solid torus.

Now let S = {(vV1—72?1r) e CxR|0 < ¢ <27, -1 < r < 1}
be the unit sphere in R? and let N = S x [~1,1] be an annulus in R3.
Let f : N — S2 be the map defined by f(ei®,r) = (V1 —r2i¢,r) for
(ei®,7) € N and let g : N — N be defined by g(e®,r) = (ei¢ \r!) for
(e, r) € N. It is easy to see that S? is an 1dent1ﬁcat10n space of N and g
is a 2-fold branched covering projection with branch set S' x {0} € N. The
preimage of this branch set by g is St x {0} C N.Let ¥:52x S' — 5 be
the map defined by ¥ = @ o (g x Idg1) o (f x Idg1)~!, where Idg: denotes
the identity map of S':

fxIdg
N x §1 —= 8% x §!
(4'1) gxldsll lw

N x §1 —2—= 5,
We observe that for (v/1 — r2ei® r ei¥) € §? x St

W(\/ﬁew,r, eiw) = (Mew, |r]ew’, 7@61‘(2#}—45))'
Then it is not difficult to see that the map ¥ is a 2-fold covering projection
and hence S? x S! is an orientable double cover of the Shilov boundary X
of Sym(2,R).
Let ®(Ag) := W (k(Ap)) and R(A) := ¥~1(k(A)). From (4-1), (4-2),
(4-3), and (4.1) we obtain a certain class of knots and links in S? x St as
follows.

DEFINITION 4.2. Let A (# 0) € Sym(2,R) be a 2 x 2 symmetric matrix
which has the spectral decomposition A = (rp)Cy + (rq)Cs, where r > 0 is
a real number and p and ¢ are coprime integers.



250 S. Y. Lee et al.
(1) A(Ay) = {(eiH2p9) 0, £61BT/2H0+09)) € 82 x §1]0 < 5 < 7).
(2) B(A) = {a(s) € S? x S1 |0 < |21(s)| < 1,0 < s < w}U
{Y/_l(zl(s),o,zz;(s)) €5%x St

s = Gl forkeZWithOSkgl},

p—d pP—q
where 1
ot = (0) £V TG, )
with
z1(s) = —cos? 0 '(?P%) —sin? g '(299)
z5(s) = sin 0 cos 0 (e!2P3) — ¢(245))
z3(s) = — sin2 0 e1(2P9) _ o2 9 ¢i(225)

and 0 € (0,7) — {m/2} satisfying C; = PyE; P} (i = 1,2).

THEOREM 4.3. Let A € Sym(2,R) be a 2x2 symmetric matriz which has
the spectral decomposition A = (rp)C1+(rq)Ca, wherer > 0 is a real number
and p,q are coprime integers. Let 6 € [0, 7] be such that A = PyAoP}.

(1) If both p and q are odd integers, or equivalently, the geodesic a(t, A)
in M is symmetric, then K(Ag) is a link of 2-components in S® x S' which
has period 2 of type (S* x S*, T(|pl, [p+ql/2) O T(|pl, |p + q|/2)).

(2) If one of p and q is an even integer, or equivalently, the geodesic
a(t, A) in M is not symmetric, then K(Ag) is a knot in S? x St which has
period 2 of type (ST x S, T(|pl, [p + ql))-

(3) If 6 # 0,7/2, 7, then K(A) is a link in S? x S* which has period 2
of type (ST x 81, 2|p — q| points).

Proof. Let h:S%?xS! — S2xS! be an involution of $2 x S! defined by
h(V/1 —12et 1 i) = (/1 — r2e® —r e¥). Then Fix(h) = {(!?,0,e!¥) €
S2 x ST0 < ¢, <27} = S x St Now recall that

E(AO) — {(ei(rr+2ps)’ 0’ ei(ﬂ/2+(p+q)s)
U (ei(ﬂ+2pS)7 0, ei(ﬂ+7r/2+(p+q)5)) 10 <s<m}.
It is clear that h(k(Ag)) = k(Ao) and Fix(h) NK(Ap) = K(Ap).

(1) If both p and ¢ are odd integers, then p 4 g must be an even integer.
Hence

R(Ag) = {(ei(wﬂ?)t’ 0, ei(ﬂ/2+(p+q)t/2)

U (ei(w+p)t,0, €i(7r+7r/2+(p+q)t/2)) ‘ 0<t< 27T}.

This implies that kK(Ap) is the disjoint union of two torus knots of type
(Ipl, Ip + 4|/2).
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(2) If one of p and ¢ is an even integer, then p+ ¢ must be an odd integer
because (p,q) = 1. So

/:‘%(A()) — {(ei(w+2ps)?0’ ei(7r/2+(p+q)s))
U (e!m+2ps) 0 ot mtm/2+(0+0)9)) |0 < 5 < 7}
= {(!THP? g i mHm/2H(pr DD 10 <t < 2rr).
Hence k(Ay) is the torus knot of type (|pl, |p + ql).
(3) Obviously, h(r(A)) = K(A). Let a(s) := (z1(s), 22(5), 23(s)) € K(A).
Then
a(s) € Fix(h) NK(A) & |z1(s)| =1

M ot ke Zwith0< < 1.

pP—q pP—q
Hence the set Fix(h) NK(A) consists of 2|p — ¢| points. This completes the
proof. m

s =

THEOREM 4.4. Let A € Sym(2,R) be a 2 x 2 symmetric matric which
has the spectral decomposition A = (rp)Cy + (rq)Ca, where r > 0 is a real
number and both p and q are coprime odd integers. Then K(Ap) is a link in
S? x St which has period 2 of type (ST U ST, D).

Proof. Let h: S% x 81 — 52 x 81 be an involution of S? x S! defined
by h(vV1 =126 r e™¥) = (=1 —r2e®, r ) for any (V1 — r2e®, r e'¥)
€ 5% x St Then Fix(h) = {(0,1,€™¥), (0, —1,e™%) € §2 x S*|0 < ¢ < 27}
>~ §1 (U S' and Fix(h) N&(Ap) = 0. Now let b(s) := (e!(7+2ps) (), ¢i(m+2as))
€ k(Ap). It is easy to check that

b(m/2+s) for0<s<mw/2,
h(b(s)) = {bgs/—ﬂ/Qg forﬂ'gsgﬂ'(

This completes the proof. m
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