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On the generalized Massey–Rolfsen invariant for link maps

by

A. Skopenkov (Moscow)

Abstract. For K = K1t . . .tKs and a link map f : K → Rm letK̃ =
⊔
i<j Ki×Kj ,

define a map f̃ :K̃ → Sm−1 by f̃(x, y) = (fx− fy)/|fx− fy| and a (generalized) Massey–
Rolfsen invariant α(f) ∈ πm−1(K̃) to be the homotopy class of f̃ . We prove that for a
polyhedron K of dimension ≤ m − 2 under certain (weakened metastable) dimension
restrictions, α is an onto or a 1-1 map from the set of link maps f : K → Rm up to
link concordance to πm−1(K̃). If K1, . . . ,Ks are closed highly homologically connected
manifolds of dimension p1, . . . , ps (in particular, homology spheres), then πm−1(K̃) ∼=⊕
i<j π

S
pi+pj−m+1.

1. Introduction. Fix an s-tuple K = (K1, . . . ,Ks) of spaces and
define |K| = K1 t . . . tKs. A link map is a map f : |K| → Rm such that
fKi ∩ fKj = ∅ for each i 6= j. This generalization of the usual definition
appeared in [Ko 88, Ko 92]. Two link maps f0, f1 : |K| → Rm are link
homotopic if there is a link map F : |K×I| = K1×It . . .tKs×I → Rm×I
such that F (x, 0) = (f0(x), 0), F (x, 1) = (f1(x), 1) and F (x, t) ∈ Rm × t for
each t. Two link maps f0, f1 : |K| → Rm are link concordant if there is a
link map F as above with the last condition of level-preserving dropped. In
this paper we denote |K| briefly by K (as no confusion can arise).

The problem of classification of link maps up to link concordance and
link homotopy was raised in [Mi 54] in an attempt to get a first rough un-
derstanding of the overwhelming multitude of classical embedded links up
to isotopy. Note that the set of link maps K → Rm up to link homotopy
depends only on the homotopy type of K1, . . . ,Ks. An approach to con-
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2 A. Skopenkov

structing invariants of link homotopy [Sc 68, MR 86, Ko 88] is by analogy
to the “deleted product” method in the theory of embeddings (for surveys
see [RS 96, §6, RS 99, §4]). Let K̃ =

⊔
i<j Ki ×Kj be the deleted product

of the s-tuple K. For a link map f : K → Rm the map f̃ : K̃ → Sm−1 is
defined by

f̃(x, y) =
fx− fy

|fx− fy|
.

Everywhere in this paper we assume that K is homotopy equivalent to a
polyhedron and dim K ≤ m−2 ≥ 1. Then dim K̃ ≤ 2(m−2), hence the set of
maps K̃ → Sm−1 up to homotopy forms the cohomotopy group πm−1(K̃) ∼=⊕

i<j πm−1(Ki ×Kj). Since m− 1 ≥ 2, it follows that this group does not
depend on the choice of base points. This group also depends only on the
homotopy type of K1, . . . ,Ks. For the classical case when Ki

∼= Spi we have
[Spi × Spj , Sm−1] ∼= πS

pi+pj+1−m [MR 86, §3]. Let α(f) = [f̃ ] ∈ πm−1(K̃)
be the generalized Massey–Rolfsen (link homotopy) invariant of f .

Lemma 1.0. Let K = (K1, . . . ,Ks) be an s-tuple of polyhedra of dimen-
sions at most m− 2 ≥ 1. If link maps f0, f1 : K → Rm are link concordant ,
then α(f0) = α(f1) [cf. Ko 88, Proposition 1.10, Ko 92, Theorem C].

Let α : LMm
K → πm−1(K̃) be the corresponding map from the set of link

concordance classes. For fixed m and q set

∆r = 2m− 2− 2r − q.

Theorem 1.1. Let K = (Q,P,N) be a triple of polyhedra of dimensions
q, p and n such that n ≤ p ≤ q ≤ m− 2 ≥ 1.

(a) α : LMm
K → πm−1(K̃) is surjective if ∆n ≥ 1 and either ∆p ≥ 1 or

q = 2m− 2p− 2 6∈ {2, 6, 14}.
(b) α : LMm

K → πm−1(K̃) is bijective if ∆n ≥ 2 and ∆p ≥ 1.

By the “singular link concordance implies link homotopy” theorem [Me],
for q ≤ m − 3 in Theorem 1.1(b) LMm

K can be replaced by the set of link
homotopy classes. In the case s = 2 and ∆p ≥ 1, Theorem 1.1(a) was
essentially proved in [ST 91, Theorem 3]. Our proof of Theorem 1.1 is based
on an extension of the technique from [We 67, ST 91, Sk 97]. Theorem 1.1,
its proof and all the remarks below are true for K = (Q,P,N1, . . . , Ns)
where s = 0, 1, . . . if the dimension restriction on n = dim N holds for each
dim Ni. The extension to more than two components, though not hard, is
interesting because in other situations the “triple” invariants can occur for
many-component links [Ma 90]. In particular, the dimension restrictions of
Theorem 1.1(b) are sharp by [Ma 90, Proposition 8.3]. Theorem 1.1(a) is
not true for q = 2m−2p−2 = 6, 14 [Ki 90, Corollary 4.7, cf. SS 92, SSS 98].
For the controlled versions of Theorem 1.1 and the corresponding results on
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embeddings see [ST 91, RS 98]. We conjecture that Theorem 1.1 is true
even for compacta N, P , Q (cf. [ST 91, Theorem 3, Sk 98, Theorem 1.4]).

Our proof of Theorem 1.1(a) (resp. (b)) with minor modifications works
also for q = m− 1 and p ≤ (m− 2)/2 (resp. p ≤ (m− 3)/2) [ST 91, Theo-
rem 3, RS]. Note that by general position, for this case the set of link maps
K → Rm up to link homotopy is [Q, Rm − (P t N)] (for the only embed-
dings P t N → Rm). It would be interesting to know whether this set is
in 1-1 correspondence with πm−1(K̃) ∼= πm−1(Q × (P t N)): a counterex-
ample would give an example of link maps which are link concordant but
not link homotopic (cf. [Sa 99]), while a proof would be an extension of
[Ke 59].

For the classical case when Ki are spheres Theorem 1.1 is known (but it
is interesting that LMm

K is the same for homology spheres Ki by Proposition
1.2(c). Indeed, for codimension ≥ 3 see [HK 98]. The codimension 2 case
for m even is proved simply using general position, the Hilton theorem on
homotopy groups of wedges and the James Double Suspension Theorem (cf.
[Ki 90, Corollary 4.7]). The codimension 2 case for m odd is reduced, using
general position, to the case s = 2, which is actually proved in [Ko 90,
Proposition E] (since Σπ2p−1(Sp) ∼= πS

p−1; see also [Ne 98]).
Theorem 1.1 together with the following calculations of πm−1(P × Q)

(which easily follow from known results) gives some interesting corollaries.
In particular, Theorem 1.1 and Proposition 1.2(c) give an analogue of the
well-known results on isotopy of highly connected manifolds [We 67, Theo-
rem 4′, RS 96, §6, RS 99, §3]. Denote by h : πm−1(P ×Q) → Hm−1(P ×Q)
the cohomology analogue of the Hurewicz homomorphism. We assume
πS

l = 0 for l < 0. We omit Z-coefficients from the notation of (co)homology
groups. A closed manifold N or a pair (N, ∂N) is called homologically
k-connected (notation: N ∈ HCk or N ∈ ∂HCk) if Hi(N) = 0 for each
i = 1, . . . , k or Hi(N, ∂N) = 0 for each i = 0, . . . , k, respectively.

Proposition 1.2. Let P and Q be polyhedra of dimensions p, q ≤ m−2.

(a) If p + q ≤ m− 2, then πm−1(P ×Q) = 0.
(b) If p + q = m − 1, then πm−1(P × Q) ∼= Hm−1(P × Q) ∼= Hp(P ) ⊗

Hq(Q). If , moreover , both P and Q are connected manifolds, then

πm−1(P ×Q) ∼=


Z if both P and Q are closed orientable,
Z2 if both P and Q are closed and

Q is non-orientable,
0 if at least one of P and Q is non-closed.

(c) If both P and Q are orientable connected manifolds, then πm−1(P×Q)
is isomorphic to
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πS

p+q−m+1 if both P,Q ∈ HCp+q−m+1 are closed ,
Hp+q−m+1(Q, ∂Q) if P is closed and Q ∈ ∂HCp+q−m,
Hk+1(P, ∂P )⊗Hp+q−m−k(Q, ∂Q)

if P ∈ ∂HCk and Q ∈ ∂HCp+q−m−k−1.

(d) Suppose that both P and Q are connected manifolds. If one of them
is non-closed , then h is an isomorphism for p+ q = m and an epimorphism
for p + q = m + 1. If p + q = m, then h is an epimorphism whose kernel is
either 0 or Z2. If p + q = m + 1, then the cokernel of h is either 0 or Z2.

(e) The kernel and cokernel of h are always finite.

P r o o f . (a) follows by general position. (b) and (d) follow by [MT
68, §14], since the condition p + q ≥ m implies that m ≥ 4. By [Se 53,
Ch. 5, §2, Proposition 2′], πm−1(P ×Q) ∼= Hm−1(P ×Q) modulo the Serre
class of finite abelian groups, and (e) follows. Note that [Se 53, Ch. 5, §2,
Proposition 2′] is true for even n when dim K ≤ 2n.

In order to prove (c), observe that the obstructions for homotopy of maps
P ×Q → Sm−1 are in

H l(P ×Q;πl(Sm−1)) ∼= Hp+q−l(P ×Q, ∂(P ×Q);πl(Sm−1))
for l = m− 1,m, . . . , p + q.

For the three cases of (c), the only non-trivial group among them is
H0(P ×Q;πp+q(Sm−1)) ∼= πp+q(Sm−1),
Hp+q−m+1(P ×Q,P × ∂Q;πm−1(Sm−1)) ∼= Hp+q−m+1(Q, ∂Q),
Hp+q−m+1(P ×Q, ∂(P ×Q);πm−1(Sm−1))

∼= Hk+1(P, ∂P )⊗Hp+q−m−k(Q, ∂Q).

The group πm−1(P × Q) can also be calculated using the Postnikov
towers, spectral sequences, the Puppe exact sequence for (P × Q,P ∨ Q)
(here the formula Tξ ∧ Tη ∼= T (ξ × η) can perhaps be useful) and its dual
[MT 68, §14].

In the rest of the introduction we discuss the idea of proof of Theorem
1.1. First we sketch an elementary proof of Theorem 1.1(b) for m = 3,
p = q = 1 and N = ∅. From this sketch one can see that here LM3

PQ can
be replaced by the set of link homotopy classes. This sketch, though not
used in the formal proof, is illustrative because it allows one to visualize in
dimension 3 the celebrated 4-dimensional Casson’s finger moves.

Sketch of proof that α : LM3
PQ → π2(P × Q) ∼= H1(P ) ⊗ H1(Q) is

injective for graphs P and Q. Since both H1(P ) ⊗ H1(Q) and the set of
link maps P t Q up to link homotopy depend only on the homotopy type
of P and Q, we may assume that P and Q are disjoint unions of wedges
of circles. So it suffices to prove that the link homotopy class of f depends
only on the pairwise linking coefficients of the circles of P and of Q. The
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new point with respect to the classical case when both P and Q are circles
is that even when fP ⊂ R3 is unknotted, π1(R3 − fP ) is non-commutative
and hence the homotopy class of f |Q in π1(R3−fP ) is not uniquely defined
by those linking coefficients. The example when P = S1 t S1, Q = S1 and
f : P t Q → R3 is the Borromean rings illustrates this point. It is well
known that in this example we can make a homotopy (not an isotopy!) of
f |P : P → R3 − fQ to get a map f ′ : P → R3 − fQ so that fQ is unlinked
to f ′P , therefore f is link homotopic to a trivial link. In the general case we
can make an analogous link homotopy which has the effect of multiplication
of the homotopy class of f |P : P → R3 − fQ or f |Q : Q → R3 − fP by a
commutator. A series of such link homotopies joins our link map f to the
standard link map with the same collection of pairwise linking coefficients.

The above link homotopy made P and Q unlinked at the price of self-
intersections, just as Casson’s finger moves made two proper 2-disks in D4

disjoint at the price of self-intersections (cf. the proof of Disjunction Lemma
2.1 for the case p = q = 2, m = 4). The above link homotopy, completed by
the “return” self-intersection of f ′P far away from f ′Q and considered as a
map P × I → R3 × I, is obtained from the identical homotopy by Casson’s
finger move.

Formally, Theorem 1.1(a) follows from the case ∂K = ∅ of Theorem 1.3
below (the general case ∂K 6= ∅ is used in the proof of Theorem 1.1(b)). In
this paper for a polyhedron K we denote by ∂K some subpolyhedron of K
(it turns out that when K is a manifold, the subpolyhedron ∂K coincides
with the boundary of K). Given subpolyhedra ∂Ki ⊂ Ki, the s-tuple ∂K =
(∂K1, . . . , ∂Ks) is called a sub-s-tuple of K. Set ∂K̃ =

⊔
i<j(∂Ki ×Kj) ∪

(Ki×∂Kj). For a map f : K→Bm define Σ(f)=Cl{x∈K : |f−1fx|> 1}.
Theorem 1.3. Let K = (Q,P,N) be a triple of polyhedra of dimensions

q, p and n such that n ≤ p ≤ q ≤ m − 2 ≥ 1, ∆p ≥ 0 and ∆n ≥ 1.
Suppose that ∂K is a subtriple of K and f0 : K → Bm a PL map such
that f0|∂K is a link map in ∂Bm and f0(K − ∂K) ⊂ B̊m. If there exists a
map Φ : K̃ → Sm−1 such that Φ ' f̃0 on ∂K̃, then there exists a homotopy
ft rel ∂K such that f1 is a link map, f1(K − ∂K) ⊂ B̊m, if either ∆p ≥ 1
or q = 2m− 2p− 2 6∈ {2, 6, 14} then f̃1 ' Φ, and

(Z) for ∆p ≥ 1 we have ft = f0 on P ; for ∆p = 0, given a polyhedron
Z ⊂ P such that ∆dim Z ≥ 1, we have [Σ(ft|P )−Σ(f0|P )] ∩ Z = ∅.

The property (Z) is used not in the applications of Theorem 1.3 but in
its proof. The case N 6= ∅ of Theorem 1.3 follows from the case N = ∅ by
taking (Q,P ) = (P,N) and then (Q,P ) = (Q,P tN). Applying Theorem
1.3 for (Q,P ) = (Q,P tN) we take Z = N ; then by (Z), f1|PtN will remain
a link map and the maps f̃1 and Φ will remain homotopic on P ×N . This
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is the only place where we need (Z) and the homotopy ft (not only the
map f1).

The case s = 2 of Theorem 1.3 is a generalization of a boundary version
of [ST 91, Theorem 3 and 3′, SS 90, Theorem 3] and is also a simplification
(i.e. a non-controlled version) of those results. So the proof of the case s = 2
of Theorem 1.3 is less technical than [ST 91, proof of Theorem 3] and we
present it here.

2. Proof of Theorem 1.3 for s = 2. We use the notation of [RS 72].
The upper index of a polyhedron indicates its dimension. A map f : M → N
between manifolds is called proper if f−1∂N = ∂M . First we require two
lemmas, which are generalizations of the Whitney trick and, on the other
hand, versions of special cases of Theorem 1.3.

Disjunction Lemma 2.1. (a) Suppose that p ≤ q ≤ m−2, ∆p ≥ 1 and
f : Dp tDq → Dm is a PL map such that

(2.1.1) f |Dp is a proper unknotted embedding into Dm;
(2.1.2) fD̊q ⊂ D̊m and f∂Dq ∩ fDp = ∅;
(2.1.3) the map f̃ |∂(Dp×Dq) is null-homotopic.

Then there exists a PL link map f1 : Dp tDq → Dm such that f1 = f on
Dp t ∂Dq and f1D̊

q ⊂ D̊m.
(b) Suppose that p ≤ q ≤ m− 2, ∆p = 0, D = Dp

1 t . . . tDp
k, Q′ is a q-

polyhedron, K = (DptD,Dq∪Q′) and f : |K| → Dm is a PL map such that
f |DptD is a proper embedding , (2.1.1)–(2.1.3) hold and f(Dp tD) ∩ fQ′ =
fD ∩ fDq = ∅. Then there exists a PL link map f1 : |K| → Dm such that
f1 = f on Q′ ∪ ∂(Dq tD tDp) and f1(D̊p t D̊ t D̊q) ⊂ D̊m.

Realization Lemma 2.2. Suppose that p, q ≤ m− 2, either ∆p ≥ 1 or
q = 2m − 2p − 2 6∈ {2, 6, 14}, f0 : Dp t Dq → Dm is a PL link map such
that (2.1.1) holds and Ψ : Dp×Dq → Sm−1 is an extension of f̃0|∂(Dp×Dq).
Then there exists a homotopy (not link homotopy! ) ft rel Dpt∂Dq such that
f1 is a link map and the homotopy f̃t on ∂(Dp×Dq) extends to a homotopy
between Ψ and f̃1 on Dp ×Dq.

Comments on the proof: for p ≤ q ≤ m − 3 and ∆p ≥ 1, Disjunction
Lemma 2.1(a) and Realization Lemma 2.2 were actually proved in [We 67,
Proposition 3]; see also [Ha 69, §3, Propositions 1, 2]. In [ST 91] it was
shown how to relax the condition q ≤ m− 3 to q ≤ m− 2 in both lemmas.
Disjunction Lemma 2.1(b) was proved in [ST 91, Proposition 1.3] (for q = 2
using the idea of [DRS 91, §5]). Our proof is different in some details and, in
the case p = q = 2 and m = 4, simpler than in [ST 91]. Note that the part
of the proof of Theorem 1.1 that uses this case can be replaced by reference
to the elementary sketch in §1.
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Just as in Realization Lemma 2.2, if in Theorem 1.3, f̃0 = Φ on ∂K,
then we can deduce (provided either ∆p ≥ 1 or q = 2m−2p−2 6∈ {2, 6, 14})
not only that f̃1 ' Φ, but also that the homotopy f̃t on ∂K̃ extends to a
homotopy between Ψ and f̃1 on K̃. The dimension restrictions in Disjunc-
tion Lemma 2.1(a) and Realization Lemma 2.2 can be relaxed to “Σ∞ :
πq−1(Sm−p−1) → πS

p+q−m is monomorphic” and “Σ∞ : πq(Sm−p−1) →
πS

p+q+1−m is epimorphic”, respectively. When f |Dq is an embedding, for
∆p ≥ 1 and p ≤ q ≤ m − 3 we can conclude that f |Dq is joined to f1|Dq

by an ambient isotopy, but if either q = m − 2 or ∆p = 0, then we cannot
(since the dimension assumptions for application of the Penrose–Whitehead–
Zeeman–Irwin Embedding Theorem are not fulfilled). Note that from the
Borromean rings example and its generalization [Ma 90, Proposition 8.3] it
follows that in Disjunction Lemma 2.1 we cannot achieve f1 = f on Dp tD
for q = 2m− 2p− 2 6= 2, 6, 14.

Proof of Disjunction Lemma 2.1(a). By (2.1.1), Dm − fDp ' Sm−p−1.
The homotopy class I(f |Dp , f |Dq ) ∈ πq−1(Sm−p−1) of the map f |∂Dq :
∂Dq → Dm − fDp is called the coefficient of intersection of f |Dp and
f |Dq . By (2.1.2), the map f̃ : ∂(Dp × Dq) → Sm−1 is well defined. By
[We 67, Proposition 1] (the codimension 3 assumption can be weakened to
(2.1.1)),

(I) ±ΣpI(f |Dp , f |Dq ) = [f̃ ] ∈ πp+q−1(Sm−1).

Then by (2.1.3) we have ΣpI(f |Dp , f |Dq ) = [f̃ ] = 0. Since ∆p ≥ 1, by the
Freudenthal Suspension Theorem it follows that I(f |Dp , f |Dq ) = 0, i.e. the
map f |∂Dq extends to a map f1 : Dq → Dm − fDp.

Proof of Disjunction Lemma 2.1(b). Let r = m − p − 1 = q/2 and
X = Dm − f(Dp tD). The plan of the proof is as follows. First we prove
that α = [f : ∂Dq → X] ∈ πq−1(X) is a sum of Whitehead products
(for r = 1, a product of commutators). Next we take a collection {Sr

l } of
spheroids generating πr(X). Finally, we modify f |DptD by finger moves to
get a proper PL map f1 : DptD → Dm such that f1 = f on ∂(DtDp), the
map f : ∂Dq → Dm−f1(DptD) is null-homotopic and Q′∩f1(DptD) = ∅.
Then we take as f1|Dq any extension of f : ∂Dq → Dm − f(Dp tD).

Now we realize this plan in detail. Suppose first that r = 1 (and hence
p = q = 2, m = 4). Since Hl(D4) = 0 for each l ≥ 1, it follows from the
Mayer–Vietoris sequence that

i⊕ j : H1(X) ∼= H1(D4 − fD)⊕H1(D4 − fDp)

is an isomorphism (here i and j are the inclusion homomorphisms). Since
fDq ∩fD = ∅, it follows that i(hα) = 0. By (2.1.1), (2.1.3), (I) and the fact
that Σ : π1(S1) → π2(S2) is an isomorphism, we have I(f |Dq , f |Dp) = 0.
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Since also by (2.1.1), the Hurewicz homomorphism h : π1(D4 − fDp) →
H1(D4 − fDp) is an isomorphism, it follows that j(hα) = 0. Therefore
hα = 0 and by the Hurewicz Theorem, α is a product of commutators.

Now suppose that r ≥ 2. Take spheres Sr, Sr
1 , . . . , Sr

k bounding small
disks transversal to fDp, fDp

1 , . . . , fDp
k, respectively (by pushing along arcs

we may assume that all Sr
l contain a fixed base point of X). Let S =

Sr
1 ∨ . . . ∨ Sr

k. By the Alexander duality, the inclusion homomorphisms

H∗(Sr) → H∗(Dm − fDp), H∗(S) → H∗(Dm − fD),
H∗(S ∨ Sr) → H∗(X)

are isomorphisms. Since m − p ≥ 3, it follows that X, Dm − fD and
Dm − fDp are simply connected. Hence

Dm − fDp ' Sr, Dm − fD ' S, X ' Sr ∨ S.

Since q = 2r, by the Hilton Theorem on homotopy groups of wedges we
have

πq−1(X) ∼= πq−1(Dm − fD)⊕ πq−1(Dm − fDp)⊕W,

where W is generated by Whitehead products. Since fDq ∩ fD = ∅, it fol-
lows that the projection of α onto the first summand is zero. The projection
of α onto the second summand is I(f |Dq , f |Dp). By (2.1.1), (2.1.3), (I) and
the hard part of the Freudenthal Suspension Theorem, I(f |Dq , f |Dp) is in
the subgroup generated by the Whitehead square (for q = 6, 14, is zero).
Therefore α is a sum of Whitehead products.

For r ≥ 2 we have X ' Sr ∨ S, so we can take spheroids Sr, Sr
1 , . . . , Sr

k

as generators of πr(X). If r = 1 (or, equivalently, p = q = 2 and m = 4), we
take a triangulation of Dp tD in which f is simplicial. For each 2-simplex
σ of this triangulation take a circle S1

σ bounding a small disk transversal to
fσ. By general position we may assume that S1

σ ∩ S1
τ = ∅ for σ 6= τ . For

each path u joining the base point of X to a point xσu ∈ S1
σ take a loop S1

σu

obtained from S1
σ by pushing along the arc u. Note that contrary to what

was stated in [DRS 91, Proof of Theorem 5.1], the points xσu should depend
not only on σ but also on u; they should be distinct for distinct u to get the
required property ui(0, 1]∩uj(0, 1] = ∅. By [DRS 91, Assertion 1 in §5], the
spheres S1

σu generate π1(X). Since the group π1(X) is finitely generated,
we can choose from {S1

σu} a finite number of generators S1
l . Note that this

construction works also for r ≥ 2.
Since α is a sum of Whitehead products (for r = 1, a product of com-

mutators), it follows that α is a sum (for r = 1, a product) of [Sr
l , Sr

t ]. So
we can take a perforated disk δ ⊂ Dq and a map f1 : δ → X such that
f1 = f on ∂Dq and on every other boundary component of δ, f1 is of the
form wlt ◦ v, where
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(v) v : Sq−1 = S2r−1 = Sr−1 × Br ∪ Br × Sr−1 → Sr ∨ Sr is the map
with fibers Sr−1 × Sr−1 and Sr−1 × {x} and {x} × Sr−1 for each x ∈ B̊r,

(w) wlt : Sr ∨ Sr → Sr
l ∨ Sr

t is a homeomorphism if l 6= t and is the
“folding” onto Sl if l = t.

Suppose that Sr
l and Sr

t correspond to two disks σ, τ of Dp, Dp
1 , . . . , Dp

k

(for r = 1, to two simplices σ, τ of Dp t D). Take arcs a, b ⊂ Dm joining
interior points of these disks (or simplices) to a point near the base point
of X. By general position we may assume that these arcs are disjoint (and
disjoint for distinct σ, τ) and lie outside f(Dp tDtQ′)∪ δ except for their
ends. Make finger moves of σ and τ along a and b, respectively, for each σ, τ .
We get a new PL map f1 : DptD → Dm. Since the arcs a, b miss δ, it follows
that the images of the spheroids Sr

l , Sr
t are outside f1(Dp tD). By general

position we may assume that dim(f1σ∩f1τ) ≤ 2p−m and f1σ intersects f1τ
transversally. We can represent a regular neighborhood Bm of an arbitrary
point c of this intersection as the product B2p−m × Br+1 × Br+1 of balls
with B2p−m × 0 × 0 corresponding to the intersection, B2p−m × Br+1 × 0
and B2p−m × 0 × Br+1 to f1σ and f1τ , respectively. In a neighborhood of
c we have the “distinguished” torus 0× ∂Br+1 × ∂Br+1. With appropriate
orientations the inclusions of 0 × ∂Bl+1 × y and 0 × y × ∂Bl+1 into X1 =
Dm−f1(DptD) are homotopic in X1 to Sr

l and Sr
t , respectively. Since the

map

wij ◦ v : S2l−1 → Sl ∨ Sl → (0× y × ∂Bl+1) ∨ (0× ∂Bl+1 × y)

extends to a map B2l → 0× ∂Bl+1 × ∂Bl+1 [Ca 86], it follows that wij ◦ v
is null-homotopic in X1. So the map f1 : δ → X1 extends to a map
f1 : Dq → X1. Evidently, the new map f1 is as required.

Proof of Realization Lemma 2.2. Suppose that f0, f1 : Dp tDq → Dm

are link maps coinciding on Dpt∂Dq. Since f0 = f1 on Dpt∂Dq, it follows
that there is a homotopy ft rel Dpt∂Dq. For maps E,G : Dp×Dq → Sm−1

and a homotopy F : ∂(Dp ×Dq) × I → Sm−1 such that F (·, ·, 0) = E(·, ·)
and F (·, ·, 1) = G(·, ·) define the map HEFG : ∂(Dp ×Dq × I) → Sm−1 by

HEFG|Dp×Dq×0 = E, HEFG|Dp×Dq×1 = G, HEFG|∂(Dp×Dq)×I = F.

We need to find ft so that HΦf̃tf̃1
is null-homotopic. Let

Sq = Dq
0 ∪

∂Dq
0=∂Dq

1

Dq
1

and define a map hf0f1 : Sq → Dm − fDp by setting hf0f1 = f0 on Dq
0

and hf0f1 = f1 on Dq
1. By (2.1.1), Dm − fDp ' Sm−p−1, hence [hf0f1 ] ∈

πq(Sm−p−1). By [We 67, lemme 1], [Hf̃0f̃tf̃1
] = ±Σp[hf0f1 ] ∈ πp+q(Sm−1).

Therefore

[HΦf̃tf̃1
] = [HΦif̃0

] + [Hf̃0f̃tf̃1
] = [HΦif̃0

]±Σp[hf0f1 ] ∈ πp+q(Sm−1).
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Here Φ, f̃0, f̃1 and f̃t denote the restrictions of these maps onto Dp × Dq

and ∂(Dp ×Dq), respectively; i is the constant homotopy. Since for every
element β ∈ πq(Sm−p−1) there is a map (not necessarily an embedding)
f1 : Dq → Dm − fDp such that [hf0f1 ] = β, the lemma follows because
Σp : πq(Sm−p−1) → πp+q(Sm−1) is an epimorphism. Indeed, the group
πp+q(Sm−1) is stable. If ∆p ≥ 1, then by the Freudenthal Suspension
Theorem, Σp is an epimorphism. If q = 2m − 2p − 2 6∈ {2, 6, 14}, then
Σ2 : πq(Sm−p−1) → πq+2(Sm−p+1) is an epimorphism by [Ja 54]. Since
p > 1 (in the opposite case 1 ≤ q = 2m − 4 ≤ m − 2, which is impossible),
by the Freudenthal Suspension Theorem, Σp is an epimorphism.

In order to prove Theorem 1.3, take triangulations TP and TQ of P and
Q such that Z is a subcomplex of TP . The simplices of any triangulation
are ordered according to increasing dimension. We use the lexicographic
order on the set of pairs of simplices. The case s = 2 of Theorem 1.3
follows from Proposition 2.3 below for σp = (the last simplex of TP ) and
σq = (the last simplex of TQ). In Proposition 2.3 and its proof the letters p
and q denote not dim P and dim Q but the dimensions of certain simplices.

Proposition 2.3. Under the assumptions of Theorem 1.3 (where N = ∅
and p, q are replaced by dim P,dim Q) let TP , TQ be triangulations of P, Q,
σp ∈ TP , σq ∈ TQ any simplices and

J = ∂K̃ ∪
⋃
{α× β ∈ TP × TQ | (α, β) ≤ (σp, σq)}.

Then there exists a general position PL homotopy ft rel ∂K such that f1(K−
∂K) ⊂ B̊m, f1α∩f1β = ∅ for each (α, β) ⊂ J , (Z) holds and if either ∆p ≥ 1
or q = 2m− 2p− 2 6∈ {2, 6, 14}, then f̃1 ' Φ on J .

P r o o f . By induction on (σp, σq) we may assume that the conclusion of
Proposition 2.3 holds for f1 replaced by f0 and J replaced by

J< = ∂K̃ ∪
⋃
{α× β ∈ TP × TQ | (α, β) < (σp, σq)}.

Suppose that p+q ≥ m−1, σp 6⊂ ∂P and σq 6⊂ ∂Q (otherwise the inductive
step holds either by general position or by the inductive hypothesis).

First we show how to achieve f1σ
p ∩ f1σ

q = ∅. We begin with the
construction of certain balls Dm, Dp and Dq, analogous to [We 67, proof of
lemme 2, ST 91, proof of Claim on p. 199]. Let f = f0. Let R = ∂P∪

⋃
{α ∈

TP | α ≤ σp}. Since p + q −m + (2p−m) ≤ p, by general position we have
f−1fσq ∩Σ(f |R) = ∅. By general position, dim(σp ∩ f−1fσq) ≤ p + q−m.
Since fα ∩ fβ = ∅ for each α × β ⊂ J<, it follows that fσp ∩ f∂σq =
f∂σp ∩ fσq = ∅. Therefore σq ∩ f−1fσp ⊂ σ̊q. Let CQ be the trail of
σq ∩ f−1fσp under a sequence of collapses σq ↘ (a point in σ̊q). Then CQ

is collapsible, CQ ⊂ σ̊q, σq ∩ f−1fσp ⊂ CQ and dim CQ ≤ p + q − m + 1.
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Analogously we construct a polyhedron CP with the same properties for q
and Q replaced by p and P .

Since p+ q−m+ 1+ p<m and (p+ q−m+ 1)+ (2p−m)<p, by general
position CP ∩Σ(f |σp) = ∅. This and collapsibility of CP imply collapsibility
of fCP . Hence the pair (Bm, fCP ) is collapsible. Let C be the trail of
f(CP t CQ) under a sequence of collapses (Bm, fCP ) ↘ 0. Then the pair
(C, fCP ) is collapsible, C ⊂ B̊m, f(CP tCQ) ⊂ C and dim C ≤ p+q−m+2.
Let Dm, Dq and Dp be the regular neighborhoods of C, CQ and CP in some
small triangulation of Bm, σq and σp, respectively. It is easy to verify (2.1.1)
(unknottedness of Dp follows from [RS 72, Corollary 4.14]), (2.1.2) and

(∗) fD̊q ⊂ D̊m and σq ∩ f−1fσp ⊂ D̊q.

Continuation of the proof in the case ∆p ≥ 1. Since (p+q−m+2)+p< m,
by general position we have σp ∩ f−1C = CP and C ∩ f(R− σ̊p)= ∅. Hence

(a) R ∩ f−1Dm = σp ∩ f−1Dm = Dp.

By the PL Annulus Theorem, f̃ |∂(Dp×Dq) ' f̃ |∂(σp×σq) (the meaning
of this formally incorrect formula is obvious), and the same for f̃ → Φ.
Therefore f̃ ' Φ on J< implies that f̃ |∂(Dp×Dq) ' Φ|∂(Dp×Dq). Since Φ is
defined over P ×Q, we see that Φ|∂(Dp×Dq) is null-homotopic. This implies
(2.1.3). Apply Disjunction Lemma 2.1(a) to get a map f1 : Dp tDq → Dm.
There exists a homotopy ht : Dm → Dm rel ∂Dm such that h1 ◦ f = f1 on
Dq. Define a homotopy ft : P tQ → Bm to be ht ◦ f on Q ∩ f−1Dm and
f on P t (Q − f−1Dm). By (a) and since ft = f on Dp, the conclusion
of Proposition 2.3 holds with J replaced by J<. From (∗) it follows that
fσp ∩ fσq ⊂ D̊m. This and (a) imply that σp ∩ f−1fσq ⊂ D̊p. Hence by
(∗) and Disjunction Lemma 2.1(a), f1σ

p ∩ f1σ
q = ∅.

Continuation of the proof in the case ∆p = 0. Since (p + q −m + 2) +
p = m, (2p − m) + p < m and 2q − p < p, by general position we have
R∩f−1C = CP ∪{points a1, . . . , ak} and a1, . . . , ak 6∈ T

(p−1)
P ∪Σ(f |R). Let

D = Dp
1t . . .tDp

k be the regular neighborhood of {a1, . . . , ak} in some small
triangulation of R. Hence

(b) D = Dp
1 t . . .tDp

k ⊂ R, f |D is an embedding, R∩f−1Dm = DptD

and D ∩ (T (p−1)
P ∪Σ(f |R) ∪ f−1fDq) = ∅.

Let Q′ = f−1Dm∩ (
⋃
{β ∈ TQ | β ≤ σq}− D̊q). Analogously to the case

∆p ≥ 1, (2.1.3) holds. Apply Disjunction Lemma 2.1(b) to get a map f1 :
DptDtDqtQ′ → Dm. There exists a homotopy ft between f0|DptDtDqtQ′

and f1. Since 2p + q = 2dim P + dim Q = 2m− 2, it follows that p = dim P
and q = dim Q, hence neither σq nor σp are contained in the boundary of any
simplex of TP or TQ. Therefore we can extend the homotopy ft over P tQ
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by f to obtain a new homotopy ft : P tQ → Bm. Evidently, the conclusion
of Proposition 2.3 holds for J replaced by J< (in particular, (Z) follows since
(Dp tD)∩T

(p−1)
P = ∅). From (∗), (b) and Disjunction Lemma 2.1(b) it fol-

lows that f1σ
p∩f1σ

q = ∅. For q ∈ {2, 6, 14} the induction step is proved.

Completion of the proof. Now, assuming that either ∆p ≥ 1 or q =
2m − 2p − 2 6∈ {2, 6, 14}, we achieve f̃1 ' Φ on J and not only on J<.
Denote by f the map f1 obtained above. We begin with the construction
of certain balls Dm, Dp and Dq. By general position we can take points
cP ∈ σ̊p − Σ(f) and cQ ∈ σ̊q − Σ(f) such that the restrictions of f to
some small neighborhoods of cP and cQ are locally flat embeddings. Since
dim P,dim Q ≤ m−2, we can join points fcP and fcQ by an arc c ⊂ Rm such
that c∩f(P tQ) = {fcP , fcQ}. Let Dm be a small regular neighborhood of
c in Rm. Then f−1Dm is the disjoint union of PL disks Dp ⊂ σ̊p and Dq ⊂
σ̊q, which are regular neighborhoods of cP and cQ in P t Q, respectively.
Since the restrictions of f to some small neighborhoods of cP and cQ are
locally flat embeddings, we get (2.1.1) and the same for Dq. By the Borsuk
Homotopy Extension Theorem, the map Φ is homotopic to an extension
(denoted also by Φ) Φ : P × Q → Sm−1 of f̃ |J−D̊p×D̊q . It follows that
Φ = f̃ on ∂(Dp ×Dq). Apply Realization Lemma 2.2 to get the homotopy
ft : Dp t Dq → Dm. Analogously to the case ∆p ≥ 1 above extend ft to
P tQ. By the Realization Lemma, f̃1 ' Φ on J . Clearly, the conclusion of
Proposition 2.3 holds for the composition of the two homotopies constructed.
The induction step is proved.

3. Proofs of Lemma 1.0 and Theorem 1.1(b)

Cylinder Lemma.

K̃×I

K̃ × 1× 0, K̃ × 0× 1
∼= Σ(K̃ × I)

(cf. [Sk, Cylinder Lemma]).

P r o o f . Represent K̃×I as K̃ × I × I. Define a map pr : K̃ × I × I →
Σ(K̃ × I) by pr(x, y, u, t) = [(x, y, (u + t)/2), u − t]. It is easy to see that
pr is a surjection and the only non-trivial preimages of pr are those of the
vertices of the suspension and are K̃×0×1 and K̃×1×0. Hence the lemma
follows.

Denote by pr : K̃×I → Σ(K̃×I) the projection of the Cylinder Lemma.

Proof of Lemma 1.0. Let F : K × I → Rm × I be a link concordance
between f0 and f1. Clearly, F̃ (K̃×0×1), F̃ (K̃×1×0) and F̃ (K̃×{0×0, 1×1})
are in the northern and in the southern hemisphere and in the equator Sm−1

of Sm, respectively. Therefore by the relative Borsuk Homotopy Extension
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Theorem, F̃ is homotopic rel(K̃×{0×0, 1×1}) to a map Φ such that Φ(K̃×
0×1) and Φ(K̃×1×0) are the north and the south pole of Sm, respectively.
Therefore by the Cylinder Lemma there is a map Φ′ : Σ(K̃ × I) → Sm such
that Φ = Φ′ ◦ pr. Since Φ(K̃ × {0 × 0, 1 × 1}) ⊂ Sm−1, we can modify Φ′

by a homotopy rel(K̃ × {0× 0, 1× 1}) so that Φ′ becomes a suspension on
Σ(K̃×{0, 1}). Since dim K ≤ m−2, it follows that dim(K̃×I) ≤ 2(m−1)−1.
Therefore by the relative Suspension Theorem,

Σ : πm−1(K̃ × I, K̃ × {0, 1}, Φ′) → πm(Σ(K̃ × I), Σ(K̃ × {0, 1}), ΣΦ′)

is an epimorphism, i.e. there is a map ϕ : K̃×I → Sm−1 such that ϕ = Φ′ =
Φ◦pr−1 = F̃ on K̃×{0, 1} (and Σϕ ' Φ′ on Σ(K̃×I) relΣ(K̃×{0, 1}), but
we do not need this). So ϕ is the required homotopy between f̃0 and f̃1.

Proof of Theorem 1.1(b) (cf. [We 67, §7, Sk 97, §3]). The surjectivity
of α follows from Theorem 1.1(a). Suppose that g0, g1 : K → Rm are
link maps such that g̃0 ' g̃1. Let G : K × I → Im × I be the linear
homotopy between g0 and g1. Let ∂(K × I) = K × {0, 1}. Evidently, G̃

is defined on ∂(K̃ × I). Let ϕ : K̃ × I → Sm−1 be a homotopy between
G̃|

K̃×0×0
and G̃|

K̃×1×1
. Define a map Φ : K̃×I → Sm by Φ = Σϕ ◦ pr.

Then Φ(x, t, y, t) = ϕ(x, y, t), hence Φ = G̃ on K̃ × {0 × 0, 1 × 1}. For
(x, t, y, 1) ∈ K × [0, 1) × K × 1, both Φ(x, t, y, 1) and G̃(x, t, y, 1) are in
the northern open hemisphere. For (x, t, y, 0) ∈ K × [0, 1) × K × 0, both
Φ(x, t, y, 0) and G̃(x, t, y, 0) are in the southern open hemisphere. So for
each (x, s, y, t) ∈ ∂(K̃ × I) − (K̃×0 t K̃×1), the points Φ(x, s, y, t) and
G̃(x, s, y, t) are not antipodal. Therefore Φ ' G̃ on ∂(K̃ × I). Hence we
can apply Theorem 1.3 for K = K × I, ∂K = K × {0, 1}, f0 = G and
Φ = Φ (clearly, the dimension restrictions are fulfilled). We obtain a link
concordance between g0 and g1.
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