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Nonreflecting stationary subsets of P\
by

Yoshihiro A be (Yokohama)

Abstract. We explore the possibility of forcing nonreflecting stationary sets of PcA.
We also present a P\ generalization of Kanamori’s weakly normal filters, which induces
stationary reflection.

1. Introduction. Throughout this paper s denotes a regular un-
countable cardinal and A a cardinal > k. For any such pair (k,\), P\
denotes the set {x C X\ : |z| < k}. For & € P\ let K, = |z Nk,
P, x={sCux:|s|<kg},and T ={y € P.\: 2z Cy}.

We say X C P\ is unbounded if X NZ # () for any « € P,\. Let FSF, )
be the filter generated by {Z : x € P;A}. Every filter on P,\ is assumed
to be fine, that is, extending FSF, y. If F is a filter, F'* denotes the set
{X CPAN:PAN—X&F}.

We say X C P\ is closed if |J, 57o € X for any C-increasing chain
(zq | @ < 0)in X with 6 < k; X is a club if it is closed and unbounded. We
say S C Py is stationary if SN X # () for any club X. Let C'F,, » denote
the club filter on P\ generated by the club subsets of P.A.

All the notions defined above for P\ can be naturally translated into
P, x if K, is regular uncountable. For instance, X C P, « is unbounded if
for any y € P, x there is z € X such that y C 2z, and F'SF),, , denotes the
filter on P, x generated by {sN P,z : s € P, x} which is a k,-complete
filter on Py .

In the next section for certain large T' C P.x™ we force a stationary set
S C P.x™ such that SN P,_x is nonstationary for any x € T.

As the counterpart, in the third section, we present a generalization of
weakly normal filters on regular cardinals due to Kanamori and show that
the existence of such filters gives the reflection of stationary sets of PgA\.
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The last section is devoted to the forcing giving different type of nonre-
flection from that of the earlier sections.

2. Forcing a nonreflecting stationary set. Adding nonreflecting
stationary sets to regular uncountable cardinals is an elementary technique
and has important applications such as destroying supercompactness [3].
The forcing notion Q ordered by end extension is as follows:

peQ if pCkr, |p| <k, and p N« is nonstationary for any a < k.

Assuming k<% = k, Q is kT-c.c. and <k-distributive, hence all cardinals
are preserved. We try to provide a generalization to PiA.

DEFINITION 2.1. Let X C P\ be stationary. For x € P, A we say X
reflects at x if X N P, x is stationary in P, x; X is nonreflecting if it does
not reflect at any x € P .

A simple way is the forcing below:
pePy if pcC P.k™, |p| <k, and pN P,z is nonstationary
for any = € P,

p<p,q if pDqandthereisnopairzrep—qgandyécq
such that z C y.

Although Py is also k*-c.c., <k-distributivity is not clear. We take a union
at limit stages as in the proof of distributivity of Q in order to get an
extension of the conditions defined at earlier stages. Since P, A is not linearly
ordered, (J,, . 5Pa N Py, x may be stationary for some x even if p, N P, x is
nonstationary for any a < (.

We handle this problem at the expense of narrowing the set where the
generic stationary set does not reflect. Gitik’s idea [6] for shooting a club
subset of P, is used.

THEOREM 2.2. Let V- C W be two models of Z FC with the same ordinals,
(k1) = (k)W'. C a club subset of k of V-inaccessibles, k an inaccsessible
cardinal in W, and T = {x € P.x™ : V = “|z| is not inaccessible”}. Then
there is a cardinal preserving forcing notion P € W such that IFp “there is a
stationary S C Pyk™t such that S N P, x is nonstationary for any x € T”.

Proof. The forcing notion PP is defined in W by
peP if pC P, |p| <k, and pN P, x is nonstationary
for any z € T.
We define
p<pgq if p D¢ and there is no pairx € p—qand y € ¢
such that z C y.
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We show P is k*-c.c. and <k-distributive, hence all cardinals are pre-
served.

Assume first A C P is an antichain of size k™ and work for a contra-
diction. Since |Jp| < & for every p € A and & is inaccessible, we may
assume {{Jp : p € A} forms a A-system with a root r. Since |P(r)| < &,
we can find p,q € A such that pN P(r) = ¢N P(r). Let s = pUgq. Sup-
pose that t € s —p, u € pand t C u. Thent € gand t C u C Jp.
Thus ¢t C UpNJg = r contradicting ¢ ¢ p. So there are no such t and
u. Pick x € T. Both pN P, x and g N P, x are nonstationary. Hence
sNP,,x = (pN P, x)U (¢N P, x) is nonstationary. Now s € P with
s < p,q. This contradicts A being an antichain. So P is k™-c.c.

Second let 6 < k, D, be an open dense subset of P for each o < §, and
p any condition. We will find g € ﬂa<5 D, with ¢ < p.

Choose sufficiently large A and let

B=(H(\),€ k,tt,PkT,C, 8P, IF (D, | a <3d),p).

We can find M < B such that [M| =r, MNkT € kT, and <F(MNkT) C
M. Fix a bijection g € V from x to M N k™. We can build an increasing
continuous chain (Mg | £ < k) of elementary submodels of M such that
§+1C My and for every & < K, [M¢| < K, *Mg C Mgi1, and "¢ C M.

There is a club E C C such that for every £ € E, ¢"§ = MeNk™, €] =€,
and ¢"¢ Nk =& = M¢ N k. Note that Mg Nkt € Pkt N Mgy for every
e E. If ge PN M, with £ € E, then M¢ = “|¢| < k7. Hence ¢ = f'n for
some n < £ and f € M¢. Thus ¢ C M¢. By the same argument we have
q C P(MeN k). In fact, © C Mg N kKT for every o € q. Let (&, | a < k)
be an increasing enumeration of F.

With the above remark in mind we inductively define a decreasing
sequence of conditions (pg, | < J) such that for every a < 0, po €
Me,+1 N Dg for every § < a.

Since Dy € Mg, because §+1 C Mg C Mg, thereis g € M¢,NDy with
go < p. Set po = go U { Mg, Nk}, Since V |= “|Mg,| = & is inaccessible”,
po is a condition. By the former remark py € Mg, 41.

Suppose that a = 8+ 1 and pg is defined. Then pg € M¢, 11 C Mg,
and Dg € Mg, since 8 € §, = Mg, Nk. So we can find ¢, € M¢, N Dg
such that ¢, < pg. Set po = go U{M¢, Nk1}. This is well defined as before.

Next suppose that a is a limit ordinal < § and pg is defined for all 8 < a.
Set po = Ug<q Ps-

Since pg € Mg,q1 and {g+1 < gy < & forall < a, {pg: B < a}
€ M, C Mg, 1. Hence p, € Mg, 1. Since Mg, 11N kT is the greatest
element of psi1, we have |Jpa = Upgco(Me,, NET) = Mg, Nk*.

Suppose that z €T and p,N P, x is stationary. Clearly x C|Jpa, hence
V | “z| < Mg, NKT7. Since Mg, N kT = &, is inaccessible in V,
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it follows that (|z|)V < &. Now z C M, Nkt = ¢"¢, = Ue<e, 9"¢C
Since V' | ¢, is regular”, there is { < &, such that z C ¢”(. Then
xCg'"& = Mg, Nk € p, for some v < a.

Lety € poNP;, x. Weknowy C x C Mgwﬂli'i_ € pyand y € p, for some
p € (v,a). Since p, < p,, we have y € p,. Thus p, N P,z = p, N P, z,
which is nonstationary as p, € P. Hence p, is a condition and belongs to
ﬂ,@<a D,B

Thus we can define ps as a desired condition showing P is <k-distributive.

Let G be W-generic for P and S = | JG. By an easy density argument S
is unbounded in P,x*. We show S is stationary in P,x™ in W[G] and does
not reflect at z if x € T. Note that P.k™ N W = P.r™ N WG]

Let D C P.x" be a club in W[G] and D its name. Assume p - “D is a
club of P,kT".

Take a sufficiently large A and choose N' < (H(\), €, k, k1, Por™, C, P, IF,
D, p) such that |[NV| = k, NNxt € kt, and <*(NNkt) C V. Fix a bijection
h € V from k to NNk™T and an increasing continuous chain (N, | a < k) of
elementary submodels of N such that for every a < k, [N, | < k, "*N,,_, C
Noo+1, W'va Nk = v, € Cis a cardinal, and h'"v, = N, N kT. (Hence
h've =N, Nk and (v, | @ < k) is increasing continuous.)

We inductively define a descending sequence of conditions (p,, | n € w)

as follows.

By elementarity there are p’ € N,, and xy € N,, such that p’ < p and
P I “zg € D”. Let py = p' U (N,, N&T). As before pg € PNN,, 41 CN,,.

Suppose p, € N,, 11 is defined. We know |Jp, =N, NkT € N, 11 and
pn IF “D is a club”. Since N, Nkt € P.s™ NN, +1, there are pl, € N, 11
and zp 41 € Ny, 41 such that p), < p,, N, NkT C 2pq1 and pf, Ik “z,q0 €
D”. Then 11 C N, 11NKT CN,, .. Set ppy1 =p), U{N,, ., Nk}

Let ¢ = (Upew Pn) U {N,, NK&T}. As before ¢ € P and extends all p,.
Since N, Nk C &py1 C Ny, 41 NET C N, ., NKT, we have N,y NkT =
Unecw Tn- For every n € w, p, IF “x,, € D”. Hence ¢ IF “x,, € D for every
n € w and D is closed”. Hence g<pandql-“N, Nkt € Dn UG”. We
have shown that S is stationary.

Suppose that S reflects at some x € T'. By our definition of the ordering
some condition p € G must reflect at x, contrary top € P. =

PROPOSITION 2.3. Let V and W be as in 2.2. Then:

(1) No k*-supercompact embedding j : W — M lifts to k : W[G] —
MIk(G)].

(2) Suppose k is supercompact in both V. and W, and W is a generic
extension of V by Radin forcing. Then k is not k™ -Shelah in W[G].

Proof. (1) We know x* and <k-sequences are the same in all of W, M,
WG], and M[k(G)]. Suppose j lifts to k. Then k(S) is a nonreflecting
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stationary subset of Pj(,)j(k™) in M[k(G)], j”kT € Pj)j(s), and 7”7 N
j(k) = k. So k(S)N P.j"kt = j"”S is nonstationary in P.j”xT. This
contradicts the stationarity of S in W[G].

(2) Let V be a model of ZFC + GCH + & is supercompact and W a
generic extension by a Radin forcing using a measure sequence long enough
for k to remain supercompact. The conditions in 2.2 are satisfied and V'
and W have the same cardinals. We know T belongs to the x™-Shelah
filter. This is the same in WG] if k remains xk*-Shelah. However every
stationary subset of P.xT reflects on a set in the xT-Shelah filter. m

3. A generalization of Kanamori’s weak normality. Reflection of
stationary subsets of P\ is a large cardinal property. It is easily derived
from supercompactness of k. In fact x being A-Shelah, a weakening of super-
compactness from the point of view of combinatorial property is sufficient
[4], [11].

Solovay’s theorem says that for A regular the sup-function is one-to-one
on a set in a supercompact ultrafilter on P;\. We have the same result for
not only the filter canonically defined by the A-Shelah property [8], [2], but
also for strongly normal A-saturated filters on P\ (see [1]).

The motivation of this section is what strength of saturation of ideals on
P, )\ provides stationary reflection.

Kanamori [9] defined weakly normal filters for regular uncountable car-
dinals as follows:

DEFINITION 3.1. Let F be a filter on k. We say F' is weakly normal if
any regressive function on k is bounded on a set in F.

On the other hand strongly normal filters on P, A were investigated [5]
as a weakening of supercompact ultrafilters.

DEFINITION 3.2. A function f : P,A — P, is called set regressive if
f(z) € P, x for every x € P, \.

A filter F' on P\ is strongly normal if any set regressive function defined
on X € F'* is constant on some Y € P(X) N FT. This is equivalent to the
following: for any {X,:s € P,A\} C F, A.X, :={z: 2z € X, for every s €
P, x} € F. Clearly every strongly normal filter is normal.

Kanamori’s idea gives us the following notion of W N-filter.

DEFINITION 3.3. Let F' be a filter on P, \. We write WN(F') and call F’
a WN-filter (1) if for any set regressive function f on P\ there is a € P\
such that {z € P,A: f(z) Ca} € F.

(1) The basic properties of k-complete WN-filters are studied by S. Kawano in his
master thesis at University of Osaka Prefecture, March 1999, where they are called strongly
weakly normal filters.
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REMARK 3.4. Note that we do not assume any completeness for W N-
filters.

It turns out that the existence of a W N-filter provides the stationary
reflection of sets in the range corresponding to its completeness. Kanamori’s
weak normality provides the reflection of stationary subsets of a weakly
inaccessible cardinal. So W N-filter may be a natural generalization of Kana-
mori’s notion.

The following is straightforward.

LEMMA 3.5. (1) Every filter extension of a W N-filter is also W N.

(2) If F is a W N-filter on P\, then F'[0 is a W N -filter on P.d for any
0€r,A). (FIo:={XCPd:{zePr:znNde X} eF})

(3) If there is a W N-filter on P\ for some A\ > kK, then k is weakly
inaccessible.

LEMMA 3.6. Let Reg = {x € P\ : © Nk is reqular}. Then every
W N-filter on P\ extends C'F; x| Reg.

Proof. Suppose X ={zr € P.A:aNk &k} € FT. For each z € X let
a, € Nk with a, ¢ x. There are a € P,A and X’ € P(X) N F* so that
ay € a for every x € X'. Then (J(a N k) < k whereas |J(a N k) ¢ x for any
xz € X'. Contradiction. Hence {x: x Nk € k} € F.

Let f: AX XA — P\ and assume Y = {z : f'(z xx) ¢ P(x)} € FT.
For x € Y define g(z) € = x x such that f(g(z)) ¢ z. For some b € P, A\,
Y'={x €Y :g(x) Cb} € Ft. Then f"(bxb) ¢ x for any x € Y'. This is
absurd since f”(b x b) € P,A. Hence CF,, 5 C F.

Suppose Z = {x : Nk is singular} € FT. Since « is weakly inaccessible
and Z is stationary, we may assume = Nk is a cardinal for all x € Z. Let
¢z C x be cofinal with order type < x N'x. We have ¢ € P\ and Z' € T
such that ¢, C cforallz € Z’. Then 2Nk CJ(cNk) < k for all z € Z'.
Contradiction. m

COROLLARY 3.7. If there is a W N-filter, then r is weakly Mahlo.

Let WCF » denote the minimal strongly normal filter on P.\. It is
known that WCF, » is proper if and only if x is Mahlo or k = v with
v<¥ = v. In addition, X € WCF, ) if and only if there is a function
f: PsA — P\ such that {x € P,A: f'P, o C P(z)} C X. If x is Mahlo,
then {z € P,\: x Nk is inaccessible} € WCF}, ».

We observe a relationship between strong normality and the W N prop-
erty.

PropoOSITION 3.8. (1) If WCFj y is proper, then every W N-filter ex-
tends WCF, ».
(2) Every strongly normal k-saturated filter on P.\ is WN.
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(3) If a WN-filter F is k-complete, then F is normal k-saturated. Hence
neither WCF), x nor any restriction of CF,  is WN.

Proof. (1) Suppose X € F* and f(z) € P, x for all z € X. For some
ac€PNY={zreX: 2Nk € kand f(zr) C a} is stationary. For every
z €Y, f(r) C a and |P(a)| < k. Hence f is constant on some unbounded
subset of Y. Thus X € WC’F:)\.

(2) Let g(z) € P,z forallz € P, Aand A= {97 ({y}) : y € PAINFT.
Since F is k-saturated, we have |A| < k. Set b = J{y : g7 ({y}) € A}.
Then b € P\, |JA € F, and g(z) C b for every z € J A.

(3) Assume h is regressive on Z € FT. There is ¢ € P, such that
Z'={x € Z : h(x) € ¢} € F'. By k-completeness, h is constant on some
set in F'*. Hence F is normal.

Next assume that {We : £ < k} is a disjoint partition of P, into F-
positive sets. Let Wi = We N {/f\} and k(z) = ¢ if » € W{. Then we have
d € P, )\ such that W = {x € P,A: k(x) C d} € F. Choose any ¢ ¢ d. Then
W¢NW = 0. Contradiction. =

Note that every normal k-saturated filter is strongly normal if x is inac-
cessible.

COROLLARY 3.9. Let k be Mahlo and F a filter on P.A. Then F is
k-complete and W N if and only if F' is normal k-saturated.

A standard forcing argument shows that a noninaccessible cardinal can
carry W N-filters.

THEOREM 3.10. Suppose F is a W N-filter on P\ and P is p-c.c. with
u <k inV. Then F generates a W N-filter in V. Hence it is consistent
that k is not inaccessible and there exists a W N -filter on P \. In fact P, A
can carry a normal, non-strongly normal, k-saturated filter.

Now we observe the stationary reflection under the existence of a W N-
filter with some degree of completeness.

DEFINITION 3.11. For w < pu < Kk, X C P\ is said to be a <u-club if
X is unbounded and closed under C-increasing chains of length < u. Let
CFS’/\ denote the filter generated by the <p-clubs. So, CF[ = CFj ».

We say S C P, is CF[ \-stationary if S € (CF)\)*, that is, SN X # 0
for any X € CF¥,.

PROPOSITION 3.12. (1) For p a cardinal, CF,:‘A is a k-complete normal
filter on P.A.

(2) CF/\ 2 CFL\ for p <.

(3) If w is singular, then CF/\ = CFS:

K

(4) For p a limit cardinal, CF/ , =, CF? ,.
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THEOREM 3.13. Let w < pu < k and F be a u*-complete W N-filter on
+
P If S is C’Fﬁ/\-stationary, then {x € P\ : SN P, x is stationary in
P, z} e€F.

Proof. Suppose otherwise that S is C’F::\—stationary and X = {z €
P.)\: SN P, z is nonstationary in P, _z} € F*. We assume that for every
x € X, Nk is a regular cardinal > p, and C, C P, z is a club with
C,NS=0. Let F' = FIX :={Y C PA: Y U(PA— X) € F).

We show that C = {y € P,A: {z € X :y € C,} € F'} is a <ut-club.

Pick any z € P,\. Note that {vr € X : z € P, a} € F'. Let fo(z) € C,
so that z C fo(x) if exists, fo(x) = 0 otherwise. We have a9 € P, and
X € F’ such that z C fo(x) C ag for every z € Xj.

Suppose that a,, € P;\, X,, € F’, and f,, are defined such that f,(z) C
a, for every x € X,,. Since {z € X : a,, € P, 2} € F’', we can define a set
regressive f, 1 so that {x : a, C fry1(x) € Cp} € F', and find a1 € P A
and X,, 11 € F' such that a,, C fp41(z) C apy1 for any x € X, 41.

Set y = Upew@n and Y =, o, X, Then a € P.A and Y € F'. For
every x € Y we have

2 C fo(xr) Cap C ... Cap C fry1(x) Capg1 C...Cy

and f,(z) € C, for every n € w. Since C, is closed and x N k is regular
>p>w,y=U,c, fn(r) € Cp. Hence z C y € C, which is unbounded.

To show C' is closed let (y, | @ < p) be an increasing chain in C' and
w = Ua<u Yo. Clearly w € P,\. Since {z € X : y, € C,} € F' for every
a < p, there is Z € F’ such that y, € C, for every z € Z and a < p. Since
C, is a club of P, z and x Nk is a regular cardinal > p, it follows that
w € O, for every x € Z. Hence w € C and C is <u™-closed.

Now we know C' C P\ is a <uT-club and SNC # (). Let y € SNC. Then
{reX:yeC,} € F  hence {r € X:SNC, # 0} # 0. Contradiction. m

COROLLARY 3.14. If there is a strongly normal k-saturated filter F' on
P, then every stationary subset of PcA reflects on a set in F.

Relating to 2.2 and the remark at the beginning of this section we ask
the following:

QUESTION. Is the existence of a mnormal k™ -saturated filter on P.x™
sufficient for reflection of stationary subsets of P.k™ ¢

4. Another type of reflection. It is well known that every stationary
subset of a weakly compact cardinal reflects. We mentioned a P, \ analogue
in the last section and present another one here. Let C'F) denote the filter
generated by the closed unbounded subsets of A.
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PROPOSITION 4.1. Let A be weakly compact and X C P.A. Then X €
CF, x if and only if {a <X: XNP,ae CFy o} € CF)y.

Proof. Since the forward direction is true whenever cf(\) > &, we only
have to show the converse.

Let E C {a < A: X NP, € CF, o} be aclub. For a € E there
is a function f, : @ X @ — a such that Cy, N{z € Pea : 2Nk € Kk} C
X NP, (Cp, :={x € Pya: fll/(xr x x) C x}). Since k is weakly compact,
there is f : A x A — X such that for every a € FE there is § € E so that
a < fand fl(a x a) = fg](a x a). Suppose that z € Cy and z Nk € k.
There are o and 8 as above with # € P,a. Then x € Cy, C X. Hence
Crn{zePA:zNKkeRCXeCF, . n

COROLLARY 4.2. If X is weakly compact, then every stationary subset of
P reflects at Py for stationary many o < A.

REMARK 4.3. There is an easy limitation as follows. Let
c(k,\) =min{|C| : C C P, is a club}.

If the conclusion of the corollary holds, then ¢(k, A) = A-sup, . ¢(k, @). So
it fails in L for A singular with countable cofinality.

We use the following poset in order to force a stationary subset S of P\
such that S N P,« is nonstationary for any « € (k, \):

(X,a) e R if a< A\, X C P,a, and X N P,f is nonstationary
for any [ € (k, a].
(X,a) <(Y,08) if f<aandY =XnNP,.L.

LEMMA 4.4. R is < cf(\)-distributive.

Proof. Assume 6 < cf(\) and D¢ C R is open dense for { < 0. Let
(X, a) € R. We inductively define a descending sequence ((X¢, ag) | £ < 6)
such that (a¢ | @ < 0) is strictly increasing, cgy1 is a successor ordinal and
(Xey1,0641) € De for every £ < 0.

Let (X, ag) < (X, a) be arbitrary.

Suppose that (X¢, ag) is defined. There is (X', 3) € D¢ such that (X', 3)
< <X§,Oé§ + 2> < <X£,Oé§>. Set X5+1 = X’ and Qey1 = ﬁ + 1. Then
(Xeq1,e41) is an element of D stronger than (X, ag).

Let ¢ be a limit ordinal and (X¢, a¢) be defined for every & < (. Set
Xe = U§<C Xe and a¢ = supg o a¢. Clearly X C Poae and a¢ < A If
(X¢,a¢) € R, the induction step can be continued. Otherwise we stop it. If
we can define (X5, as), it is an extension of (X, o) lying in {J;_5 De.

Suppose our induction stops at some stage, say (. Then ¢ must be a
limit ordinal and X N P,a is stationary for some a < ac.
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If < a¢c and o < a¢ for some § < (, then X¢ = X N P,a¢ and
X¢ N Poa = X¢ N Peais stationary, contrary to (X¢, o) € R. Thus X,
must be stationary in P.o.

Assume first that cf(a¢) < k. For every x € X there is £ < ¢ such
that x € P,o¢ hence Uz < ag < o¢. Thus X¢ is not unbounded in P,o.
Contradiction.

Let cf(ae) > K. Set fBep1 = ag + 1 for £ < ¢ and e = a¢ if { is a
limit ordinal. Then C = {f¢ : { < ¢} is a club of a¢. We show {Jz : z €
X¢}NC =0, contradicting the stationarity of X¢. Let € X, and 7 be the
least ordinal such that z € X,,. By our construction 7 is a successor ordinal,
say, £ +1. At stage £+ 1, gy = B+ 1 for some 3 and (Xeyq,0e41) <
(Xeg1,8) < (Xe, ¢ +2). Hence z € Xeiq = Xeqp1 N P,B. Thus z C § and
x ¢ ag+2. Hence fep1 = e +1 < Uz < agp1 < agp1 + 1 = Beyo. Now
we are done. m

THEOREM 4.5. Let k < A be regular cardinals in V, G R-generic over V,
and S = |{X : (X,a) € G for some a}. Then V[G] = “S is stationary in
P\ and S N Py« is nonstationary for any o € (K, \)”.

Proof. By the above lemma r, A are regular in V[G] and P,ANYV =
PANVIG.

To show S is stationary let (X,a) € G so that (X,a) IF “C C P\ is
a club”. Pick any (X, ) < (X,a). There are (X;,a1) < (Xp,ap) and
x1 € Py such that (Xy,a1) IF “x1 € C”. Choose y; € P\ such that
x1 C y1 and sup(y1) > ag + k. Set Xo = X5 U{y1} and s = Jy1. Then
(Xa, ) is a stronger condition than (X1, ay).

We inductively define a decreasing sequence of conditions ((X,,, ) |
n € w) and increasing sequences (z,, | n € w), (y, | n € w). Suppose that
(X, ), Tpn, and y,, are defined so that z,, C y, and (X,,, ay) IF “x,, € c”.
Since (X, an) < (X, a), (Xn,a,) IF “(3z € C)(yn C )”. Hence there are
(X],al) < (Xn,an) and 2,41 € P such that (X], o)) Ik “y, C zpyq €
C”. Pick Yn+1 € PgA such that 2,41 C yny1 and Jynt1 > o), +K > o+ k.
Set Xn+1 = X7,1 U {yn—l-l} and Apt1 = Uyn+l~

It is clear that X,,11 C Pyapt1, any1 < A, and X,,11 N Peal, = X/ . For
every v < Qnt1, Xnt+1 N Pey = X N P, is nonstationary in P.y. Since
o), + Kk < apt1, there is n € (o, ant1) with n & yp41. Since X! C P.al,,
we have n € x for any x € X,,+1. Hence X,,+1 is nonstationary in Pgou,+1
and (X,41,n41) is well defined.

Let £ = U, e, Tn» B = SUD, e, On, and Y =, o, Xn U {z}.

Clearly = U,,c, ¥n, 8=Uz <\, Y C P:3, and Y N P, = X, for
every n € w.

Let v < 8 and n be the least integer such that v < «,,. Then Y N P,y =
(YNP.a,)N P,y = X,,N P,y is nonstationary. If y € Y —{z}, then y € X,
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for some n € w hence Jy < a,, < . Since k < 3, cf(f) = w < K, and
x € P,f3, there is z € P, such that |Jz = # and zNx = 0. Thus z is
included in no element in Y. Hence Y is nonstationary in P.G. We have
shown (Y, 3) € R and (Y, 3) < (X,,, ) for every n € w. Hence (Y, 3) IF
“(Yn € w)(x, € C)”. Now (V,3) < (X,a) and (Y,5) IF “z e SNC # 0.
This shows stationarity of S.

Any two compatible conditions are in fact comparable with respect to
“c”. Thus X € X' or X D X’ whenever (X,a), (X',0/) € G. Let § <
A. By an easy density argument there is a least ordinal £ > § such that
(X,€) € G for some X. Then SN P,d = X N P,¢ is nonstationary. =

We conclude this section by showing that supercompactness of x has no
influence on this type of reflection.

LEMMA 4.6. If cf(\) > k&, then R is <k-directed closed.

Proof. Suppose 0 < k and {(X¢,a¢) : £ < 0} C R is directed. Any
two members are comparable. Set X = (J._; X¢ and a = sup{ag : £ < 6}
Clearly X C P, and a < A.

For every 3 < « there is £ < 0 such that 8 < a¢. For such {, XN P8 =
X¢ N P is nonstationary. We show X is nonstationary in Pya.

First assume a = a¢ for some ¢ < 6. Then X = X is nonstationary.
Otherwise cf(a) < 6 < k. Since every z € X is a subset of ag for some
¢ <6, Uz < a. Hence X is not unbounded. m

Forcing by R after Laver preparation we get a model in which the fol-
lowing holds:

THEOREM 4.7. It is consistent that x is supercompact and there is a
stationary set X C Py such that X N Py« is nonstationary for any a < .

Koszmider [10], forcing a (k,\) semimorass, proved the existence of a
stationary subset of P;A which is nonstationary in P, X for any X C A
with |X| > « in the generic extension. The forcing is <x-closed and kT -c.c.
There is a k-Kurepa tree and 2% > X in his model.

While in our model in Theorem 4.7 no k-Kurepa tree exists and it is
possible to make 2% = x*.
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