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Abstract. The aim this paper is to present an answer to Problem 1 of Monk [10],
[11]. We do this by proving in particular that if u is a strong limit singular cardinal,
0 = (2°F)*F and 2# = 4t then there are Boolean algebras B, By such that

c(B1)=p, c(Ba) <6 but c(B;*By)=p.

Further we improve this result, deal with the method and the necessity of the assumptions.
In particular we prove that if B is a ccc Boolean algebra and ,u:l“’ < A =cf(\) < 2" then
B satisfies the A-Knaster condition (using the “revised GCH theorem”).

0. Introduction

NoTATION 0.1. (1) In the present paper all cardinals are infinite so we
will not repeat this additional demand. Cardinals will be denoted by A, p,
6 (with possible indices) while ordinal numbers will be called «, 3, ¢, &, ¢,
i, j. Usually ¢ will stand for a limit ordinal (we may forget to repeat this
assumption).

(2) Sequences of ordinals will be called 7, v, ¢ (with possible indices). For
sequences 7)1, 72 their longest common initial segment is denoted by 11 A 7.
The length of the sequence 7 is 1g(n).

(3) Ideals are supposed to be proper and contain all singletons. For a
limit ordinal § the ideal of bounded subsets of § is denoted by JP4. If I is
an ideal on a set X then I" is the family of I-large sets, i.e.

aclIt ifandonlyif aCX &aédl,
and I°¢ is the dual filter of sets with the complements in I.
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NOTATION 0.2. (1) In a Boolean algebra we denote the Boolean opera-
tions by N (and (), U (and |J), —. The distinguished elements are 0 and 1.
In the cases which may be confusing we will add indices to underline in which
Boolean algebra the operation (or element) is considered, but generally we
will not do it.

(2) For a Boolean algebra B and an element x € B we write

2=z and z'=-uz

(3) The free product of Boolean algebras By, Bo is denoted by B; * B,.
We will use % to denote the free product of a family of Boolean algebras.

DEFINITION 0.3. (1) A Boolean algebra B satisfies the A-cc if there is no
family 7 C BT := B\ {0} such that |F| = X\ and any two members of F are
disjoint (i.e., their meet in B is 0).

(2) The cellularity of the algebra B is

c(B) = sup{|F| : FCBT & (Vz,y e F)(z £y = xNy=0)},
¢ (B) = sup{|F|T : FCB" & (Vo,y € F)(x #y = xNy=0)}.

(3) For a topological space (X, 1),

c(X,7) = sup{|U| : U is a family of pairwise disjoint
non-empty open sets}.

The problem can be posed in each of the three ways (A-cc is the way
of forcing, the cellularity of Boolean algebras is the approach of Boolean
algebraists, and the cellularity of a topological space is the way of general
topologists). It is well known that the three are equivalent, though (1)
makes the attainment problem more explicit. We use the second approach.

A stronger property than A-cc is the A-Knaster property. This property

behaves nicely in free products—it is productive. We will use it in our
construction.

DEFINITION 0.4. A Boolean algebra B has the A-Knaster property if for
every sequence (z. : € < \) C Bt there is A € [\]* such that

€1,e2€ A = 2z, Nz, #0.

We are interested in the behaviour of the cellularity of Boolean algebras
when their free product is considered.

THEMA 0.5. When, for Boolean algebras B, B,
C+(B1) < )\1 & C+(]BQ) < )\2 = C+(Bl *Bg) < )\1 + )\2 ?

There are a lot of results about it, particularly if Ay = Ay (see [22] or
[10], more [24]). It is well known that if

AT+ = (A A9)?
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then the answer is “yes”. These are exactly the cases for which the “yes”
answer is known. Under GCH the only problem which remained open was
the one presented below:

THE PROBLEM WE ADDDRESS 0.6 (posed by D. Monk as Problem 1 in
[10], [11] under GCH). Are there Boolean algebras B;, By and cardinals y, 6
such that:

(1) A1 = p is singular, g > Ao = 6 > cf(p) and

(2) ¢(By) = p, ¢(B2) < 0 but ¢(By *xBy) > pu?

We will answer this question proving in particular the following result (see
4.4):
e If 41 is a strong limit singular cardinal, § = (2°/(®))* and 2# = u* then
there are Boolean algebras B;,Bs such that
c(By) =pu, c(Bz) <O but c(B;*By)=put.
Later we deal with better results by refining the method.

REMARK 0.7. On products of many Boolean algebras and square bracket
arrows see [17, 1.2A, 1.3B].

If A — [u]2, is the cardinal @ is possibly finite, B; (for i < ) are Boolean
algebras such that for each j < 6 the free product J;cg\ ;1 B; satisfies the
p-cc then the algebra B = %, _o B; satisfies the A-cc.

[Why? Assume (a$ : i < 6) € [T,-pB; (for ¢ < A) such that for every
¢ < €< A\ for some i = i(C,€), B; =4S Na’ =07, We can find A € [\
and i* < 6 such that i(,§) # ¢* for ¢ < £ from A. Then (af 11 <0, 1 #£3")
for ¢ € A exemplifies that J;cg\ (;+} B; fails the p-cc. We can also deal with
ultraproducts and other products similarly.]

1. Preliminaries: products of ideals

NOTATION 1.1. For an ideal J on § the quantifier (V/i < §) means “for
all 4 < § except a set from the ideal J”, i.e.,

(Vi < 8)p(i) = {i<d:—p(i)} e
The dual quantifier (377 < &) means “for a J-positive set of i < §”.

PROPOSITION 1.2. Assume that \° > \' > ... > A"~! are cardinals, I'
are ideals on X' (for 1 <n) and B C[],_, A. Further suppose that:

(@) (3 ). (31’“17"_1)(@ .1 <n) € B),
(8) the ideal I' is (2)"" )+ -complete (for L +1 < n).
Then there are sets X; C X, X; & I' such that Hl<n X; C B.
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[Note that this translates the situation to arity 1; it is a kind of polarized
(1,...,1)-partition with ideals.]
Proof. We show it by induction on n. Define
Eo:={(Y,7") : 9,7 < A% and for all y; < A',... y,_1 < A"
(V715 m-1) €B & (", 7m-1) € B)}
)\m

Clearly Ej is an equivalence relation on \° with < 2o<m<n A™ = 2N equiv-

alence classes. Hence the set
Ap = U{A : A is an Eg-equivalence class, A € I°}
is in the ideal I°. Let
A= {0 <A 37 ) B ) (Y07, - -y ) € B)Y.

The assumption () implies that A ¢ I° and hence we may choose 73 €
AS \ Ao. Let

n

_ n—1 K\ =
By ={7 € ;5\« ()77 € B}
Since 5 € Aj we are sure that

1 -1
(HI ’yl)(al ’)/n_l)(<’)/1,...,’}/n_1> €B1>.

Hence we may apply the inductive hypothesis for n — 1 and B; to find sets
X, e (I, Xn 1 € (I"Y)7T such that []}-," X; C By, so then

(V11 € X1) ... (V-1 € Xp—1) ({00,715 Yn—1) € B).
Take Xy to be the Fy-equivalence class of v (so Xo € (I°)" as 7¢ € Ao).
By the definition of the relation Ey and the choice of the sets X; we see that
for each vg € Xy,

(V71 € X1) . (Vi1 € X 1) ({05715 -+ s Y1) € B),

which means that [],_,, X; C B. =

n

PROPOSITION 1.3. Assume that A\g > A1 > ... > \,_1 > 0 are cardinals,
Iy are ideals on Ay (for Il <n) and B C[],_, \i. Further suppose that:

(@) (3°90) ... 3 1ym-1)((n : L < n) € B),

(B) I is (M4+1)7)F-complete for each Il <n —1, and [A\,—1]<° C I,,_1.
Then there are sets X; € [N|7 such that [],_,, Xi € B.

Proof. The proof is by induction on n. If n = 1 then there is nothing
to do as I,,_1 contains all subsets of A\, _1 of size < ¢ and A, > o so every
A e Il has cardinality > o.

Let n > 1 and let

ap:={y€X: (thyl) . (31”*1’)%_1)(@7’}’17 . Yn—1) € B)}.
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By our assumptions we know that ag € (Ip)*T. For each v € ap we may
apply the inductive hypothesis to the set
B’Y = {<’Yl) .. 57n71> € H0<l<n)‘l : <77717 s 777171) S B}
and get sets X7 € [M\1]7,..., X)) | € [A\_1]? such that
II x7 ¢ B,
o<i<n

There are at most (A;)? possible sequences (X7,..., X,/ ), and the ideal

Iy is ((A\1)7)"-complete, so for some sequence (Xi,...,X,_1) and a set
a* C ag, a* € (Iy)" we have

(V’Y S CL*)(‘Xv’ly =X; & ... & XZ—I = Xn71)~

Choose X € [a*]? (remember that Iy contains singletons and it is complete
enough to make sure that o < [a*[). Clearly [[,_, X; C B. =

REMARK 1.4. We can use 09 > 01 > ... > 0n_1, 1} is ()\;1*11)‘*'—
complete, [\]<7 C I;.

PROPOSITION 1.5. Assume that n < w and \[*, x[*, P/™, I]*, I'"" and B
are such that for l,m <n:

() IT™ is a x]"-complete ideal on A" (for l,m < n),

(8) P™ CP(A™) is a family dense in (I[™)" in the sense that

(VX € (I]")7)(3a € P")(a C X),
() I ={X L, A - (3% %0) - (3% ) (05 - -+, Ya) € X)) [thus

I is the ideal on [[,., A\[* such that the dual filter (I™)° is the Fubini
product of the filters (IT")¢, ..., (I™)°],
m n n—I
(6) Xt > Ez:mﬂ(’PrZL—l‘ + 2 k=0 AL
() B CIln<n[li<cn NI is a set satisfying

G 0)E" m) . G 02) 0y, - - 1) € B).

Then there are sets Xg, ..., X, such that for m < n:

(a‘) Xm g ngnfm )\;n’
(b) if n,v € Xpn, n # v then

(i) nl(n—m) =vi(n—m),
(i) n(n —m) #v(n —m),
(¢) {n(n—m):n € Xn} € P,
(d) for each (no,...,nn) € I1,,<, Xm thereis (ng,...,ny,) € B such that
(Vm < n)(m < 77,)-
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REMARK 1.5.A. (1) Note that the sets X,, in the assertion of 1.5 may
be thought of as sets of the form X,, = {v,, (@) : a € a,} for some
Um € [[1cp_m A" and ap, € Py

(2) We will apply this proposition with Aj* = A;, I[® = I; and \; > x; >
D k<t Ak

(3) In the assumption (4) of 1.5 we may assume that the last sum on the
right hand side ranges from £ = 0 to n — [ — 1. We did not formulate that
assumption in this way as with n —1[ it is easier to handle the induction step
and this change is not important for our applications.

(4) In the assertion (d) of 1.5 we can have n/ depending on (1o, ..., m)
only.

Proof (of Proposition 1.5). The proof is by induction on n. For n =0
there is nothing to do. Let us describe the induction step.

Suppose 0 < n < w and A, x7*, P/, I]", I (for I,m < n) and B
satisfy the assumptions («)—(g). Let

B* = {(no,mIn,...,muIn) : nm € [T, A" (for m < n) and
(no,m,.-.,mn) € B},
and for 7o € [];<,, A} let
By = {{v1,...,vn) € [ 1y ln:_ol)\lm t Moy V1y. vy Un) € B}
Let J™ (for 1 < m < n) be the ideal on Hln;Ol A" coming from the ideals
I"ie., aset X C [, A" isin J™ if and only if
=3 70) ... (3 Y1) (o - - - Y1) € X).
Let us call the set B; = big if
3 )3 ) (- va) € BL).

We may write more explicitly what the bigness means: the above condition
is equivalent to

1 1
3For5) ... @1 )
B  EE (s Ve (OB ) € B,

which means
(F0) .o (A1)
(3’7’;) e (373)(0703 <’7(%a cee 77711>a ey <737 s 7’777:>> € B)

By the assumptions () and (¢) we know that

0 0 1 1
30) ... @) (F05) - (3 -
(310'761) . (Elln/’yg)(«'yg, oY), (’yé, R WU Vs m)) €B).
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Obviously any quantifier (3%"~/™) above may be replaced by (3y/") and
then “moved” right as for as we want. Consequently, we get

39) ... (32 )E)B0g) ... Brm ) . (B (BT r)
Frm) - GG D) (W s T s oo (VG oY) € B),

which means that
0 * . .
(39) - (3@ (BLg. . u is big).
Hence we find §,...,72_; and a set a € (I2)" such that

(Vv € a)(BZ‘WS ’’’’’ yny 18 big).

Note that the assumptions of the proposition are such that if we know
that B; is big then we may apply the inductive hypothesis to A;", x;", P;™,
I, Jm (for 1 <m <mn,l <n-1)and B; . Consequently, for each v € a
we find sets X7, ..., X such that for 1 <m < n:
(@) X7 S Tlicn—m A"
(b)* if n,v € X)), n # v then
(i) nf(n —m) =v[(n —m), and
(ii) n(n —m) # v(n—m),
(©" {n(n—m):neXn}e P,
(d)* for all (no,...,mm) € [1,,<, X, we have

(G- ) € Biog o )WL < m < n)(vm D 0).

Now we may ask how many possibilities for X)), we have: not too many.
If we fix the common initial segment (see (b)*) the only freedom we have is
in choosing an element of P (see (c)*). Consequently, there are at most
[Pl 4> < A" pOssible values for X7 and hence there are at most

n

S (1Pl + >0 ) <G

m=1 I<n—m

possible values for the sequence (X7,...,X)). Since the ideal I? is x2-
complete we find (X71,...,X,) and aset b C a, b € (I°)*, such that

(Vy € D)X, X7) = (Xu, ..., Xnn)).
Next choose b0 € PY such that bY C b and put
Xo={(10:---»m-1,7) 1Y €b}.

Now it is a routine to check that the sets Xg, X1,...,X, are as required
(i.e., they satisfy clauses (a)—(d)). m
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2. Cofinal sequences in trees
NOTATION 2.1. For a tree T C %>y the set of §-branches through T is
lims(T) := {n € °p: (Vo < 8)(nle € T)}.
The ith level (for i < ) of the tree T is
Ti:=TNu

and T<7; = Uj<i Tj.

If n € T then the set of immediate successors of nin T is

succy :=={veT :n<dv &lg(v) =1g(n) +1}.

We shall not distinguish strictly between succr(n) and {a : n™(a) € T'}.

DEFINITION 2.2. (1) K, s is the family of all pairs (T, A) such that
T C %> is a tree with § levels and A = (A, : n € T) is a sequence of
cardinals such that for each n € T we have succr(n) = A, (compare the

previous remark about not distinguishing succr(n) and {a : n ™ (a) € T'}).
(2) For a limit ordinal ¢ and a cardinal p we let

Kids == {(T,\1): (T,\) € Ky, I =(I,:n€T),
each I, is an ideal on \,, = succr(n)}.
Let (T,\, 1) € IC;% and let J be an ideal on § (including JP¢ if we do not
say otherwise). Further let 7 = (4 : @ < A) C lims(T") be a sequence of

é-branches through T'. )
(3) We say that 7 is J-cofinal in (T, X\, I) if
(a) ma # np for distinct o, 5 < A,
(b) for every sequence A=(A,:n € T) € [I,er Iy there is o < A
such that
af<a<d = Vi<d)MalG+1) ¢ A1)
(4) If I is an ideal on A then we say that (7,1) is a J-cofinal pair for
(T, 7 1) if
(a) na # np for distinct o, B < A,
(b) for every sequence A = (A, :n €T) € ][, cr Iy thereis A € I
such that
aeX\A = (Vi<d)mal(i+1) & Ay 1)
(5) The sequence 7 is strongly J-cofinal in (T, X, I) if
(a) o # np for distinct o, B < A,
(b) for every n < w and functions Fy, ..., F, there is a* < A such

that if m <n, a9 < ... < a, < A, a* < «a,, then the set of i < ¢
such that:
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(i) (VL <m)(Ago, i < Ang,, 1i) and

(11) Fm(nao T(H‘l)a sy a1 r(z—i_l)u Ny, “7 <oy N, “) S Inam I
(and well defined) but

77am r(1+1) E Fm(nao r(l+1)7 v 777am_1 f(l‘f'l)y 77am Wa A 777an rl)7
is in the ideal J.

[Note: in (b) above we may have a* < ay, this causes no real change.]
(6) The sequence 7 is stronger J-cofinal in (T, \, I) if

(a) ma # np for distinct o, 5 < A,

(b) for every n < w and functions Fy, ..., F, there is a* < X such
thatif m <n, ag < ... < a, < A, o < a,, then the set of i < §
such that:

(11) Fm(nao T(H‘l)v <oy Mo 1 T(H‘l)v Nowsr, “7 s Na, “) € IT]am 4
(and well defined) but

Mo | (i41) € Fin (oo [(i41), -+ 3 Moy [(041), M, [ - M, 1),
is in the ideal J.
(7) The sequence 7] is strongest J-cofinal in (T, \, I) if
(a) o # np for distinct o, B < A,

(b) for every n < w and functions Fy, ..., F, there is a* < X such
thatif m <n, apg < ... < a, < A, a* < ay,, then the set of 7 < §
such that:

(i) @ <m)(Ay,,1i = Ay, 1i) or
(11/) Fm(nao f(l—f—l), sy Nam r(l+1)7 Novr, riv s Nag, fl) € Iﬁam [
(and well defined) but
Noum 1 (i41) € Frpy(Mao [(+1), -+ s Moy [(041), Ny, 125+ -+ 5 My, 19,
is in the ideal J.
(8) The sequence 7 is big J-cofinal in (T, \, I) if

(a) na # np for distinct o, B < A,
(b) for every n < w and functions Fy, ..., F), there is a* such that
ifag <...<a, and o < a,,, m <n then the set

{i <010, (i) € Fn(W)i<n € Ing,, 1i}
is in the ideal J, where
Moy [(+1) i Ao 1 < Ay, 1i OF

v = )‘77&1 4 = )\Uam It and 770‘1 (Z) < na7n (Z)7
Ny, [ if not.
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(9) In almost the same way we define “strongly* J-cofinal”, “stronger*
J-cofinal” and “strongest* big J-cofinal”, replacing the requirement that
o* < ayy, in 5(b), 6(b), 7(b) above (respectively) by a* < ag.

REMARK 2.3. (a) Note that “strongest J-cofinal” implies “stronger .J-
cofinal” and this implies “strongly J-cofinal”. “Stronger J-cofinal” implies
“J-cofinal”. Also “bigger” = “big” = “cofinal”, “big” = “strongly”.

(b) The different notions of “strong .J-cofinality” (the conditions (i) and
(")) are to allow us to carry some diagonalization arguments.

(c) The difference between “strongly J-cofinal” and “strongly™ J-cofinal”
etc. is, in our context, immaterial. We may in all places in this paper replace
the relevant notion with its version with “«” and no harm will be done.

REMARK 2.4. (1) Recall pcf: An important case is when (\; : ¢ < §)
is an increasing sequence of regular cardinals, A\; > []
I, = J}\’f and A = tcf(J [, o5 Ai/J).

(2) Moreover we are interested in more complicated I,,’s (as in [23, §5]),
connected to our problem, so “the existence of the true cofinality” is less
clear. But the assumption 2# = ™ will rescue us.

(3) There are natural stronger demands of cofinality since here we are
not interested just in x,’s but also in Boolean combinations. Thus naturally
we are interested in behaviours of large sets of n-tuples (see 5.1).

Ajy Ap = )‘lg(n)?

7<i

PROPOSITION 2.5. Suppose that (T, \,I) € Kiﬂé, 7= 0a:a<A C
lims(T') and J is an ideal on 6, J 2 JPd.

(1) Assume that
(©)  ifa<B <A then (VVi<8)(Npri < Agri)-

Then the following are equivalent:

2

“n is strongly J-cofinal for (T, \, )
“n is stronger J-cofinal for (T, \,1)7,
“n is strongest J-cofinal for (T, \, 1),

e “fis big J-cofinal for (T, X\, I)”.

(2) If 1, O J}ff and A\, = Ng() for each v € T and the sequence 1 is
stronger J-cofinal for (T, X, I) then for some a* < X the sequence (1, : a* <
a < A) is < j-increasing.

B) If n € T, = X\, = \; and 7 is <j-increasing in ||
s equivalent to “stronger”.

ics Ni then “big”
PROPOSITION 2.6. Suppose that:

(1) (A\; : @ < §) is an increasing sequence of regular cardinals, where
6 < Ao is a limit ordinal,

@) T=Uics i Nis In = Lgm) = J;’i(n) and Ay = M),
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(3) J is an ideal on 6, X = tcf([]

sequenceﬁ—<77a 04<)\>CH1<5 i
(4) {nali:a < A} < A; for each i <6 (so, e.g., \i > []

Then the sequence 7 is J-cofinal in (T, \,I).

ics NifJ) and it is exemplified by a

Aj suffices).

71<4

Proof. First note that our assumptions imply that each ideal I;, = I3,
is [{nallg(n) : o < A}|*-complete. Hence for each sequence A = (A, :
n€T) €ll,er Iy and i <4 the set

A; = U{Ana N < A}
is in the ideal I;, i.e., it is bounded in \; (for i < §). (We should remind here
our convention that we do not distinguish A; and succr(n) if 1g(n) = i, see
2.1.) Take n* € J], 5 A: such that for each i < § we have A; C n*(i). As the
sequence 7) realizes the true cofinality of [, 5 Ai/J we find a* < X such that
a" <a<A = {i<d:n.(i) <n (@)} e J,

which allows us to finish the proof. =

It follows from the above proposition that the notion of J-cofinal se-
quence is not empty. Of course, it is better to have “strongly (or even:
stronger) J-cofinal” sequences 7. So it is nice to find that sometimes the
weaker notion implies the stronger one.

PROPOSITION 2.7. Assume that 8 is a limit ordinal, p is a cardinal, and
(T,\ 1) € lC‘d . Let J be an ideal on § such that J 2 JP (which is our
standard hypotheszs) Further suppose that
(®) if n € T; then the ideal I, is (|T;] + > {\ : veT; & A\,<\,})*-

complete.
Then each J-cofinal sequence 7 for (T, \, I) is strongly J-cofinal for (T, X, I).

If, in addition, n # v € T; = X, # A, then 7 is big J-cofinal for
(T, \, I). Also, if in addition
neT, = G@weT) =X\) VI3 eT)\ =\, & I, normal]
then 1 s big J-cofinal.

Proof. Let n < w and Fy,...,
we define a sequence A = (4, : n
My« -y Mn) C T; we put

F, be (n + 1)-place functions. First
€ T). For m < n and a sequence

(nm, Mn) U{F V(),.. s Vm—1,Nm,y - - 7”%) SV ey Vm—1 € CZ—ZH*h

(Y0, -y Umn—1, My - - -y ) € dom(F),
)\yori < )‘77?‘ . '7/\l/m—1fi < )‘Tlm

and F(V()u oy Um—1yMmy - - - 77’11) S I’r]m})
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and next for n € T; let

A, = LJ{AZLWM+1 ’’’’’ )y STES T & Mgty -y € Ti}e
Note that the assumption (®) was set up so that Aj7 €I, and the

sets A, are in I, (for n € T').
By the J-cofinality of 7, for some a* < A we have

af<a<d = (Vi<d)mall+1) ¢ A, ).

We are going to prove that this a* is as required in the definition of strongly
J-cofinal sequences. So suppose that m < n, ag < ... < a, < A and
a* < ap,. By the choice of o the set A := {i <0 :nq,, [(i +1) € Ay, 1}
is in the ideal J. But if ¢ < § is such that
b (Vl < m)()\nal fl < )\nam fl)v
b F(nao F(Z + 1) Mo, T(Z + 1), N, [y - -3 Na, TZ) € Inam i, but
Mo, [(i+1) € F(Nagl(@E+ 1), sNay_, 1G4+ 1), 00, 4.y Na, [7)
then clearly n,, [(i +1) € AT y and so i € A.

<77am H:-“vnan [
The “big” version should be clear too. m

PROPOSITION 2.8. Assume that p is a strong limit uncountable cardinal
and (p; i < &) is an increasing sequence of cardinals with limit . Further
suppose that (T,\, 1) € IC;%, |T;| < pi (fori < 98), A\, < p and each I,
i ,ufg(n)-complete and contains all singletons (for n € T). Finally assume
28 =t and let J be an ideal on 6, J 2 Jg’d. Then there exists a stronger
J-cofinal sequence 7 for (T, \,I) of length u* (even for J = JP4). We can
get “big” if

0#ENET, & Ny=2X, = (@MveT)\ =\, & I, normal.
Proof. This is a straight diagonal argument. Put

Y := {(Fo,...,F,) :n <w and each Fj is a function with
dom(F) C T"*', mg(F) C U, erln}-

Since |Y] = p# = p* (remember that g is strong limit and X, < p for

n € T) we may choose an enumeration Y = {(F5, .. .,FS§> : & < pt}. For

each ¢ < p* choose an increasing sequence <Af : 1 < J) such that ].Af\ <

and ¢ = J,; 4 Ag. Now we choose by induction on ¢ < p* branches ¢ such

that for each ¢ the restriction 7n¢[i is defined by induction on 7 as follows.
If i = 0 or ¢ is limit then there is nothing to do.

Suppose now that we have defined n¢[i and ne for £ < . We find ¢ ()
such that:
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(@) me (i) € Ay,
(B) if e € Af, m < Ne, QQy..vy Q1 € Af (hence oy < ¢ so 74, are
already defined), vy 41,...,v, € T; and
an(ﬁao f(l + 1)’ sy Moy 1 T(Z + 1)a Uls fi, Vm41y--+y Vn) € Ing [
and well defined, then

nCr(l+ 1) ¢ FTErL(nao r(l+ 1)7 . 'anamfl [(Z+ 1)7”(”77/771-"-17"' 77/71)7

() nel(i+1) & {nel(i+1) e € A}

Why is it possible? Note that there are < o + |AS| + [AS|<N + |Tj| <
p; negative demands and each of them says that 7¢[(i + 1) is in no set
from I, }; (remember that we have assumed that the ideals I i contain
singletons). Consequently, using the completeness of the ideal we may satisfy
the requirements (a)—(v) above.

Now of course 7, € lims(T"). Moreover if ¢ < ¢ < p then (i < d)(e €

AS), which implies (3i < 8)(n-](i + 1) # n¢ (i + 1)). Consequently,
e<(<pt = mFn

Checking the demand (b) of “stronger J-cofinal” is straightforward: for
functions Fy, ..., F, (and n € w) take € such that

(Fo, ..., Fy) = (F§,... . FE)

and put a® = e+ 1. Suppose now that m < n, ag < ... < a, < A, o™ < apy.
Let i* < 0 be such that for i > i* we have

£,00, ..., Qpm_1 € AF™.
Then by the choice of n,,, [(i + 1) we see that for each i > i*, if
F(ao [0 4+1), s o 104 1), ¢ 1 N0 T - 31 18) € Ly iy
then
Mo [0 E Foy (Mg [0 4 1), -3,y [+ 1), 0 T 15+ e, [2). W

REMARK 2.9. The proof above can be carried out for functions F' which
depend on (Mg, - -« s Moy 15 Movyy, 1By -« - s Ny, [9). This will be natural later.

Let us note that if the ideals I, are sufficiently complete then J-cofinal
sequences cannot be too short.

PROPOSITION 2.10. Suppose that (T, \,I) € ICL% is such that for each
n € T;, i <6, the ideal I, is (k;)*-complete ([N, C I, is enough). Let
J 2 Jbd be an ideal on § and let ) = (N, : o < 8*) be a J-cofinal sequence
for (T, )\, I). Then

0" > limsupk; and consequently cf(6*) > limsup ;.
J J
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Proof. Fix an enumeration 6* = {a. : € < |0*|} and for a < 6* let {(«)
be the unique ¢ such that o = a¢. For n € Tj, @ < 9, put

A, = {v esucer(n) : (Fe < k;)(v <)}

Clearly |A;| < x; and hence A, € I,. Apply the J-cofinality of 7 to the
sequence A = (A, : n € T). Thus there is o* < 0* such that for each
a € [a*,0") we have

(Vi < 8)(nal(i+1) & Ay pi)
and hence (V/i < §)(¢(a) > k;) and consequently
((a) > limsup k;.
J

Hence we conclude that [0*| > limsup k.

For the “consequently” part of the proposition note that if (n, : o < 6*)
is J-cofinal (in (T, \,I)) and A C &* is cofinal in 6* then (n, : a € A) is
J-cofinal too. m

REMARK 2.11. (1) So if we have a J-cofinal sequence of length §* then
we also have one of length cf(0*). Thus assuming regularity of the length is
natural.

(2) Moreover the assumption that the length of the sequence is above |0]+
|T’| is very natural and in most cases it will follow from the J-cofinality (and
completeness assumptions). However we will try to state this condition in
the assumptions whenever it is used in the proof (even if it can be concluded
from the other assumptions).

3. Getting (k,not)\)-Knaster algebras

PROPOSITION 3.1. Let A\, o be cardinals such that (Vo < o)(21%l < \) and
o 1s reqular. Then there are a Boolean algebra B, a sequence (y, : o < A) C
BT and an ideal I on X\ such that:

(a) if X C A\, X €1 then (3a, 5 € X)(B = ya Nys =0),

(b) the ideal I is o-complete,

(c) the algebra B satisfies the p-Knaster condition for any regular un-
countable p (actually, B is free).

Proof. Let B be the Boolean algebra freely generated by {z, : @ < A}
(so the demand (c) is satisfied). Let A = {(a,5) : a < [ < A} and
Y(a,8) = Za — 28 (# 0) (for (a,B) € A). The ideal I of subsets of A is
defined by:

e aset X C Aisin I if there are ( < o, X. C A (for £ < () such that
X C UKC X, and for every ¢ < ¢ 10 tWo Y(a,,8,)> Y(as,8,) € Xe are
disjoint in B.
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First note that
Cram 3.1.1. A¢ 1.

Proof. If not then we have witnesses ( < o and X, (for ¢ < () for
it. So A = UE<C X. and hence for (o, ) € A we have £(«, 3) such that
Y(a,8) € Xe(a,p)- S0 &(-,+) is actually a function from [A]? to ¢ < 0. By the
Erdés-Rado theorem we find o < 8 < v < X such that e(a, 3) = (8, 7).
But

Y(8) MY = (2a —23) N (28 — 24) =0,
so («, ), (B,7) cannot be in the same X.—a contradiction. m

To finish the proof note that I is o-complete (as o is regular), and
if X ¢ I then, by the definition of I, there are two disjoint elements in
{Wa,p) : (a,8) € X}. Finally [A| =)\ =

DEFINITION 3.2. (a) A pair (B,y) is called a A\-marked Boolean algebra
if B is a Boolean algebra and § = (y, : @ < A) is a sequence of non-zero
elements of B.

(b) A triple (B,y,I) is called a (A, x)-well marked Boolean algebra if
(B,y) is a A-marked Boolean algebra, x is a regular cardinal and [ is a
(proper) x-complete ideal on A such that

{ACA: (Va,B€ A)B = yaNyg #0)} C I.

By a A-well marked Boolean algebra we will mean a (X, Rg)-well marked one.
As in the above situation A can be read off from y (as A = lg(y)) we may
omit it and then we may speak just about well marked Boolean algebras.

REMARK 3.3. Thus Proposition 3.1 says that if A, o are regular cardinals
and
(Va < o) (2% < N)
then there exists a (A, o)-well marked Boolean algebra (B, 3, I) such that B
has the x-Knaster property for every k.

DEFINITION 3.4. (1) For cardinals p and A and a limit ordinal ¢, a
(6, t, A)-constructor is a system

C = (T7 )‘7777 <(B777g7]) 'n € T>)
such that:
(a) (T,X) € Kus,
(b) 7 = (mi : i € A) where n; € lims(T) (for i« < \) are distinct
d-branches through T,
(c) for each n € T, (B,,y,) is a A\,-marked Boolean algebra, i.e.,

Un = (Wn—~) - @ < Ap) C IB%;“ (usually this will be an enumera-
tion of IB%:]F)
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(2) Let C be a constructor (as above). We define Boolean algebras By =
Bred = Bred(C) and B; = Bereen = Beree?(C) as follows.
B4 is the Boolean algebra freely generated by {z; : i < A} except that if

Q05 in_1 <A, V=1C=n,[C=...=n, ,I¢, B, ﬂ Yni, 1(c+1) =0
I<n

then ),_,, s, = 0. [Note: we may demand that the sequence (n;,(¢) : [ < n)

is strictly increasing, this will cause no difference.]

Beree? is the Boolean algebra freely generated by {x; : i < A} except
that if

v=mnil¢=mn51¢,  mi(C) #ni(C); By E Unircor) NYnyice1) 70
then z; Nz; = 0.

REMARK 3.5. (1) The equations for the green case can look strange but
they have to be dual to the ones of the red case.

(2) “Freely generated except ...” means that a Boolean combination is
non-zero except when some (finitely many) conditions imply it. For this it
is enough to look at elements of the form

¢ t—
e N B T
0 In—1

where t; € {0, 1}.

(3) Working in the free product B4 xB&® we will use the same notation
for elements (e.g., generators) of B™Y as for elements of B&™*", Thus z; may
stand either for the corresponding generator in B4 or B&'®. We hope
that this will not be confusing, as one can easily decide in which algebra the
element is considered from the place of it (if z € B™d, y € B&™" then (z,y)
will stand for the element & Nprea,gareen y € B4 + BE™e"), In particular we
may write (x;,z;) for an element which could be denoted by xted N 28"

i
REMARK 3.6. If the pair (B*4, B&™°") is a counterexample with the free

product B9 « B&ree" failing the A-cc but each of the algebras satisfying that

condition then each of the algebras fails the A-Knaster condition. But Bred

is supposed to have the k-cc (x smaller than A). This is known to restrict A.

PROPOSITION 3.7. Assume that C = (T, A\, 7,{(By,7,) : n € T)) is a
(8, 1, A)-constructor and J 2 JP4 is an ideal on § such that:

(a) = (n; : 1 €T) is J-cofinal for (T,j\,f),
(b) if X € I,F then
(B, 8 € X)(By E Yn—(a) N Yn—(3) = 0).

Then the sequence (x2°4 : a < \) exemplifies that B**4(C) fails the A\-Knaster
condition.
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EXPLANATION. The above proposition is not just something in the di-
rection of Problem 0.6. The tuple (B™4, z, .J>) is like (By;, ¥y, I)), but J24
is nicer than the ideals given by previous results. Using such objects makes
building examples for Problem 0.6 much easier.

Proof (of Proposition 3.7). It is enough to show that for each Y € [A]*
one can find ¢, € Y such that

Bo.ti E Ynori+1) N Yner(i+1) = 0
where ¢ = 1g(n. An¢). For this, for each v € T' we put
A, ={a< X :(BeeY)v {a)<an)}.
CrAamM 3.7.1. There is v € T such that A, & I,,.

Proof. First note that by the definition of A,, for each € € Y we have
(Vi < 6)(ne"(i) € Agepi)-

Now, if we had A, € I, for all v € T' then we could apply the assumption
that 7 is J-cofinal for (T', A, I') to the sequence (4, : v € T'). Thus we would
find o* < X such that

aF<a< A = {i<51na(i)¢Anari}6J7

which contradicts our previous remark (remember |[Y| = )\). m

Due to the claim we find v € T such that A, ¢ I,. By part (b) of our
assumptions we find «, 3 € A, such that

B, ): Yv~(a) N Yv~(B)y = 0.
Choose ¢,¢ € Y such that v (a) < 7., v(8) < n¢ (see the definition of
A,). Then v = n. An¢ and
By = . 1(i+1) VYnci(irn) =0
(where i = lg(v)), finishing the proof of the proposition. m

LEMMA 3.8. Let C = (T, N\, i, (B, 9n) : 7 € T)) be a (6, u, \)-constructor
such that

(%) forn € T, the Boolean algebras B, satisfy the (21°))*-Knaster con-
dition.

Then the Boolean algebra B**Y(C) satisfies the (2/°1) -Knaster condition. In
fact we may replace (219Nt above by any reqular cardinal 6 such that

(Va < 0)(Jafl®! < 6).
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To deduce that B4(C) satisfies the (21°) -cc it is enough to assume, instead

of (%),

(k%) formn €T, every free product of finitely many of the Boolean alge-
bras B,, satisfies the (21°1)*-cc.

REMARK. (1) Usually we will have § = cf(u).

(2) Later we will get more (e.g., [0|T-Knaster if (T, 7) is hereditarily free,
see 5.12, 5.13).

Proof (of Lemma 3.8). Let § = (21°)* and assume (%) (the other cases
have the same proofs). Suppose that z. € B4\ {0} (for ¢ < 6). We start
with a series of reductions which we describe fully here but later, in similar
situations, we will state the result of the procedure only.

Standard cleaning. Each z. is a Boolean combination of some genera-
tors x;,,...,x;, ,. But, as we want to find a subsequence with non-zero
intersections, we may replace z. by any non-zero z < z.. Consequently, we
may assume that each z. is an intersection of some generators or their com-
plements. Further, as cf(f) = 6 > Ry we may assume that the number of
generators needed for this representation does not depend on ¢ and is equal
to, say, n*. Thus we have two functions

1:0xn*— X\ and t:0xn*—2
such that for each € < 0,
Ze = m (mi(s,l))t(EJ)
l<n*

and there is no repetition in (i(e,1) : | < n*). Moreover we may assume that
t(e,l) does not depend on ¢, i.e., t(e,1) = t(l). By the A-system lemma for
finite sets we may assume that ((i(¢,l) : | < n*):e < 6) is a A-system of
sequences, i.e.:

(*)1 i(E,ll) = i(E,lg) = [ =,
(*)2 for some w C n* we have

(381 < e < 0)(1(81,Z) = ’i(82,l)) iff (v51,62 < 9)(2(61,Z) = i(€2,l))
ifft [ ew.
Now note that, by the definition of the algebra B9,
(%)3 2e, N 2z, = 0 if and only if
l * l *
(il si<n®, () =0} n({ail ) sl <n*, (i) =0} =0.
Consequently, we may assume that

(V1 < n*) (Ve < 0)(t(1) = 0).
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Ezxplanation of what we are going to do now. We want to replace the
sequence (z. : € < 0) by a large subsequence such that the places of splitting
between two branches used in two different z.’s will be uniform. Then we
will be able to translate our 6-cc problem to one on the algebras B,,.

Let

A, ={ve 0> (Fi <)@l <n™)(v < migy)}
and let B, be the closure of A.:
B.:={0€°2u:pe A, or lg(p) is a limit ordinal and
(V¢ <lg(e))(el¢ € Ac)}
Note that |A.| < |¢| - |6] and hence |B.| < |A.|<I°l < §. Next we define (for
e<0,l<n")
C(e,1) :==sup{¢ < 6 : (e, I¢ € Be}.

Thus ((¢,1) <1g(niey) = 0. Let S = {e <0 :cf(e) > [6|}. Foreache € S

we necessarily have
Nien1¢(e,) € B- and B. = | B
E<e

l(11"emember that cf(e) > |6 and for limit € we have A. = |J_A¢) and
ence

Nie) [C(€,1) € Beeyy  for some {(e,1) < e.

Let £(e) = max{{(e,l) : | < n*}. By the Fodor lemma we find £* < 6 such
that the set

S1:={ee8:{)=¢"}
is stationary. Thus 7;;)[¢(e,]) € Be- for each € € &1, I < n*. Since

|B§*|, ’(5‘ < 6 we find Yoy .. Upx_1 € B&* and Oé(ll,lg) <9 (fOl" 1 <ly < n*)
such that the set

52 = {8 € 81 : (VZ < n*)(ni(e,l) K(&l) = Vl)
& (Y1 < Iy < n*) (18 (i) AMietz) = i, 12))}

is stationary. Further, applying the A-system lemma we find a set Sz € [Ss]?
such that

{Mien(g(v)) : 1< n®) e € Sz}

forms a A-system of sequences.
For ¢ € S3 and v € T define

0 1= (Wi 1041 11 <075 v Qi) € By

CrLAM 3.8.1. For each € € Sz, v € T the element b5, (of the algebra B,)
18 MON-2€r0.
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Proof. This follows from the definition of B9 and the fact that
ze 0, as

b, =0 = ﬂ{xm(e,w l<n, vanient=0 = z2=0m

Since for each [ < n* the algebra B,, has the §-Knaster property we find
a set Sy € [S3]? such that for each I < n* and 1,e5 € Sy we have

e1#£es = BINEE2#£0inB,,
Now we may finish by proving the following claim.
CLAIM 3.8.2. For each €1,e9 € Sy,
B = 2., Nz, # 0.

Proof. Since z¢, Nz, is just the intersection of generators it is enough
to show that (remember the definition of B*4):

(®)  for each e1,e9 € S4 and for every v € T,
B, ): ﬂ{ym[(lg(u)—l-l) S {i(glal)7i(€27l) < n*} and v < 777,} 7&0

If v = v, I <n* then the intersection is by} N b;?, which is not zero by the

choice of S4. So suppose that v & {v; : | <n*}. Put
uy = {i: v < n; and for some | < n* either i =i(e1,l) or i =i(eq,l)}.
If
{ni(lg)) 1 i € un} C{ni(e, y(I8(V)) : 1 <™ & v <A mye, 1}
then we are done as b7 # 0. So there is [; < n* such that v < 7., ;,) and
Nier, i) [1g(W) +1) € {nie,ny [(g(v) +1) 1 <n™ & v <A njigey) }-
Similarly we may assume that there is [ < n* such that v <1 n;, ;,) and
Ni(esitn) [ (18(V) + 1) & {nice, iy [(A8(v) +1) : L <0 & v <Ay, 1y }-
By symmetry we may assume that e; < e5. Then
V= "MNi(eq,l2) “g(y) € A€1+1 C B€2
and hence ((e2,l2) > lg(v). By the choice of Sy (remember e1,e5 € Sy C Ss),
we get v < vy,. But we have assumed that v # v,, so v < v;,. Hence (once
again due to £1,e9 € o)
ni(ag,lg) r(lg(y) + 1) = ni(&l,l2) I‘(lg(y) + 1) = I/l2 r(lg(y) + 1)7
which contradicts the choice of [5. m

This completes the proof of Lemma 3.8. m

REMARK 3.9. We can strengthen “0-Knaster” in the assumption and
conclusion of 3.8 in various ways. For example we may have “intersection
of any n members of the final set is non-zero”.
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DEFINITION 3.10. Let (B, ) be a A-marked Boolean algebra, k < A. We
say that:

(1) (B, y) the k-Knaster property if B satisfies the condition in the def-
inition of the x-Knaster property (see 0.4) with restriction to subsequences
of g.

(2) (B,y) is (k,not\)-Knaster if

(a) the algebra B has the k-Knaster property, but
(b) the sequence § witnesses that the \-Knaster property fails for B.

CONCLUSION 3.11. Assume that p is a strong limit singular cardinal,
A =20 =yt and 0 = (24t Then there exists a A-marked Boolean
algebra (B, y) which is (6, not\)-Knaster.

Proof. Choose cardinals u?, p; < p (for i < cf(u)) such that:

(@) cf(p) < pf, )
(B) Ijci g < s pa = (204)7,
() (i i < cf(p)) and (u? : i < cf(p)) are increasing cofinal in p.

(Possible as p is strong limit singular.) By Proposition 3.1 we find p;-marked
Boolean algebras (B;, 7*) and (u?)"-complete ideals I; on y; (for i < §) such
that:

(a) if X C ps, X € I; then (3o, 8 € X)(B; = yl, Nyj = 0),
(b) the algebra B; has the (2°f(*))*_-Knaster property.
Let T = U, ccp() [j<i y and for v € T; (i < cf(p)) let I, = I;, B, = B,

7, = ' and \, = p;. Now we may apply Proposition 2.8 to u, (u? : i <

cf(u)) and (T, A, I) to find a stronger Jff‘%u)—coﬁnal sequence 7 for (T, \, 1)

of length A. Consider the (cf(u), i1, \)-constructor C = (T, \, 7, (B, 5,) :
v € T)). By (b) above we may apply Lemma 3.8 to deduce that the algebra
Bd(C) satisfies the (2°f(*))T-Knaster condition. Finally we use Propo-
sition 3.7 (and (a) above) to conclude that (B*4(C), (x¥*d : o < \)) is
(0, notA)-Knaster. m

PROPOSITION 3.12. Assume that k is a regular cardinal such that (Vo <
®) (||l < k), A= (N i < &) is an increasing sequence of reqular cardinals
such that k < o, [];2; A < Ai (or just maxpcf{); : j <i} <) fori<§
and \ € pcf{\; : i < }. Further suppose that for each i < § there exists a
Xi-marked Boolean algebra which is (k,not\;)-Knaster. Then there exists a
A-marked Boolean algebra which is (k,not\)-Knaster.

Proof. If A = \; for some ¢ < ¢ then there is nothing to do. If A < \;
for some ¢ < ¢ then let &« < § be the maximal limit ordinal such that
(Vi < a)(A; < A) (it necessarily exists). Now we may replace (\; : i < &) by
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(A\i 17 < a). Thus we may assume that (Vi < 0)(A; < A). Further we may
assume that
A =maxpcf{\; : 1 <}

(by [22, I, 1.8]). Now, due to [22, II, 3.5, p. 65], we find a sequence 77 C
[I;<s Ai and an ideal J on § such that:

(1) J 2 Jpd and X = tef([[;o5 Ni/J)
(naturally: J = {a C § : maxpcf{\; : i € a} < \}),

(2) 7= (ne : € < \) is <;-increasing cofinal in [], 5 Ai/J,

(3) for each i < 4§, [{neli:e < A} <\

Let T'= ;s [];j<;Aj and for v € T; (i <0) let Ay = A, I, = Pd,

It follows from the choice of 77, J above and our assumptions that we may
apply Proposition 2.6 and hence 7 is J-cofinal for (T, A\, I). For v € T let
(B,,7,) be a A\ ,-marked (k,not)\,)-Knaster Boolean algebra (exists by our
assumptions). Now we may finish using 3.8 and 3.7 for C= (T, A, 7, {((B,, ¥)) :
n € T)), I and J (note the assumption (b) of 3.7 is satisfied as I,, = J}\;‘f;
remember the choice of (B, 7,)). =

REMARK 3.13. Note that from the cardinal arithmetic hypothesis cf(u)
=% XX < x < u pt =X\ < 2X alone we cannot hope to build a coun-
terexample. This is because of [15, §4], particularly Lemma 4.13 there. It
was shown in that paper that if y<X < x; = x;X* then there is a xT-cc
x-complete forcing notion P of size x; such that

IFp “if |B| < x1, B |= x-cc then BT is the union of x ultrafilters”.

More on this in Section 8. So the centrality of A € RegN(u,2"], u strong
limit singular, is very natural.

4. The main result

PROPOSITION 4.1. Suppose that C is a (9, u, A)-constructor. Then the
free product B4 (C) xB&*(C) fails the A-cc (so c(B*d(C)*B&*°(C)) > N).

Proof. Look at the elements (x;, z;) € B xB&™" for i < \. It follows
directly from the definition of the algebras that for each i < j < A,

. d d d
either B™ 2] Nai* =0 or B |= 3N x?reen =0.
Consequently, the sequence ((z;,x;) : i < \) witnesses the assertion. m
PROPOSITION 4.2. Suppose that n < w and forl <n:

(1) xi, \i are regular cardinals, x; < A\; < Xi+1,
(2) By, g1, L) is a (A, x1)-well marked Boolean algebra (see Defini-
tion 3.2), 1 = (y! i < \)),
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(3) B is the Boolean algebra freely generated by {y, : n € [[,<,, \i} except
that if -

Migy---sMip_, € H Al: Mig rl = ", rl = =iy ”7 Bl ': ﬂ yéim(l) =0
1<n m<k
then (N, <k Yn,,, = 0. [Compare the definition of the algebras B 4(C).]
(4) T2 {B'C ey M s ~(37%0) .. (379) (30 - 10) € B}
Then:
(a) if all the algebras By (for | < n) have the 0-Knaster property and 0
s a regular uncountable cardinal then B has the 6-Knaster property,

(b) I is a xo-complete ideal on [, \i,
(¢) if Y C([[<, \)" is such that

(Fno) ... @) (o, - .., m0) €Y)
then there are (nb, ..., (nG,--.,mn) €Y such that for alll < n,

B =y Ny = 0.

Proof. (a) The proof that the algebra B satisfies the §-Knaster condi-
tion is exactly the same as that of 3.8 (actually it is a special case).

(b) Should be clear.

(c) For I,m <mput x]* =x1, A" =N, I[[" =1, P" = {{a, B} T \; :
B, =y N ylﬁ = 0}, B =Y. It is easy to check that the assumptions of
Proposition 1.5 are satisfied. Applying it we find sets X, ..., X, satisfying
the appropriate versions of clauses (a)—(d) there. Note that our choice of
the sets P/ and clauses (b), (c) of 1.5 imply that

_{Vm7 m}C H Al V;nf(n—m):’/ng(n—m),

I<n—m

n m Fyu/ (n— m)nyu”(n m) =0.

Look at the sequences (1), ...,v.), (vf,...,v)). By clause (d) of 1.5 we find
Moy o)y (W - 1)) € Y such that for each m < mn,

Vm g nmJ Vm Sl nm
Now, the properties of v/, v/ and the definition of the algebra B imply that
for each m < mn,

B ): yn;n ﬂymyll =0. =
LEMMA 4.3. Assume that X is a reqular cardinal, |5] < X, J is an ideal
on § extending JE4, C = (T, \, 7, (B, 4n) : m € T)) is a (8, p, \)-constructor
and I is such that (T, )\, I) € /Ci{}u. Suppose that 1 = (na : o < A) is a
sequence stronger (or big) J-cofinal in (T, \,I) such that

(Vi < 0)({nali:a < A} <.
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Further, assume that

(©)  for everyn < w, for a J-positive set of i < 0 we have: if Ng,..., N, €
T; are pairwise distinct and the set Y C [[,., A, is such that

(3M090) ... @) (Yo, - -, 1m) €Y)

then for some 7,7y, <Ay, (for 1<n) we have (y; : I<n),(y/ : 1<n)
€Y and for all | <n,

Boi E Yn~topy N Ymapy = O-
Then the Boolean algebra B8™™(C) satisfies the A-cc.
Proof. Suppose that (z, : @ < A) C B&™ \ {0}. By the standard

cleaning (compare the first part of the proof of 3.8) we may assume that
there are n* € w and a function € : A x n* — X such that:

(1) Zoa = ﬂl<n* Te(a,l) (lIl IBglfeen)7

(2) e(a,0) < e(a,1) < ... <ela,n* — 1),

(3) ({e(e,1) : Il < n*) : a < A) forms a A-system of sequences with kernel
m*, ie., (VI <m*)(e(a, 1) =¢(1)) and

(VI € [m™,n"))(Va < A)(e(a, 1) € {e(B, k) : (B, k) # (o, 1)}),

(4) there is i* < § such that for each o < A there is no repetition in the
sequence (Nz(q, i : 1 < n*).

Since {nali : @ < A} < X (for i < ) and |§] < A we may additionally
require that

(%) for each i < §, for every a < A we have
(B <NV <) Netan (i + 1) = 0o (i + 1)),
(xx) foreach a < <\ I <n*,

Ne(a,) 115 = N 11"
REMARK. Note that the claim below is like an (n* — m*)-place version

of 3.7. Having an (n* — m™)-ary version is extra for the construction but it
also costs.

CLAIM 4.3.1. Assume that: C = (T, \, 7, (B, 4y) :n € T) is a (6,11, \)-

constructor, X\ is a reqular cardinal, 5 < X, I is such that (T, X\, I) € /Cf{iu,

J is an ideal on & extending Jg’d and the sequence 7 is stronger J-cofinal
in (T, I). Further suppose that € : A\ x n* — X\, m*,n* and i* < § are as
above (after the reduction, but the property (xx) is not needed). Then

(X)  Z, € J for every large enough oo < X\, where
Zo = {i < § 1 ~(Fetemn) ) (Freceme sy )

IW * _ i * * . . —
(@m0l ) (FB)(VEE [mF,n)) (e 1 (i41) = T i (1))}
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Proof. For ¢ < §, ¢ > ¢* and distinct sequences vy,«,...,Vn+_1 € T;

define
Buieime ey =477 = (m: L €[m*,n")) and
for arbitrarily large o < A, for all m* <1 < n*,
() <A neagn }-
We will call a sequence (v, : [ € [m*,n*)) a success if
(Fm yyne) oo (3 1y ) (1 1 L€ [M*, 1)) € Buyeime me))-
Using this notion we may reformulate (X) (which we have to prove) as

(X*)  for every large enough o < A, for J-majority of i < §, i > i* the
sequence (Nz(q,[i: 1 € [m*,n*)) is a success.

To show (K*) note that if a sequence (v, : | € [m*,n*)) is not a success then
there are functions f(kl/z:le[m*,n*)) (for m* < k < n*) such that

k-1
k .
f(l/l:le[m*,n*)) : H >\Vl - Il’k

l=m*
and if (y; : [ € [m*,n*)) € By, .icim= n+)) then
(B € [m*, 1)) Ok € Fpaepme moyy Oimes -+ e1))-
If (y : 1 € [m*,n*)) is a success then we declare that f<kul:l€[m* vy 1
constantly equal to ().

Now we may finish the proof of the claim applying clause (b) of Defini-
tion 2.2(5) to n* — 1 and functions Fy, ..., Fj,«_; such that for k € [m*, n*),
Fr(wo™(Y0)s -« s V=1 (Vk—1), Vks - - - I/n*71>):ffyl:le[m*yn*»(’}/m*, ey YE—1)-
This gives us a suitable a* < A. Suppose £(a,m*) > a*. Then for J-
majority of i < 0 for each k € [m*,n*) we have: if
F, (775(04,0) [(Z_{_ 1)7 <o Ne(ak—1) [(Z+ 1)7 Ne(a,k) Ha <o Ne(aynr—1) TZ) € Ing(a,k)ri
then
ne(a,k)r(fH—l) gFm(ns(a,O)r(i_{—l): cee ’ne(a,k—l)r(i—’_l)a Ne(a,k) Ha < sle(anr—1) fl)
But the choice of the functions Fj implies that thus for J-majority of i < d,
for each k € [m*,n*),

Ne(a,k) (7’) € f(kns(a,l) li:l€[m* ,n*)) (ns(a,m*)(i)v <o Ne(ak—1) (IL))
Now the definition of the function ffyl:l e[m*n*)) works: if for some relevant
i < ¢ above the sequence (n.(q[7:1 € [m*,n*)) is not a success then
<776(a,l)(i) e [m*vn*» ¢ B(ne(a,z)fiile[m*,n*»’
and this contradicts (%) before. m
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Let o* be such that for each a > o™ we have Z, € J. Choose i € §\ Zy~
such that the clause (©) applies to n* —m* and i. Let

Yi={{ymes s Yur—1) 2 () (W[ 0)) (o) i+ 1)= (Moo 1y 1) ()3
The definition of Z,+ (and the choice of i) imply that the assumption (©)

applies to the set Y, and we get v/,v/ < A (for m* <1 < n*) such
that

Ne(a*,1) [

(yp:m* <l<n®), (v :m"<l<n*)eY,
Bie et F Ynegon iy 1t Vnean i 1imtapy =0 form™ <<’
Now, choose a < 8 < A such that for m* <1 < n*,

Netar ) 11N = Netay (G4 1), Near ) 177(0) = a0y 10+ 1)
(possible by the choice of Y and ~/,7;"). The definition of the algebra
Beree?(C) and the choice of v/,7;" imply that for m* <1 < n*,

BE™(C) = Te(a,) N Te(s,) # 0.
If [ # m then
BE(C) = 2e(a) N Te(p,m) 7# O
by the conditions (%) and (4) of the preliminary cleaning (and the definition

of B&e"(C), remember z, # 0). Finally, remembering that («, 1) = £(f3,1)
for | <m*, z, # 0 and zg # 0, we may conclude that

Be(C) = ﬂ Te(a,y N ﬂ Tep) # 0,

I<n* l<n*
finishing the proof of Lemma 4.3. n

THEOREM 4.4. If p is a strong limit singular cardinal, X := 2 = p+
then there are Boolean algebras B1, By such that the algebra By satisfies the
A-cc, the algebra By has the (2°FW)*-Knaster property but the free product
B * By does not satisfy the A-cc.

Proof. Let 6 = cf(u) and let h: 6 — w be a function such that
(Vn € w)(3%)(h(i) = n).
Choose an increasing sequence (u; : i < J) of regular cardinals such that

p = >, s ii- Next, by induction on i < § choose A, xi, (Bs, %) and I; such
that:

(1) A, xi are regular cardinals below ,

(2) )\z > Xi Z Hj<i Aj + Hi,
(3) I; is a x; -complete ideal on ); (containing all singletons),
(4) (B;, y;) is a A;-marked Boolean algebra such that if n = h(i) and the
set Y C (\;)"*! is such that

(Fivo) ... (F) (Y0, -+ -y n) €Y)
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then for some v/,v, < A; (for [ <n) we have (y] : [ < n),(7/: 1 <n)eY
and for all [ < n,

Bi =y, Nyl =0,
(5) each algebra B; satisfies the (2/°1)T-Knaster condition.

Arriving at stage ¢ of the construction we first put x; = ([ j<iNit i)t
Next we define inductively x; i, Aix for & < h(i) such that

Xi0 = Xis Aik = (2)7 0 X = Nip) T
By 3.1, for each k < h(i) we find a (A, &, x;fk)—well marked Boolean algebra
(Bi.k, Uik, Li,1) such that B; , has the (29)T-Knaster property (compare 3.3).
Let i = Ajn(). Proposition 4.2 applied to ((Bix,¥ik, Lix) : k < h(i))
provides a \;-marked Boolean algebra (B;,y;) and a X;“—complete ideal I;

on \; such that the requirements (4), (5) above are satisfied.
Now put 7' = {J; s [[;; Ai and for n € T,

By =Bign),  Tn = Tigm  In = Dig(n)-

By 2.8 we find a stronger JPd-cofinal sequence 7 = (1, : a < A) for (T, \, I).
Take the (4, i, ut)-constructor C determined by these parameters. Look at
the algebras By = B*4(C), B; = B&*°°*(C). Applying 4.1 we see that B * By
fails the A-cc. The choice of the function h and the requirement (4) above
allow us to apply 4.3 to conclude that the algebra Bo satisfies the A-cc.
Finally, by 3.8, we conclude that B; has the (2°)T-Knaster property. m

REMARK 4.5. (1) We shall later give results not using 2* = p* but still
not in ZFC.

(2) Applying the methods of [1] or [3] we hope to prove the consistency
of: for some p strong limit singular there is no example for X = u™.

(3) If we want “for no regular A € [u, 2#]” more is needed; we expect the
consistency, but it is harder (not to speak of “for all u”)

(4) Remark (1) above shows that 2# > u™ is not enough for the negative
result.

5. Toward improvements

DEFINITION 5.1. Let (T, A\, I) € Ki!5 and let J be an ideal on § (including
Jbd as usual). We say that a sequence 7 = (1, : a < A) of d-branches
through T is super J-cofinal for (T, A\, I) if

(a) no # np for distinct «, 5 < A,

(b) for every function F' there is a* < A such that if ap < ... < a,, < A,
o < a,, then the set
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{Z < 5 : (11)* F(nam Tty nan—l ’ nan fl) € Inan K2
(and well defined) but
Ny [(141) € F(Nagy -+ s Man—1» N [1) }
is in the ideal J.

REMARK 5.2. (1) The main difference between the definition of super
J-cofinal sequence and those in 2.2 is the fact that here the values of the
function F' depend on 7,, (for I < n), not on the restrictions of these se-
quences as in earlier notions.

(2) “Super™® J-cofinal” is defined by adding “a* < ay” (compare 2.2(9)).

PROPOSITION 5.3. Suppose that (T, \,I) € Kifﬁ is such that for each

v €Ty, i <6 the ideal 1, is |T;|T-complete. Let J D JPY be an ideal on 4.
Then every super J-cofinal sequence is stronger™ J-cofinal.

Proof. Assume that 7 = (n, : @ < A) C limg(7) is super J-cofinal for
(T,\,I). Let n < w and let Fy,...,F,_; be functions. For each | < n we
define an (I + 1)-place function F}* such that if ap < a1 < ... < a1 < A,
o €T;, i <9 then

F{ (Mo -+ Nauy > 0)
= U{Fl(nao [i+1), .. ey [(E+L), 0, Vi1, ooy V) S Vig1, -0 €15 &
Fi(Na 1641), .o 0y 1(0+1), 0,141, - - -, V) € I, (and well defined)}.
As the ideals I, (for p € T;) are |T;|T-complete we know that

‘Fl*<770407 s 777041717@) S IQ'
Applying 5.1(b) to the functions F}* (I < n) we choose af < A such that if
ap < ...<a; <A o <a then the set
Bl i={i <0 :F'(Nag,---+May_1>Ney [1) € In,, i but
Moy [(0 4 1) € 7' (Tags -+ Ny » Ty [1) }
is in the ideal J.
Put o* = max{a; : | < n}. We want to show that this o* works for

the condition 2.2(6)(b) (version for “stronger*”). So suppose that m < n,
af<oag<a; <...<a, <A Let

By = {1 <0 Fn(Mao [G0+1), - N,y [041), 00, 18+ oo Nay, [8) € Iy 1
and 1o, 1(i+1) € Fu(flag [H+1), - -y Ty 1H1), B 1 - - e 1)}
Note that if ¢ € B,, then, as o), < a* < ayy,
nam r(Z+1) G Fm(nao r(2+1)7 A ’,r,am71 r(z+1)? nam ri7 R nan [7’)

g F:@(naoa s 777047”—1 ) na'm rz) € I'r]am fl
Hence we conclude that B, C B}, and therefore B,, € J. n
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PROPOSITION 5.4. Assume that (T, \,I) € ICE{(;, each ideal I, (for n €
T;, i < 0) is (|0] + |T3]) T -complete and J 2 JP9 is an ideal on §. Further
suppose that a sequence 1 = (Ng : o < \) is super J-cofinal for (T, X\, 1), X is
a reqular cardinal greater than |T| and a sequence (ae;:e < A\, I <mn) C A
is with no repetition and such that

0o <o <...<0ep-1 foralle <A\
Then for every € < A large enough there is a € J such that
(B) difiped\a (forl<n)andig >i1 > ... > i, then
(Frecotong) . (Freemeatinorg, )
(<N V<) (g, 1 (i4+1) = Do, Vi (1))

Proof. This is very similar to Claim 4.3.1. First choose €5 < A such
that for each ¢ € [g9, A) and for every ig,...,i,_1 < 0 we have

(FXC <NV < ) (g, 100+ 1) = ., 1 + 1)
(possible as |T'| < cf(A\) = A).

Now, for 7 = (i; : I < n) C § and v = (v : | < n) such that ig > iy >
... > ip_1, v € T; and k < n we define a function fi’fﬂ : Hl<k Ay, — 1,
(with the convention that fg,j is supposed to be a 0-place function, i.e., a
constant) as follows.

Let
Bio = {{n:l<n) € [T a3 < N < 0) (o, [+1) = () }.
I<n
If
(#25) —(Foxg)... (31""’1%1—1)((70, oy Yn—1) € Bip)
then fgﬁ, e {f;l are such that

(<>) if <707 s 7771—1) € Bi,l? then (Hk < n)(’}/k S lefD(707 s 77k—1))‘

Otherwise (i.e., if not (#75)) the functions fF, are constantly equal to

(for kK < n). Next, for k < n, choose functions F}, such that if ng,...,n; €
lims(T"), @ < § then

Fi(mos- - Mk—1, Mk [7)

= i motio), - i (in—n)) 1 7= (i s L <m), 7= (v 11 <n),
§>ig > .. > ip=10>dpp1> ... > ip1,
v =l for I < k and

v eT;, fork<l<n}.
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Note that Fy(no,...,Mk—1,7k %) is a union of at most |0| + |T;| sets from
the ideal I, }; and hence Fj(no, ..., nk—1,M% %) € I, i (for each ng, ..., nx €
lims(7T), ¢ < §). Thus, using the super J-cofinality of 77 we find a* < A such
that if o* < g < ... < @, < A then the set
{0 < 85 3 < 1) 1) € Pl 1)}

is in the ideal J.

Let £1 > ¢ be such that for every ¢ € [e1,A) we have o < .0 < ... <
Qe n—1-

Suppose now that €; < & < A. By the choice of a* we know that the set

a = {Z < 5 : (Ell < n)(nae,l(i) € Fl(nas,o’ e nae,l—1777as,l rl))}

is in the ideal J. We are going to show that the assertion ([J) holds for €
and a.

Suppose that 7= (i; : Il <n) Co\aand ig > i3 > ... > i,_1. Let
v=(v:l<n), vy =na,,li. If the condition (#;;) fails then we are done.
So assume that it holds true. By the choice of the set a (and a*) we have

(Vl < n)(nas,z (ll) ¢ Fl(’r/as,oﬂ e Nae—1s Mo [il))a
which, by the definition of Fj, implies that
(V< 1) (e (i) & fro(ao(i0)s -3 ae s (i1-1)))-
By (¢) we conclude that
<77045,0 (i()), s Nag o1 (Zn*1)> € Bi,l_/v
and hence, by the definition of B; 5,
(O <) (g, i +1) = a,, 1()

which contradicts the choice of £y (remember € > g1 > ¢).

DEFINITION 5.5. We say that a A\-marked Boolean algebra (B, %) has
character n if for every finite set u € [A]<* such that B = (), ., ¥%a = 0
there exists a subset v C u of size [v| < n such that B = (,c, ya = 0.

PROPOSITION 5.6. If a A-marked Boolean algebra (B,y) is (6,notA)-
Knaster (or other examples considered in the present paper) and (B,y) has

character 2 then without loss of generality (B, 3) is determined by a colouring
on \: if c: [\ — 2 is such that

c({a.8}) =0 iff BlEyaNys=0
then the algebra B is freely generated by {yo : « < A} except that

if c({a,B}) =0 then y,Nys=0.

REMARK 5.7. These are nice examples.
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PROPOSITION 5.8. In all our results (like 3.1 or 3.8), the marked Boolean
algebra (B, y) which we get is actually of character 2 as long as any (B,,, gy)
appearing in the assumptions (if any) is like that. Then automatically the
0-Knaster property of the marked Boolean algebra (B,y) implies a stronger
condition: if Z € [lg(y)]? then there is a set Y € [Z]? such that {y; :i € Y}
generates a filter in B.

PROPOSITION 5.9. Let (T, )\, I) € ICE{(; be such that for each n € T the
filter (I,)¢ (dual to I,,)) is an ultrafilter on succr(n), and let J be an ideal
on & (extending J2V). Suppose that:

(a) C = (T, N\, {(By,5y) : 1 € T)) is a (3, u, \)-constructor and the
sequence 1 is stronger J-cofinal for (T, N\, I), |T| < cf(X) = A,

(b) the sequence (e e < A, I <n) C X is with no repetition,

(c) for any distinctn,v € T either the ideal I,, is (2*)* -complete (which,
of course, implies \,, > 2*) or the ideal I,, is (2*7)*-complete (it is enough
if this holds true for n,v such that 1g(n) = lg(v)).

Then for every large enough € < A, for J-almost all ¢ < § there are sets
X1 € (Iy,_1i)" (for I <n) such that

(V70 € Xo) - (VYn—1 € Xno1) (AN < NV < 1) (a, 11 (0) < Nagy)-

REMARK 5.9.A. We can replace stronger by big and then omit being an
ultrafilter.

Proof (of Proposition 5.9). First note that we may slightly reindex our
sequence (a.;: e < A, | <n) and assume that for each ¢ < A,

e < Og1 < ...<O0gp—1-
Now, since |T'| < cf(A\) = A we may apply Claim 4.3.1 to
<<Oé€712l<n>260§6<)\>

(we need to take gy large enough to get the condition (%) of the proof of
4.3). Consequently, we may conclude that there is e < A such that for
every € € [e1, \),

(X.) for J-majority of i < 0 we have

(30 ting) ... (3een=1 L) (FNKA (V<) (N, [(i41) =1, 1T ().

Now we would like to apply 1.2. We cannot do this directly as we do not
know if the cardinals \,_,; are decreasing (with [). However the following
claim helps us.
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CLAIM 5.9.1. Suppose that Ao < A1 are cardinals and Iy, I1 are mazximal
ideals on Mg, \1 respectively. Assume that the ideal I is (\o)*-complete and
o(z,y) is a formula. Then

3F°0) 3" )e(r0,1) = B ) (EF%)e(v0,m)-

Proof. First note that if I is a maximal ideal then the quantifiers 3/
and V! are equivalent. Suppose now that

(3°70) 3" 1) (70, 11)-

This implies (as Iy, I; are maximal) that

(V°70) (V"' 71) (70, 11)-
Thus we have a set a € Iy and for each v € A\¢ \ @ a set by € I such that

(V70 € Ao \ @) (Y71 € A1\ by )e(70,71)-
by. As I is (Ag)T-complete the set b is in I;. Clearly
(V71 € A1\ b)(Vy0 € A\ a)p(v0, M),
which implies (31171)(31070)4,0(70,71). n

Let b - U’YGAO\G

Now fix € > €1 (&1 as chosen earlier). Take i* < ¢ such that the elements
of (Na.,[4:1 < n) are pairwise distinct. Suppose that i € [i*, ) is such that
the formula of (K.) holds true. Let {k; : | < n} be an enumeration of n
such that
> > Ay,

no‘e,ko K > no‘s,kl
(Note that by the assumption (c) we know that all the A, ; are distinct,
e,k
remember the choice of i*.) Applying Claim 5.9.1 we conclude that

i

J ITla
(Eljﬂag,ko “’Yko) e (El e kp—1 ) ,yk7L_1)(E|)\C < )\)(Vl < ’I’L)
(Mo, Ti7(0) = Mo, 1(E+ 1)),

But now we are able to use 1.2 to find that there are sets X3, C A, o o
e,k
X, & I, 1i (for I <n) such that
e,k

[T %< {00 mme1) : GACN(<0) (e, T (0) = M, 1(+1))},

I<n

which is exactly what we need. m

If we assume less completeness of the ideals I, in 5.9 then still we may
say something.

PROPOSITION 5.10. Let (o : i < J) be a sequence of cardinals. Suppose
that T, N\, 1,7, J, A\, 11,6 and (oey : € < A, | < n) are as in 5.9 but with
condition (c) replaced by
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(c)(ai:K&) if n,v e Ty, n#v, i <4 then either the ideal I, is ((A\,)7)"-
complete or the ideal I, is ((\,;)7")F-complete.

Then for every large enough € < A, for J-almost all i < § there are sets
Xy € [Ny, 1) (for I <n) such that

(V70 € Xo) - - - (VYn-1Xn—1)(F < NV < 1) (Mo, 1T (W) < ac,)-

Proof. The proof goes exactly as the one of 5.9, but instead of 1.2 we
use 1.3. =

REMARK 5.11. (1) Note that in the situation as in 5.9, usually “J-
cofinal” implies “stronger J-cofinal” (see 2.7, 2.5).

(2) The first assumption of 5.9 (ultrafilters) coupled with our normal
completeness demands is a very heavy condition, but it has rewards.

(3) A natural context here is when (p; : ¢ < k) is a strictly increasing
continuous sequence of cardinals such that each p;11 is compact and pu =
Wi Then every p;i1-complete filter can be extended to an ;. 1-complete
ultrafilter. Moreover 2+ = i follows by Solovay [26].

If for some function f from cardinals to cardinals and for each y there is
an algebra B, of cardinality f(x) which cannot be decomposed into < p sets
X, each with some property Pr(B,, X;) and if each y; is f-inaccessible then
we can find 7,1, X as in 5.9 and such that n € T} = p; < Xn < Ay < Mhit1
and for 7 € T; there is an algebra B, with universe A, and the ideal I, is
Xn-complete,

if X CB, and Pr(B,,X) then X €I,

(compare 3.1) and A\, < A, = (2*)T < x,. Now choosing cofinal 7 we
may proceed as in earlier arguments.

(4) It seems to be good for building nice examples, however we did not
find the right question yet.

(5) Central to our proofs is the assumption that

“lag;: ¢ <A, I <n) C\is asequence with no repetition”,

i.e., we deal with A disjoint n-tuples. This is natural as the examples con-
structed here are generated from {z; : i« < A} by finitary functions. One
may ask what happens if we admit functions with, say, Ny places. We can
still try to deduce for p as above that:

(X)  there is h : [uT]?> — 2 such that if (u. : € < \) are pairwise disjoint,
ue = {ae; I < I*} is the increasing (with ) enumeration, [* < p
(I* infinite), for a sequence (v; : | < I*) C T; we set
B<V1:l<l*> =
{{ae, (1) 1 1< 1)« (B < N < T) (e 10+ 1) = g, 1(i+ 1))},
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for some ¢* < § there are no repetitions in (n,_,[i* : | < I*) and
hi[us]? =1 (for each ¢ < \) then there are aw < (3 (really a large set
of these) such that

hlfuq Uug)® = 1.

The point is that we can deal with functions with infinitely many variables.
Looking at previous proofs, “in stronger” we can get (for p strong limit
singular etc.): for a large enough, for i < § = cf(u) large enough, etc. we
can defeat

I i *
((v ! ")/l))(<’}/l ol < l > S B(n%,lfiikl*))
but the duality of quantifiers fails, so the conclusion is only that
. I i . N
(Vi < 8)[ (e (Ve ) it (s, (6) £ L < 1) & By iy

(6) (no ultrafilters) If I D Jj;’d, d is a regular cardinal, A, = Aig(,)) and for
each u € [T;]<I°Ix, i < § the free product %,
can show that the algebra B?;‘( also satisfies the A-cc, where for a cardinal

B,, satisfies the A-cc then we

red

X the algebra B) is the Boolean algebra freely generated by

{Nucu 2 tiu— 2 ue A<, Alfunt1])2 =1, |u| < x and
(Fi < 9)(the mapping « +— 1,(7) is one-to-one (for a € u)),
(3i < 8)(Bar € u)(Vj € (4,6))(V6 € u)(falh) < f5(4))}-
[Note that if y < cf() it is simpler.]
ok ok

Now we will deal with an additional demand that the algebra B9 sat-
isfies the |§|T-cc (or even has the |§|T-Knaster property). Note that the
demand of |§]-cc does not seem to be reasonable: if every g, has two dis-
joint members (and every node t € T is an initial segment of a branch
{Na : @ < A} through T and ¢ # cf(9) implies ¢ has at least two immedi-
ate successors) then we can find 0 branches which give § pairwise disjoint
elements. Moreover, for each v € T} let A, = {14 (%) : o7 = v} and

aq ={1 <0: (36 € Ay, 1i) Buori = Yna) Nys = 0)}-
So if B**d |= g-cc then (Va < N)(Jaa| < o).

DEFINITION 5.12. Let (T, \) € K, 5 and let 1 = (1, : o < A) C limg(7T).

We say that 7 is hereditary! O-free if for every Y € [A]? there are Z € [Y]?
and ¢ < ¢ such that

(Va, B € Z)(a# B = [nali =ngli & na(i) # na(i)]).

t Sorry, this is weaker than 0-free.
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PROPOSITION 5.13.  Assume that C = (T, \, 7, ((By,9) : n € T)) is
a (0, p, A)-constructor. If ) is hereditary -free, each algebra B, has the 6-
Knaster property and 6 is regular then the algebra B Y(C) has the 6-Knaster
property.

Proof. The same as for 3.8. Note that the proof there shows actually
that if (Vo < 0)(Ja|l®l < 6 = cf(6)), then 7 is f-hereditary free. Also if
(Vo < 0)(|a|<1°l < 6 = cf(0)) then we can weaken the demand in 5.12 to
(Va, B € Z)(a # B = nali # nali); note that we can replace i by i + 1. m

PROPOSITION 5.14. Assume that (T,\) € Kus, 1 = (Mo 1 @ < A) C
lims(7T) and A is a regular cardinal. Further suppose that:

(a) (Va < 0)(|a|<® < 6 = cf(0)), § < 0, J is an ideal on & extending
Jbd,
(b) the sequence 7] is < j-increasing and one of the following conditions
s satisfied:
(a) 7 is <j-cofinal in [];_5Ai/J, Ai are reqular cardinals above 6
(at least for J-majority of i < §), {a < X : cf(a) = 0} € I[N
and Ay = Nig(n),
(B) there are a sequence (Co : a < X) of subsets of A\, a closed
unbounded subset E of A and i* < § such that:
(i) Co C a, otp(Cy) < 0,
(i) if B € Cq then Cg = Cy N B and nglli*, ) < nalli*, o),
(iii) of a € E and cf(a) = 0 then a = sup(Cy).
Then there is A € [A\]* such that the restriction A is 0-hereditary free.
Proof. First assume that case (b)(3) holds.
CLAIM 5.14.1. Suppose that Y € [E]?. Then:
(1) (3Z € [Y)")(Fi®)((f5.(i®) : € € Z) is strictly increasing).
(2) If additionally J = JP4 then
(3Z € [Y]))(3i® < 0)((ns][i®,0) : B € Z) is strictly increasing).
Proof. Suppose Y € [E]?. Without loss of generality we may assume
that otp(Y) = 6. Let o = sup(Y). So a € E, cf(a) = 6 and hence C,,
is unbounded in a. Let C, = (o : € < 6) be the increasing enumeration.
Clearly the set
A:={e<0:|a,ac41)NY # 0}

is unbounded in . For € € A choose f3; € [ae, aey1) NY. Then
(30 € J)(0a, 10\ a) < 15, 16\ a2) < Mars, 15\ a2)).
Now choose i. € 6\ a., ic > i* and find B € [A]? such that
eeB = i.=1i%.



188 S. Shelah

Clearly, by the assumption (8)(ii), this ¢® and Z = {. : € € B} are as
required in 5.14.1(1).
If additionally we know that J = J29 then for some B € [A]? we have

(3i® € [i*,6))(e € B = a. Ci®%)

and hence the sequence (fg_[[i®,0) : € € B) is as required in 5.14.1(2)
(remember (5)(ii)). m

But now, using ¢® given by 5.14.1 we may deal with the sequence
(f8.1(i® +1) : e € B) and using the old proof (see 3.8) on the tree |J, .o T;
(note that we may apply the assumption (a) to arguments like there) we
may get the desired conclusion. This finishes the case when (b)(3) holds
true.

Now, assume that (b) («) holds. We reduce this case to the previous one
(using cofinality).

Take C, E witnessing that the set {a < X : c¢f(a) = 6} is in I[\] and
build a <j-increasing sequence 7' = (1, : @ < A) C [[,_sAi such that
n., > N, and 77’ satisfies clause () of (b) for C, E. [The construction of 7/,
is by induction on @ < A. Suppose that we have defined 77’5 for B < a. Now,
at stage a of the construction, we first choose 2 € [], <5 i such that

(VB < a)(ns <s %)
This is possible since the condition () implies that A = tcf(] ], 5 Ai/J) and
a < X. Now for ¢ < § we put
14 (i) = max{ry (i), (i) + 1, sup{n’ (i) + 1: v € Ca}}.

One can check that this 77’ is as required.]
Now we use the fact that 7 is cofinal. The set

E'={yeE:(Va<7)(38 <), <sns)}

is a club of A. Look at f[E’. Suppose that Y € [E']?. Without loss
of generality we may assume that otp(Y) = 6 and let @ = sup(Y). By
induction on € < 0 choose a. < (. < 7 such that 5. € Y, a. € Cy,
Ye € Ca, M. <y Mp. <g 1. and if ¢ < e then 7 < a.. Next choose 7. > i*
such that

Mo, (ie) < g, (ic) <), (ic).
We may assume that i = i® for all ¢ < #. Now, as 77’ obeys C, we have
(<e = (%) <n, (%),
J=JpinC<e = ) % 0) <n, I[i®,0),

and hence we conclude that the sequence (ng_(i®) : € < ) is strictly in-
creasing. Now we may finish the proof as earlier. m
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CONCLUSION 5.15. If p is a strong limit singular cardinal, 2" = pu* =
and —(30%) or at least

{6 < it ef(8) = (25°109) ) € 1]

then there is a (cf(p), 1, \)-constructor C such that the algebra B**4(C) has
the (2<fW)*_Knaster property, its counterpart B&**(C) is \-cc and the
free product is not \-cc.

[Note that if GCH holds then (2<°f("))* = (cf(u))* so the problem is
closed then.]

Proof. Like 4.4 using 5.14, 5.13 instead of 2.8, 3.8. =

6. The use of pcf. Assuming that 2<% is much larger than x = cf(k)
(= cf(u) < p) we may still want to have examples with the (k*,not))-
Knaster property and the non-multiplicativity. Here 5.15 does not help if
GCH holds on an end segment of the cardinals (and —(30%)). We try to
remedy this.

It is done inductively. So 6.3 uses cf(u) = Ny just to start the induction.
We can phrase (a part of) it without this assumption but in applications we
use it for cf(u) = Rg. Also 6.3(b) really needs this condition (otherwise we
would have to assume that (Yo < 6)(|a|<® < u)). This result says that, if
cf (1) = Ng, then we have the -Knaster property for every regular cardinal
0ep\rt.

DEFINITION 6.1. (1) Let Kymk denote the class of all tuples (0, A, x, J)
such that 8 < A, x are regular cardinals, J is a x-complete ideal on A and
there is a (A, x)-well marked Boolean algebra (B,7,.J) (see 3.2) such that
the algebra B has the 6-Knaster property (wmk stands for “well marked
Knaster”).

When we write (6,)) € Kymk we really mean (6, A\, J2) € Kymk
(which just means that there exists a (6, \)-Knaster marked Boolean alge-
bra).

(2) By Ksmk (smk is for “sequence marked Knaster”) we denote the class
of all triples (0, A, x) of cardinals such that §# < X\ are regular and there is
a sequence ((B,,y%) : a < x) of A-marked Boolean algebras such that (for
a < x) the algebras B, have the #-Knaster property, ¢ = (y%* : ¢ < A) and
ifn<w,a)<...<ap-1 <xand B <Afore <A\ | <n are such that
(Ver < ea < N)(VI < n)(Beyq < Bey) then there are e1 < €2 < A such that

l<n = B, E “yg:l,L ﬁyg;QJ =0".
REMARK 6.2. (1) On some closure properties of K¢ = {\: (6,)\) €

Kwmk } under pcf see 3.12: if \; € levmk (fori < 6), A\; > maxpcf{\; : j <i}
and A € pef{)\; : i < 6} and (Vo < 6)(|a|l®l < 0) then X € K?

wmk *
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(2) We can replace 6 by a set © of such cardinals, with no real difference.
And thus we may consider the class K, of all tuples (6, A, x, J) such that
there exists a (A, x)-well marked Boolean algebra (B, g, J) with

(V0 € ©)(B has the §-Knaster property).
(3) In 6.1(2), each (B,,y*) is well marked.

PROPOSITION 6.3. Assume that p is a strong limit singular cardinal,
No=cf(p) <pand N\ =2V =pu™.

(a) If (Vo< 0)(Ja|™) < 0 = cf(0) < \), then (0,)\) € Kymk. Moreover
(0,1,2)) € Kok

(b) If cf(p) < 0 = cf(0) < p and {o < X : cf(a) = 0} € I[N, then
(0,2 € Kymk. Moreover (0, \,2") € Kgmk-

Proof. This is similar to previous proofs and the first parts of 6.3(a),
(b) follow from what we have done already: (a) is an obvious modification
of 3.11; (b) is similar, but based on 5.13, 5.14 (and 2.8, 3.7) (see below).
What we actually have to prove are the “moreover” parts. We will only
sketch the proof for (b), modifying the proof of 4.4.

As in 4.4 we choose h : c¢f(u) — w such that for each n € w the preimage

~![{n}] is unbounded (in cf(u)). Next we take an increasing sequence
(i =1 < cf(u)) of regular cardinals such that p = 3, _5u;. Finally (as in
4.4) we construct A;, x;, (B;,7;) and I; such that for ¢ < cf(u):

1) Ai, xi < p are regular cardinals,

2) Ai > Xi > Hj<z)\ + pi and xo > 0 + po,
3) I is a x; F-complete ideal on \;,
)

4) (B;, y;) is a A;-marked Boolean algebra such that if n = k(i) and the
set Y C ()\;)"*! is such that

3 0) - @) (0, -+ ) €Y),

then for some 7,7, < A; (for I <n) we have (7] : 1 <n),(y]:1<n)eY
and for all [ < n,

(
(
(
(

2. oy =0
(5) each algebra B; satisfies the §-Knaster condition,
(6) for & < \; the set [€,\;) is not in the ideal ;.

Note that the last requirement is new here. Though we cannot demand that
the ideals I; extend I}\)id, the condition (6) above is satisfied in our standard
construction. Note that the ideal from 3.1 has this property if A there is
regular. Moreover it is preserved when the (finite) products of ideals (as in
4.2) are considered. Also, if I is an ideal on A\, Ay € I is such that |A\ Ag|
is minimal and A; € I" is such that |A;| is minimal then we can use either
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ITAp or ITA;. All relevant information is then preserved (in the first case
the condition (6) holds, in the second J?¢ C I under suitable renaming).

Now we put T' = Ui<6 Hj<i )\j, BW = ]Blg(n)a Yy = glg(n) and IW = Ilg(n)‘
Applying 2.8 we find a stronger JPd-cofinal sequence 7 = (1, : @ < \) for
(T, X\, I). By (6) we may additionally demand that 7 is < Jgf%)—increasing
cofinal in Hi<cf(,u) )‘i/‘]r?f%u)' Let (Bg : € < 2*) be a sequence of pairwise
almost disjoint elements of [A]* (i.e., |Be N Be| < A for distinct &, ¢ < 2*).
For each ¢ < 2* we may apply 5.14 (the version of (b)(a)) to the sequence
(Na : @ € Be) and we find A¢ € [Be]* such that each sequence (1, : o € Ag)
is f-hereditary free. Let

B = BN T, N\, (o : a0 € Ag), (B, 7)) :m €T)), Te= (a2 :a € Ag).

Of course, each B is a subalgebra of Bred(T, X\, 77, (B, 4n) : m € T)) (gen-
erated by Z¢). By 5.13 and 3.7 we know that the marked Boolean algebras
(Bf, Z¢) are (6, notA)-Knaster. To show that they witness (6, A, 2*) € Kok

suppose that n < w, &,...,&n—1 < 2* and B.; < A (for e < A, [ < n) are
such that

(Ver < g2 < NVl < n)(Bey i < Besil)s

and of course {f:; : ¢ < A} C Ag,. Since Ag, are almost disjoint we may
assume that

(Ver,e0 < N (Vi < la < n)(Bey iy 7 Besils)-

Further we may assume that we have i* < cf(u) such that for each e < A
the sequences ns_, [i* for [ < n are pairwise distinct.

By the choice of 77, T, A etc. we may apply 4.3.1 to conclude that for all
sufficiently large £ < A the set

Ze = {i < cf(p) : 7(3"e0 ") ... (3ot ) (O < )
(5., 1(i + 1) = (ns,., 1) "(u))}

is in the ideal J:}%M). Take one such . Choosing ¢ € cf(u) \ Zc, i > i* such

that h(i) = n we may follow exactly the last part of the proof of 4.3 to find
€0,€1 < A such that for each [ < n,

NBeg 1 [ = NBey [i, but Bnﬁsoﬂl [é ): y”ﬁgo,z I(i+1) N ynﬁel,z Mi4+1) — 0,
which implies that
* d d
(VI <n)(B, = xg Mgl = 0). m
PROPOSITION 6.4. Assume that:

(a) (A 1@ < 9) is an increasing sequence of reqular cardinals such that
d < X and A\; > maxpcf{\; : j < i} (the last is our natural assumption),
(b) Vg < 0 =cf(0) < ;5 Ni (naturally we assume just cf(8) = 6 < Xo),
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(c) A = maxpcf{\; : i <},
(d) (8, A\, maxpcf{);:j <i}) € Kok,
(e) for each 7 € {A\} UJ,.5pcf{Ni : i < a} we have

{€ < 1:cf(€) =0} € I7],

or at least for some fT={(fT : e<T), <j__-increasing cofinal in [Lico Xi/J=+
we have
y<t&cf(y)=0 = [} is good in fT

(see [21], [20, §1 and 1.6(1)], and then Magidor and Shelah [9]),
(f) |pef{Ni : i < 0} < @ or at least |pct{\; : i < a}|+ 0| < 0 for each
a < 9.

Then (0,)\) € Kymk.- Moreover (0,\,x) € Ksnk provided there is an
almost disjoint family of size x in [A\]). We may get algebras B4, Bereen gs
in the main constructions such that

B |= 0-Knaster, BE" |= A-cc, B x BE = —)\-cc.

REMARK 6.4.A. This continues also the proof of [22, 3.5]. Of course
instead of clauses (e) + (f) we may demand (Vo < 6)(|a|?l < 6 = cf(6)).

Proof. The main difficulty of the proof will be to construct a hereditary
f-free <j_,-increasing sequence 7 = (1, : @ < A\) C [[,_5A:. This is done
in the claim below. For the notation used there let us note that if o < ¢ is
a limit ordinal, 7 € pcf{\; : i < a} then J_;[{\; : i < a}] = J2 is the ideal
on « generated by

Jer [N ri < al]U{a\ b [{\i 1 i < a)]}.
)\1/1],?) =T.

CLAIM 6.4.1. There exists a tree T C |J; .5 [];-; Aj such that some Ty C
lims (T") is 0-hereditary free (and <;_,-cofinal). Moreover for each o < §
the size of T, is < maxpcf{); : i < a}.

So in particular tcf(J],

Proof. For alimit ordinal @ < ¢ and 7 € pcf{); : i < a} (if a = ¢ then
7 = A) choose a < je-increasing sequence f*7 = (f7 : (< 7) C [, N
cofinal in [[,__, Ai/J¢ and such that

(®) if ¢ <7, cf(¢) = 6, then for some unbounded set Y C ¢ (for sim-
plicity consisting of successor ordinals) and a sequence 57 = <sg €€
Ye) € J we have

[51,52 GYC &fl <§2 &iea\(521Us§2)] = fg’T(i) <fg’7(i).

[Why can we demand (®)? If in the assumption (e) the first part is satisfied
then we argue similarly to the proof of 5.14, compare [20, 1.5A, 1.6, pp.

<o
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51-52]. If we are in the “at least” case then this is exactly the meaning of
goodness.] Further we may demand that the sequence f®7 is ®continuous:

(®) if |6] < cf(¢) < Ao, ¢ <7, then
f?’T(i) = min {Ugecfg’f(i) : C'is a club of ¢}

[compare the proof of [21, 3.4, pp. 25-26]].
For a limit ordinal o« < § we define

TO={f €[l,coti: (a) f= max{fo" : 1 < n} for some n < w,
71 € pef{); 1 i < a}, and (; < 7,
(b) for every 7 € pct{\; : i < a},
if 7= Xor a<d then
there is (¢(7) < 7 such that
fo7(7') < f & fov(T) = f mod Jg}
(Note that if & = § then there is only one value of 75,7 which we consider
here: A.) Let 7" C ;<5 [[;o; A; be the tree such that for v <,
Tf/ = {f IS Hz‘<'y>‘i . fla € TY for each limit a < 'y}.
Let
A ={¢ < A:thereis f €[], sA: such that
FON< & 2N = fmod 3 & (Vi < 0)(f1i € T))]},

and for each ¢ € A let fI be a function witnessing it. Now, let T" C
Uics [1;<i A De a tree such that T,, = {ffa: ( € A}.

By definition, T is a tree, but maybe it does not have enough levels?
Let x be a large enough regular cardinal. Take an increasing continuous
sequence (N; : i < ) of elementary submodels of (H(x), €, <*) such that

IN;| =7 =0+ |pcf{ra:a<d} <X, T+1CN,; €Ny,
and all relevant things are in Ny. We define f* € [[,_s Aa by
f*(a) = sup ( U N; N )\a).
<6
As in [18, pp. 63-65], one proves that f*]a € TY for each limit o < .
Hence for some ¢ we have f* = fg’)‘ mod J/‘\S and fg’)‘ < f* thus ¢ € A.

Consequently, A is unbounded in A.
By induction on a < § we prove that

a<d

(@) if f¢ € Ty (for ¢ < 6) are pairwise distinct, then there are Z € [0]°
and j < « such that

(vC07CI S Z)(CO 7é Cl = [fCo r] = fC1 D & fCo(]) 7é fCl(])])
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If a is a non-limit ordinal then this is trivial. So suppose that « is limit,
a < §. Then for some 7¢; € pcf{); 1 i < a}, & < 7¢1, ne <w (for ¢ < 0,
[ < n¢) we have

fe= max{fgz’f’l (< nel.

As § > |pcf{Ag : 8 < a}| we may assume that n; = n*, 7. ; = 7; and for each
[ < n* the sequence (£¢; : ¢ < ) is either constant or strictly increasing.
Now, the second case has to occur for some [ and we may argue similarly to
5.14.1 and then apply the inductive hypothesis. We are left with the case
a=90. Solet fr = fg{ for ¢ < ¢ and continue as before (with A for 7).

This ends the proof of the claim (note that the arguments showing that
all the T? are not empty prove actually that the tree T has enough branches
to satisfy our additional requirements). m

Now let T" be a tree as in the claim above. Let 7 = (1, : @ < A) C lims(7")
be the enumeration of {ff : ¢ € A} from the proof such that 7 is <;_,-
increasing cofinal in [ ], 5 Ai/J<x. By the assumption (d) for each n € T' we
find a marked Boolean algebra (B,;, 7,,) such that for every ¢ < § the sequence
((By,9y) : n € T;) witnesses that (0, \;,|T;|) € Ksmk. These parameters
determine a (9, u, A)-constructor C, so we have the corresponding Boolean
algebra B*4(C) (and its counterpart B&"*(C)). To show that they have the
required properties we follow exactly the proof that (6, A, x) € Kgmk, so we
will present this proof only.

First note that by 5.13 the algebra B*4(C) has the §-Knaster property.
Now, let (A¢ : ¢ < x) C [A]* be such that

G<l<xy = ’AclﬁA<2’<)\.

Let z, = <azged : £ € A¢) and let B¢ be the subalgebra of B4(C) generated
by Z,. We want to show that the sequence ((B¢,Z¢) : ¢ < x) witnesses
(0, X\, x) € Ksmk- For this suppose that (5 < ... < (-1 < X, n < w and
Beq € A, are increasing with € (for ¢ < A, [ < n) and without loss of
generality with no repetition. We may assume that

(VI < n)(¥e < \) (5571 ¢ A<m>.
m#l
Further we may assume that for some ¢* < ¢ and pairwise distinct n; € T;«
(for I < n) we have

(Ve < N(VI <n)(np., [ = m).
Now we take i € [i*,0) such that
(V7 < X)(Fe < NV < ) (.., (i) > 7)

(remember that each (ng_, : € < A) is <j_,-cofinal). Since |T;| < A\; we can
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find vg,...,v,_1 € T; such that n; < vy and
(Vy < X)(3e < NV < n)(ng., i = v & ma., (i) > 7).
Consequently, we may choose a sequence ((ye; : 1 < n): & < A;) C \; such
that £ < ¢, and
(V€ < X)(Fe < NV < n)(ng., 16+ 1) = 1 (7e0)-

Now we use the choice of (B,,,7,,) (witnessing (0, \;, |T;|) € Ksmk) and we
find & < & < A; such that

(VI <n)B,, Eyi, Ny, , =0),
which allows us to find €; < €9 < A such that for each [ < n the intersection

za., ﬂxg%l i1s0. m

CONCLUSION 6.5. If (u; @ i < k) is a strictly increasing continuous
sequence of strong limit singular cardinals such that k < pg, 2M = ,u,;r,
k<0 =cf(f) < pp and Va < 0)(|a|® < ) or

i<k = {a<pfcf(a)=0}cIu]

then (0, ut) € Kymk and we may construct the corresponding Boolean alge-
bras Bred, Bereen

PROPOSITION 6.6. Suppose that we have Boolean algebras B¢, Bereen
such that

o B4 satisfies the O-Knaster condition,
e for each n < w the free product (B&°™)" satisfies the \-cc,
e the free product B4 x B&™ fuils the \-cc.

Then (0, A, x) € Ksmk, where x = At (or even if x is such that there is an
almost disjoint family A C [\]* of size x).
Proof. We have y, € (B*%)* and 2, € (B&"**)* for a < A such that
if @« < B < A then
either B Ey,Nys =0 or B |=z,Nz5=0.

Let A¢ € [A]* (for ¢ < x) be pairwise almost disjoint sets. We want to show
that the sequence

(B, 514¢) 1 ¢ < x)
is a witness for (0, A, x) € Kgmk. So we are given (o < (1 < ... < (p—1 < X
and sequences (ae; : € < A\) C A¢, with no repetitions. Then for some
e* < X we have

e<e<A = o ¢ UAC,m-
m#l

We should find €1 < €9 such that for all [ < n,

Bred ): yasl,l N yo‘E24’l = O
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For this it is enough to find €* < €7 < €5 such that for | < n,
]Bgreen ): Zael,l N ZO‘EQAVZ # O

But this we easily get from the fact that the free product (B8"®")™ satisfies
the A-cc. m

COMMENT 6.7. (1) The proofs that the algebra B&™" satisfies the A-cc
(see 4.3, 6.4) give that actually for each n < w the product (B8"")" satisfies
the A-cc. So it is reasonable to add it (though not needed originally).

(2) The “f is (strongly) J-cofinal for (T, A, I)” has easy consequences for
the existence of colourings.

REMARK 6.8. For p strong limit singular we may sometimes get a cofinal
sequence of length \ € (u,2#] without 2# = p*. By [23, §5], if:

(a) I; is a y;-complete ideal, |I;| = 7, x; regular,

(b) Xi S Ti S (Xi)+n*7 n* < w,

(c) tef(IT;<5(xi) ™"/ J) = A for each | < n*,
then:

(«) there is a cofinal sequence in [], (P (\i)/1;)/J, because
(8) it has the true cofinality.

So if for arbitrarily large y, 2X = x*, 2X" = y* then we have the ideal
we want and maybe the pcf condition holds. Thus, combining this and 6.9
below, we find that there may be an example of our kind not because of
GCH reasons, but still requiring some cardinal arithmetic assumptions.

PROPOSITION 6.9. Suppose that (\; : i < d) is a strictly increasing
sequence of reqular cardinals, I; is a ([];_; A\;)"-complete ideal on A; (so
[1;ci As < Ni) and (By, 4i, I;) is a A-well marked Boolean algebra (fori < ).

(1) Assume that [[,_s(I;, S)/J has true cofinality X\. Then there erists
a (0,notA)-Knaster marked Boolean algebra.
(2) Suppose in addition that h: 0 — w is a function such that

(Vn < w)(h™'[{n}] € JT)

and 1" (for i < ) are the product ideals on (A;)™:

7

19 = (B ()" ~(30)... Forny ) (L < hD) € B

Assume that 4
A = tef (H(I}h(z)], Q) /J)
i<d

and that the (B;,y;, I;) satisfy the following requirement:
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(Fnay  fBC (dom(7;))*@ is such that

(F0) -« G m@) (b : 1< h(D)) € B),
then there are 7,7, < Xi (for 1 < h(i)) such that for each l,

Bi = Yiy NYiqy = 0.

Then we can conclude that (21T, A\, A1) € Kok and we have a pair of
algebras (B4 B&™™) as in main theorem 4.4.

Proof. The main point here is that with our assumptions in hand we
may construct a sequence (1o : @ < A) C [[,.5 Ai which is quite stronger
J-cofinal: it satisfies the requirement of 2.2(6)(b) weakened to the demand
that the set there is not in the dual filter J¢. Of course this is still enough
to carry out our proofs and we may use such a sequence to build the right
examples.

(1) Let ((A$ 14 < 0) : @ < \) witness the true cofinality. By induction
on a < A choose v, < A and 7, € HKa A; such that

o ({np(i)} i < 6) €lics 1,
e if B < « then v < 7, and (V/i)(ns(i) € A7*), and
® 1a(i) & A
For o = 0 or « limit, first choose 7, = sup{7,, +1: a1 < a} and then
choose 7,,() by induction on i.
For @ = a1 + 1 first note that
({ne, (1)} ri <) e [T I
i<4
Hence for some 72 < A we have
(V78)(na, (i) € AT*).
Let 74 = max{vq4,,72}. Now choose 71, (i) by induction on i.
As I; is |T;|t-complete, clearly (n, : @ < ) is J-cofinal for (T, J,I) and
3.7, 3.8 give the conclusion.
(2) The construction of 7 is in a sense similar to the one in the proof of
2.8, but we use our cofinality assumptions. We have a cofinal sequence in
h(i
[Tics (11", )/ 7:
((AS ri < d) ta < A).
For each A7 we have “Skolem functions” f7 for [ < h(i) (as in the proofs
of 4.3.1, 5.4).

We define 7, by induction on o < A. In the exclusion list we put all
substitutions by 7y, [4,...,ny,_, 7 for v < o to f{: each time we obtain a

set in the ideal J; and a member A of [],_s I; such that if (V/i)(n(i) € A;),
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n € [],o5 Ai then 7 satisfies the demand. Eventually we have |a|<“ such
I;, say {B%¢ : ¢ < |a| 4+ Rg}. Then for some 7q,

(VE < |a] +Ro)(Vi < 8)(B* C A=),

elements of J], _;

and similarly
(VB < a) (Vi < 8)(ns(i) € AT).
Choose 1o € [[;5(Ai \ A7), =

REMARK 6.10. One of the main tools used in this section are (variants
of) the following observation. Suppose (B, 7) is a A-marked Boolean algebra
such that B is #-Knaster and if e(a,l) < A (for @ < A, [ < n) are pairwise
distinct then for some o < 8 < A, for each [ < n we have B = y.(q,) N
Ye(8,1) = 0. Then (0, )\, )\+) S Ksmk-

CONCLUDING REMARKS 6.11. If p is a strong limit singular cardinal
and cf(u) < @ = cf(0) < p then, by the methods of [1] or [3], we hope to
get consistency of the statement: If an algebra B satisfies the 6-cc then it
satisfies the u™-Knaster condition.

One may formulate the following question now:

QUESTION (mostly solved) 6.12. Suppose that B is a Boolean algebra
satisfying the f-cc and \ is a regular cardinal between pu* and (2#)*. Does
B satisfy the A-Knaster condition?

There a reasonable amount of information on consistency of the negative
answer in the next section, though 6.12 is not fully answered there. But a
real problem is the following.

PROBLEM 6.13. Assume A = pt, cf(u) = 6 and p is a strong limit
singular cardinal. Suppose that an algebra By satisfies the A-cc and an
algebra B satisfies the 6T-cc. Does the free product By * By satisfy the
A-cc? (Is this consistent? See 5.15.)

PROBLEM 6.14. Is it consistent that each Boolean algebra with the Ny-
Knaster property has the A-Knaster property for every regular (uncountable)
cardinal A7

7. Some consistency results. We had seen that without inner models
with large cardinals we have a complete picture, e.g.:

(N) If 0 = cf(f) > Ny, B is a Boolean algebra satisfying the #-cc and X is
a regular cardinal such that

(v < A< < \),
then the algebra B satisfies the A\-Knaster condition.
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Q) If0=cf(0) > Ro, 0 < p=p<* <X=cf(\) < x =x", then there is
a pt-ce p-complete forcing notion P of size y such that

IFp “the #-cc implies the A-Knaster property”.

()  If 0 =cf(h) < p, pis a strong limit singular cardinal, cf(u) = 6, then
the 7 -cc does not imply the p*-Knaster property (and even we have
a product example).

In (J), if we allow (2%)-cc we may even get a better conclusion. In this
section we want to show, under a large cardinals hypothesis, the consistency
of failure.

PROPOSITION 7.1. Assume that k is a supercompact cardinal, Kk < A =
cf(N). Let B be a Boolean algebra which does not have the A-Knaster prop-
erty. Then

(F0)(Ng < 8 =cf(0) < k & B does not have the 8-Knaster property).

Proof. Since k is supercompact, for every second order formula ), if
M = 9 then for some N < M, |[N| < k, N = 1 (see Kanamori and Magidor

[7])- =
PROPOSITION 7.2. (1) If Rg < Ao < A1 are regular cardinals such that

(F)ag.ny,  for every x € H(AT) there is N < (H(\]), €) such that z € N
and N = (H(A). &),

then if a Boolean algebra B has the Ao-Knaster property then it has the
A1-Knaster property (and B |= Ao-cc implies B = Ay -cc).

(2) The condition (x)x,.n, above holds if for some ko, K1, kKo < Ao, K1 <
A1 we have:

(®)  there is an elementary embedding j : V. — M with the critical point
ko and such that j(rko) = K1, j(Xo) = A1 and M** C M.

(3) If ko is a 2-huge cardinal (or actually less) and, e.g., \g = rg* ™!
then for some A\ = k7Tt the condition (®) above holds (we can assume
GCH).

Proof. Just check. m

PROPOSITION 7.3. Assume that

V E “GCH+ there is a 2-huge cardinal > 6 = cf(0)”
(can think of 0 = Rg). Then there is a -complete forcing notion P such that
in VF:

(a) GCH holds,

(b) if a Boolean algebra B has the 6+ -Knaster property then it has the
6+9+1_Knaster property (note that if Vg > 6 then 6791 =Ry, ;).
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Proof. Similar to Levinski, Magidor and Shelah [8]. m
Chasing arrows what we use is

PROPOSITION 7.4. If V |= GCH (for simplicity), 0 = cf(0) = cf(u) < p,
a Boolean algebra B does not satisfy the u™-Knaster condition and Q =
Levy(0, 1) then V@ = “B does not have the 0T -Knaster property”.

8. More on getting the Knaster property. Our aim here is to
get a ZFC result (under reasonable cardinal arithmetic assumptions) which
implies that our looking for (x, notA)-Knaster marked Boolean algebras near
strong limit singular is natural. Below we discuss the relevant background.
The proof relies on pcf theory (but only by quoting a simply stated theorem)
and seems to be a good example of the applicability of pcf, in particular,
for the “revised GCH” of [25].

THEOREM 8.1. Assume p = pu<==.

(1) If a Boolean algebra B of cardinality < 2" satisfies the Nq1-cc then B
is p-linked (see below).

(2) If B is a Boolean algebra satisfying the Ni-cc then B has the A-
Knaster property for every reqular cardinal X € (p, 2M].

DEFINITION 8.2. (1) A Boolean algebra B is p-linked if B \ {0} is the
union of < u sets of pairwise compatible elements.
(2) A Boolean algebra B is u-centred if B\ {0} is the union of < y filters.

Of course we can replace the Vi-cc, J,, by the k-cc, I, (k) (see more
later). The proof is self-contained except a reference to a theorem quoted
from [25].

Let us review some background. By [14, 3.1], if B is a x-cc Boolean
algebra of cardinality u* and p = p=<" then B is u-centred. The proof did
not work for B of cardinality u™* even if 2# > p*+ by [16], the point being
we consider three elements. But if g = p<# < A<*, then for some put-cc
p-complete forcing notion P of cardinality A, in VI we have:

e if B is a u-cc Boolean algebra of cardinality < A then B is u-centred

(follows from an appropriate axiom). Hajnal, Juhdsz and Szentmikldssy
[5] continue this restricting themselves to p-linked. Then the proof can be
carried out for ™, and they continue by induction. However, as in quite
a few cases, the problem was for AT when cf()\) = Ry, so they assume

(®) if A€ (u,2"), cf(\) =Ry then A= AN and O,
(on the square, see Jensen [6]). This implies that if we start with V. = L

and force, then the assumption (®) holds, so it is a reasonable assumption.
Also they prove the consistency of the failure of the conclusion when ®



Cellularity of free products 201

fails relying on Hajnal, Juhdsz and Shelah [4] (on a set system + graph
constructed there) and on colouring of graphs (see [5, §2]). Specifically, they
prove the consistency of 2% = Ny, 2% = R, ;, and for some B, [B| = 2%,
B satisfies the Xi-cc but is not ¥;-linked, only No-linked.

This gives the impression of essentially closing the issue, and so I would
have certainly thought some years ago, but this is not the case, exemplifying
the danger of looking at specific cases. In fact, as we shall note in the end,
their consistency result is best possible under our knowledge of relevant
forcing methods. They use [4] to have “many very disjoint sets” (i.e., (X, :
a€S), S C{d<Nyp1:cf(0) =R}, Xy Ca=sup(X,), and o # 5 =
Xo N X finite).

On pcf see [22]. Now, [25] has half jokingly a strong claim of proving
GCH under reasonable reinterpretation. In particular [25] says there cannot
be many strongly almost disjoint quite large sets, so this blocks reasonable
extensions of [5]. Now the main theorem of [25] enables us to carry out the
induction on A € (i, 2*] as in [14, 3.1], [5, §3].

PRroOPOSITION 8.3. Suppose that:

(a) A >0 =cf(f) >k =cf(r) > N,
(b) there are a club E of A\ and a sequence P = (P, : a € E) (with
a € E = |al divides o) such that:

(i) Po C [a]<F, |Ps| < |a| and P is increasing continuous,
(i1) if X C X has order type 0, then for some increasing (. : € < K)

we have 7. € X and for each € < kK, for some ( € (g,k) and
a <min(E \ v¢) we have {y¢ : ( < e} € Pa,

(¢) B is a Boolean algebra satisfying the k-cc, |B| = A.

Then we can find a Boolean algebra B’ and a sequence (B., : a« € E) of
subalgebras of B’ such that:
(o) B C B’ C B™ (the completion),
(B) B = U ep Bl B, < |a|+Xo, (B, : a € E) is increasing continuous
m a,
(v) if o € E, x € B"\ {0} then for some Y C B/ \ {0} with |Y| < 0 we
have:
e ifyeY then yNax =0p, and
o if z € B, is such that zNx = Op' then z < sup(Y') € B, for some
Y e [Y]<F,
(0) if either (x)1 or (x)2 below holds then we can add
Y generates the ideal {z € B, : zNx = Oy },

where
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()1 (Ve <O)(le[~" < 0),

(x)2 for some cofinal P* C [0]<" of cardinality 6, in clause (b) we
add: for some unbounded w C 0, for every v € [w|<" there is u
such that v C u € P* and for v € X we have {7. : ¢ € u} € P,
(if 0 = 0<", we can ask u = v).

Proof. Let x be a large enough regular cardinal. Let B = {z. : ¢ < A}
and let B™ be the completion of B. By induction on o« € FE we choose
an elementary submodel N, of (H(x), €, <}) of cardinality |a|, increasing
continuous in «, such that B, (z. : ¢ < \), B®™, P, \, 0, k belong to Ny
and (N¢: ¢ <e) € Nogi.

Note: if @ € nacc(E) then o € N, and hence P, C N,.

Let
B, := No NB°™, B = | B,.
ack
By induction on o € E we define a one-to-one function g, from B/ onto «
such that
BeanNE = ggC ga, and g, is the < -first such g,

S0 9o € Nmin(E\(a+1)): Let ¢ = Uycp 9o Thus g is a one-to-one function
from B’ onto A\. Now clearly

(x)if z € B, and 8 = min{y € E : g(z) € B} then f < aV @ =«
€ nacc(FE)

hence in any case 8 € N, so P_g C N,.

In the conclusion clauses, («), (8) should be clear; let us prove (7). So
let « € EF and z € B'\ {0}. We define J ={z€ B/ :B E “2na=0"}.
Then J is an ideal of B,. We now try to choose by induction on ¢ < 6
elements y. € J such that:

(i) ye is a member of J \ {03},

(ii) there is no u € [g]<" such that y, < sup.c,yc € By, (sup in the
complete Boolean algebra B<™),

(iii) under (i) + (ii), ¢g(ye) (< A) is minimal (hence under (i) + (ii),
Be = min{3 < a: y. € B};} is minimal).

If we are stuck for some € < 6, then for every y € J the condition (ii) fails
(note that (iii) does not change at this point), i.e., there is a corresponding
set u so the desired conclusion of () holds. So suppose y. is defined for
e < 6. Clearly

(<e = g(ye) <9(ve),

and hence ( <e <0 = [: < fB.,and ( <e = y¢ # y.. Now apply clause
(b)(ii) of the assumption to the set X = {7, : ¢ < 0}. We get a subset ¥
of X of order type s such that letting the sequence (. : £ < k) list Y in
increasing order, we have (letting v. = v(¢)):
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(xx) for every ¢ < k for some £ € (¢, k) the set {g(y,.) : € < (} belongs
to ,Pﬁ“/(é)

[Why? as the a given by clause (b)(ii) is min(E\ g(y~(¢))) which is B¢ by
its definition in clause (ii) above, by (%) above the set {7, : ¢ < (} belongs
to Nu. Also, as in the analysis in (%), g[{y,. : € < (} is included in a
one-to-one function from N, hence {y,_: e < ¢} belongs to N,].

Hence for every ¢ < &, sup{y,. : € < (} belongs to B, but each y._ is
disjoint to = (in B°™) together it belongs to J. By our inductive choice of
Yy, for v < 6, we have y,, £ sup{y,. : € < (}. As this holds for every ¢ < &
and k is regular we have gotten a contradiction to B, hence B°™ satisfying
the k-cc, so really clause () holds.

We are left with proving clause () there. We repeat the proof of clause
(7), only changing clause (ii) in the inductive choice of y, to

(ii)" ye does not belong to the ideal (of B),) generated by {y¢ : ¢ < €}.

Again if we are stuck at some € < 6 we get the desired conclusion, so
assume toward contradiction that y. is defined for every v < 6. Now first
assume that possibility (x); from clause (4) holds, so clearly for some club
C of 0 we have: if ( < £ € C and u is a subset of ¢ of cardinality < x and
sup{y,. : € < (} belongs to the ideal of B, generated by {y,. : € < 6}, then
it belongs to the ideal of B, generated by {y,. : e < &}. Now choose an
ordinal ¢ € acc(C) of cofinality x and continue as in the proof of clause (7).

So clause () holds when possibility (x); holds, so assume that possibility
()2 holds. Let (ue : € < k) list the family P* of subsets of € of cardinality
< k each appearing x times. We change the construction by adding to
clause (ii):

(i)™ if there is & < 0 satisfying: ue is a subset of ¢ and sup{y¢ : ( € u.}
belongs to Bl, but does not belong to the ideal of B, generated by {y. :
¢ < €} then y. is equal to such sup for the minimal possible €.

Note that we probably lose ( < ¢ <0 = B¢ < fe.

Still, by (*)2 applied to X := {g(y,.) : € < 0} we get an unbounded
subset w of  such that for every v € [w]<" for some u € [w]<" and € < 6 we
have v C v and {g(y..) : € € u} € Pg.. Let v be a subset of w of cardinality
< k such that sup{g(y,.) : € € v} is equal to sup{g(y,.) : € € w}, and
let u € P* be as guaranteed by (x)2. Let £ < 6 be such that ug = u,
so for every e < 6 large enough, ¢ satisfies the assumption in (ii)* above,
but we do not use the same & twice, so necessarily for some ¢ < 6 we have
yc = sup({y, : v € ue} but then we can find € € w\ (¢ + 1), so y. belongs
to the ideal generated by {y; : i < £}, contradiction. m
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PROPOSITION 8.4. Suppose that:

(a) A >0 =cf(f) >k =cf(k) >Ry and p = p<f <\ < 2#,

(b) as in assumption (b) of 8.3 and either (x)1 or (x)2 of clause (0) of
8.3,

(¢) B is a k-cc Boolean algebra of cardinality X,

(d) every subalgebra B' C B™ of cardinality < X is p-linked (see Defi-
nition 8.2(1)).

Then B is p-linked.

Proof. Let (B, : a € E), B be as in the conclusion of 8.3. Without loss
of generality we may assume that the set of elements B/, is a. For « € F,
let hy : B!, \ {0} — p be such that

ha(l’l) = ha(SL‘Q) = x1MNxo 75 Op.

For each z € B’ \ B ;,, ) let a(2) = max{o € E: w ¢ B} (well defined as
B = U,cr B, and (B, : a € E) is increasing continuous), and let Y, , C B,

be such that |Y; | < 0 and
Y, CJ,:={yeB,:ynz =0}

and Y is cofinal in J, (Y, exists by 8.3, see clause (0)).

Define u = {0, a(x)}, let Y,? be the subalgebra of B’ generated by {z},
and w7 = u? U {a(y) : y € V" \ min(B/,)} and Y**! be the subalgebra of
B’ generated by

YU U{Yxha cx1 €Y and o € ul }.
Finally let V¥ = {J, ., Y, and u, = {J,,, uy. As 0 is regular, [Y'| < 0

T

and as in addition # is uncountable, |Y| < 6. Let u, = {a(y) : y € Y,*'}.
We can find Ac C B’ \ {0} for ¢ <y such that B"\ {0} = ., A¢c and

(®) if x1, 22 € A¢, then there are one-to-one functions f : Y3 ontQ Yy
and g : Uy, onto Uz, such that:

(i) f, g preserve the order,

(ii) f(z1) = 22 and if y € Y} then g(a(y)) = a(f(y)),
(iii) if o € ug,, y € B, NY}? then ho(21) = hga) (f(21)),
(iv) f is an isomorphism (of Boolean algebras),

(v) g is the identity on uy, N uy,,
(vii) f is the identity on Y2 NY .

[Why? By [2] or use (n, : x € B’), n, € #2, with no repetitions.]
So it is enough to prove:

xl,l'QEAC = x1 Nxy # Op.
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Let D; be an ultrafilter of Y, to which x; belongs, and set Dy := {f(y) :
y € Y} (an ultrafilter on Y to which x5 belongs). It suffices to prove
that for each a € E, the set (D; NB.)) U (D2 NB.)) generates a non-trivial
filter on B/,. We do it by induction on « (note that if o < [ this holds
for a provided it holds for B8). If a € u,, N ug, use clause (iii) of (®)
and the choice of h,—note that this includes the case when o = 0. For
a € acc(E) it follows by the finiteness of the condition. In the remaining
case f = sup(E Na) < a and if Y2 NB;, C B and Y37 N B, C Bj; this
is trivial. So by symmetry we may assume that § € u,, \ u,, and use the
definition of Y, for y € B, NY,: \ Bj;. =

PROPOSITION 8.5. Assume = u<==%). Then for every X € (u,2"] of

cardinality > p, for every large enough reqular 8 < 3, (k) clause (b) of 8.3
holds.

Proof. By [25], for every 7 € [u, A) for some 6, < 3, (k), we have:

(©)  there is P = P, C [1]<2+*) closed under subsets such that [P| < 7
and every X € [7]<2<(®) is the union of < #, members of members
of P,.
Now, as cf(\) > p for some n < w, the set
O={r:p<7t<\ 0, <3,(r)}
is an unbounded subset of CardN(u,\). Let 6 < (3,4+1(k)) be regular.

Choose a club E of X such that o € nacc(E) = |a| € ©, and choose
Po C [af<F increasing continuous with o € E such that for a € nacc(E),
for every X € [a]?, for some h: X — 3,(k),if Y C X, |Y| < k and h|Y is
constant then Y € P,.

Now suppose X C A, otp(X) = 6, so let X = {7. : ¢ < 0} with 7,
increasing with €; let . = min{a € E: 7. < f},s0 ( <e = ¢ < (- and
Be € nacc(FE), and there is he : {¢ : ( < e} — 3,(k) such that for every
j < jﬂ(’%)v

u € []<" & (hlu constant) = {y::( € u} € Pg..
Applying the Erdés-Rado theorem (i.e., § — (Jn(ﬁ)ﬂz:n(n)) we get the
desired result (the proof is an overkill). m

MAIN CONCLUSION 8.6. Suppose that k is a reqular uncountable cardi-
nal, p = p=2") and B is a Boolean algebra satisfying the k-cc.

(1) If |B| < 2* then B is p-linked.

(2) If X is regular € (u,2*] then B satisfies the A\-Knaster condition.

Proof. (1) We prove this by induction on A = |B|. If |B| < p it is trivial
and if cf.(|B|) < p it follows easily by the induction hypothesis. In other
cases by 8.5, for some 6* < J,(k), for every regular 6 € (6*,3,(k)), clause
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(b) of 8.3 holds. Choose § = (6%)**, so for this § both clause (b) of 8.3
and (x); of clause (J) of 8.3 hold. Thus by Proposition 8.4 we can prove the
desired conclusion for A = |B].

(2) Follows from (1). m

PROPOSITION 8.7. (1) In 8.6 we can replace the assumption p = p=*)
by p= p=7 if
®  for every X € (u,2") of cardinality > u, for some 0 = cf(0) > k clause
(b) of 8.3 and (x)1 V (x)2 of clause (§) of 8.3 hold.

(2) If \* € (1, 2") and we want to have the conclusion of 8.6(1) with
IB| = A* and 8.6(2) for A\*-Knaster only then it suffices to restrict ourselves
nQ to X< \*.

PROPOSITION 8.8. In 8.3, if (Ve < 0)[|e|<" < 0] then we can weaken
clause (ii) of assumption (b) to

(i1)" of X C X has order type 0 then for some (7. : € < k) we have . € X
and

(Ve < k)(Fa){1ec : ( <e} € Py & a=min(E \ sup{y¢ : ¢ < ¢e})).

Proof. Let X = {j. : ¢ < 6} be strictly increasing with ¢, and let
fe =min(E\ (je +1)),s0 ( <e = f¢ < .. Let
e:={e <0 :¢is a limit ordinal and
if e1 < e and u € [e1]~" and {j¢ : € € u} € Uy P,
then {j. :e € u} € U, Pg.}-
Now, e is a club of § as (6 is regular and) (Ve < 6)[|e|<" < 0]. So we can
apply clause (i) to X’ := {j: : ¢ € e}, and get a subset {7 : ¢ < k} as
there; it is as required in clause (ii). m

PROPOSITION 8.9. (1) Assume A > 0 = cf(0) > k = cf(k) > Rg. Then
a sufficient condition for clause (b) + (0)(x)1 of Claim 8.3 is

(®1)  (a) A >0 =cf(0),
(b) for arbitrarily large o < X for some regular 7 < 6 and N < A,
for every a C RegN|a|\ 6 of cardinality < 6 for some (b, : ¢ <
e* < 1) we have a = |J.__. be and [b]<" C J<x[a] for every
€ < e*,
(c) (Ve <O0)[le|<" < 0] or for every X' € [, A], Ois<nrici(s)=0} -

e<e

(2) Assume p > 0 > k = cf(k) > Ng. A sufficient condition for clause
(b) of 8.3 to hold is:

e for every \ € [u,2"] of cofinality > u, for some 8 < 0, (®1) holds
(with 0" instead 0).

Proof. (1) By [23], [18, 2.6], or [13]. (2) Should be clear. m
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REMARK 8.10. So it is still possible that (assuming CH for simplicity)
® if p =™, Bis a c.c.c. Boolean algebra, |B| < 2# then B is u-linked.

On the required assumption see [19, Hyp. 6.1(x)].

Note that the assumptions of the form A\ € I[)\] if added save us a little
on pcf hyp. (we mention it in 6.5). But if we are interested in [k-cc = -
Knaster], it can be waived.
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