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Embedding Cohen algebras using pcf theory
by

Saharon Shelah (Jerusalem and New Brunswick, NJ)

Abstract. Using a theorem from pcf theory, we show that for any singular cardinal

v, the product of the Cohen forcing notions on x, kK < v, adds a generic for the Cohen

forcing notion on 7.

The following question (problem 5.1 in Miller’s list [Mi91]) is attributed
to René David and Sy Friedman:

Does the product of the forcing notions ®#>2 add a generic for the forcing
Nu+1 > 2?

We show here that the answer is yes in ZFC. Previously Zapletal [Za]
showed this result under the assumption Uy .

In fact, a similar theorem can be shown about other singular cardinals
as well. The reader who is interested only in the original problem should
read R 41 for A, 8, for p and {R,, : n € (1,w)} for a.

We thank Martin Goldstern for writing up this article.

DEFINITION 1. (1) Let a be a set of regular cardinals. []a is the set of
all functions f with domain a satisfying f(k) € x for all k € a.

(2) A set b C ais bounded if supb < supa, and cobounded if a '\ b is
bounded.

(3) If J is an ideal on a, f,g € []a, then f <; g means {k € a: f(k) £
g(k)} € J. We write [[a/J for the partial (quasi)order (] a, <;).

(4) A =tcf(J[Ja/J) (X is the true cofinality of [[a/J) means that there
is a strictly increasing cofinal sequence of functions in the partial order
(H a, <J)'

(5) pef(a) = {A: (37) (A = tef([Ta/J))}-
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We will use the following theorem from pcf theory:

LEMMA 2. Let p be a singular cardinal. Then there is a set a of reqular
cardinals below p with |a| = cf(u) < mina and ™ € pef(a). Moreover,
we can even have tcf([Ta/JPY) = ut, where J is the ideal of all bounded
subsets of a.

Proof. See [Sh 355, Theorem 1.5].

THEOREM 3. Let a be a set of reqular cardinals, u = supa &€ a, 2<* = 2#,
A > p, A € pef(a), and moreover:

(x)  There is an ideal J on a containing all bounded sets such that A\ =
tcf([Ja/J).
Then the forcing notion [],.c, "2 adds a generic for *>2.

COROLLARY 4. If v is a singular cardinal, and P is tiie product of the
forcing notions ©~2 for k < v, then P adds a generic forV ~2.

Proof. By Lemma 2 and Theorem 3.
REMARK 5. (1) The condition (x) in the theorem is equivalent to:
(#x)  For all bounded sets b C a we have A € pcf(a\ b).

(2) Clearly the assumption 2<* = 2 is necessary, because otherwise the
forcing notion [, ., *~2 would be too small to add a generic for *>2.

Proof of Theorem 3. By our assumption we have some ideal J containing
all bounded sets such that tcf(JJa/J) = A.

We will write (V/x € a) (p(k)) for {k € a: ~p(k)} € J. So we have a
sequence (f, : a < A) such that:

(a) fa €]]a
(b) If a < B3, then (V/k € a) (fu(k) < fa(k)).

(¢) (Vf € [Ta)Ba)(v/k € a)(f(k) < fa(k)).

The next lemma shows that if we allow these functions to be defined
only almost everywhere, then we can additionally assume that in each block
of length u these functions have disjoint graphs:

LEMMA 6. Assume that a, A, u are as above. Then there is a sequence
(ga : @ < A) such that:

(a) dom(g,) C a is cobounded (so in particular (V/'k € a)(k €
dom(ga(x)))-

(b) If a < B, then (V/k € a)(ga(r) < gg(k)).

(c) (Vf € [Ia)Ba)(V/ K € a)(f(k) < ga(k)). Moreover, we may choose
a to be divisible by u.

(d) If a < B < a+ p, then (Vi € dom(g,) Ndom(gs))(ga(r) < gs(k)).
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Proof. Let (fo : @« < A) be as above. Now define (g, : @ < A) by
induction as follows:

If « = p-(, then let g, € [[a be any function that satisfies gz <j go
for all B < «, and also f, <j g. Such a function can be found because the
set of functions of size < A can be <j-bounded by some f3.

fa=p-C+1i, 0<i<p,then let

S guck)+1 ifi <k,
9alK) = {u;;lééﬁzled otherwise.
It is easy to see that (a)—(d) are satisfied.

DEFINITION 7. (1) Let P, be the set ©~2, partially ordered by inclusion

(= sequence extension). Let P = [].., Ps. [We will show that P adds a
)\>2‘]

K€a
generic for

(2) Assume that (g, : @ < A) is as in Lemma 6.

(3) Let H : #2 — *>2 be onto.

(4) For k € a, let 1, be the P,,-name for the generic function from x to 2.
Define a P-name of a function h:X—2by

h(a) = {O if (V/k € a)(ﬂ,{(ga(/g)) =0),

~ 1 otherwise.
(5) For & < A let g¢ be a P-name for the element of #2 that satisfies
e~ hilu- € - (E+1)), ie
i<p=ltp ge(i) =h(p-§+1i).
Define ¢ € A2 by
0= H(go) H(o1)" - H(ge)™

MAIN CLAM 8. g is generic for A>9,

)
Al

DEFINITION 9. For av < A let P(®) be the set of all conditions p satisfying
(V) (dom(py) = ga(r))-

REMARK 10. [J. .y P9 is dense in P.

Proof. By Lemma 6(c).

FACT 11. Let o = - ¢, p € P, o € #2. Then there is a condition
g€ Pt ¢ >pand

(V7 < 1) (V7 5) (@ (ot (K)) = ().
Proof. Let p = (ps : K € a). There is a set b € J such that for all

x € a\ b we have dom(p,) = go (k). Define g € P(eH#) ¢ = (¢, : k € a), as
follows:

U(]) if’}/:ga-t,-j(/‘i), /@Ea\b,

pe(y) if v € dom(ps),
A4k (7) =
0 otherwise.
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We have to explain why ¢ is well defined: First note that the first and the
second case are mutually exclusive. Indeed, if v = go4;(K), then v > g, (),
whereas € b implies that dom(p,) = ga(K), so v & dom(py).

Next, by the property (d) from Lemma 6 there is no contradiction be-
tween various instances of the second case. Also the third case causes no
contradiction. Now obviously ¢, € P,; and p,; < gx. Sop < q € P;.

Hence we find that for all j < p, whenever k € a\ b and k > j, then
4x(9gatj(k)) = o(j). Since J contains all bounded sets, this means that
(W 5)(¢x(ga+5(K)) = o(j))-

REMARK 12. Assume that « = p - (, and p, ¢, 0 are as above. Then
qlFoc=o.

Proof of the main claim. Let p € P, and D C *>2 be a dense open set.
We may assume that for some a* < A, (* < A we have o = p - (* and
p € P ie., for some b € J we have (V& ¢ b)(dom(p.) = gu-(x)), by
Remark 10.

So p decides the values of h [ a*, and hence also the values of g for
¢ < ¢*. Specifically, for each ¢ < ¢* we can define o, € #2 by -

oc(i) = 4 0 i (V/K)(Pe(gu-c1i(r)) = 0),

¢ .
1 otherwise.

(Note that for all ¢ < ¢* and all i < p, and almost all k the value of

Pr(9u-c+i(k)) is defined.)

Clearly p IF o¢ = o¢. Since D is dense and H is onto, we can now find
o¢« € M2 such that H(og) ™+~ H(of) € D. Using 11 and 12, we can now
find ¢ > p such that g IF ¢+ = o¢-.

Hence ¢ IF ¢ € D, and we are done.
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