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Generalized Whitney partitions

by

Micha l R a m s (Warszawa)

Abstract. We prove that the upper Minkowski dimension of a compact set Λ is equal
to the convergence exponent of any packing of the complement of Λ with polyhedra of
size not smaller than a constant multiple of their distance from Λ.

1. Results. For a set K ⊂ R
d denote by Br(K) its r-neighbourhood.

We define the upper Minkowski dimension as

dim(K) = d + lim sup
r→0

log vol Br(K)

− log r
.

Another, more common definition of this dimension is as follows: let
Nr(K) be the minimal number of sets in a covering of K with balls of
radius r. Then

dim(K) = lim sup
r→0

log Nr(K)

− log r
.

Note that
dim(K) = dim(K).

For other properties of this notion, see [6] or [4].
Let Λ be a bounded subset of R

d with closure of volume 0. Let (Ei) be a
family of convex closed d-dimensional polyhedra in R

d, disjoint from Λ, cov-
ering the complement of Λ (to be denoted by Λc) and with pairwise disjoint
interiors. We will also need these polyhedra to have uniformly bounded ratio
of their external to internal radii. By the external radius of a set we mean
the smallest radius of a ball containing it; similarly, the internal radius of a
set is the greatest radius of a ball contained in it. Such families of polyhedra
will be called uniformly regular.

We will also demand that the edges of these polyhedra are long, i.e.
have lengths uniformly comparable to the diameter of the polyhedron. As
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an example we can take the family of maximal dyadic cubes disjoint from
Λ. The diameter of Ei will be denoted by |Ei|. Λ will be called the residual

set of the family (Ei).

There are two conditions which are usually imposed on such families:

(i) |Ei| ≥ cdist(Ei, Λ),

(ii) |Ei| ≤ cdist(Ei, Λ).

If a family (Ei) satisfies both the conditions (i) and (ii), it is called a
Whitney family. A family which satisfies only (i) will be called a generalized

Whitney family. See [10] for some properties of Whitney families of cubes.

For a family (Ei) one can consider the convergence exponent of (Ei),
defined as follows:

sE = inf
{

t :

∞
∑

i=1

|Ei|
t < ∞

}

,

where the sum is taken over Ei with diameter smaller than any given con-
stant. This notion is closely related to the notion of Poincaré exponent (see
[7] or [2]).

It is well known (see for example [5] or [1]) that for any Whitney family

sE = dim(Λ),

where Λ is the residual set for (Ei).

Our result states that the same is true for generalized Whitney families.

Theorem 1.1. Let Λ be a bounded subset of R
d with closure of zero

d-dimensional measure. Let (Ei) be any generalized Whitney family of uni-

formly regular convex polyhedra with long edges in R
d, for which Λ is a

residual set , and let sE be its convergence exponent. Then

sE = dim(Λ).

For a special case this result was obtained (by a different method) by
Tricot [13]. See also [11] and [12] for related results.

The results of this paper are part of my PhD thesis [9].

The rest of the paper is divided as follows. Section 2 contains some basic
information, notations and motivations for the problem. Section 3 contains
the proof of Theorem 1.1 in the special case when the family (Ei) consists
only of cubes, with edges parallel to the coordinate axes—this is the case
done in [13]. Section 4 contains the proof of Theorem 1.1 in full generality.

Remark on notation: c stands for any constant, not necessarily the same
at each occurrence. If a constant has to be chosen depending on some
variables, it is denoted like c(t, u, v). The dependence on d is omitted. The
notation f ≈ g means the existence of two constants c1, c2, depending only
on d, such that c1f ≤ g ≤ c2f . The set of natural numbers contains zero.
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I want to thank the referee for many extremely helpful suggestions.
Among other things, he drew my attention to Tricot’s thesis [13]. In the
original version, I worked only with compact Λ so the elements Ei of parti-
tions were always at a positive distance from Λ—it was also the referee who
suggested this constraint could be omitted.

2. Introduction. We recall some notations. In what follows Λ is
a bounded subset of R

d with closure of d-dimensional volume 0, (Ei) is a
generalized Whitney family for Λ, and sE denotes the convergence exponent
of the family (Ei). One easily sees that sE ∈ [0, d].

As the definition of sE depends only on small sets Ei, we can freely
remove from this family all the sets with diameters greater than any given
constant. Let us choose this constant to be greater than the diameter of
all the Ei intersecting Λ, so the family will still cover some neighbourhood
of Λ.

Let us start from a simple fact that was our motivation for studying
generalized Whitney partitions and their convergence exponents. Let (Ei)
be the dyadic covering of Λc, i.e. the covering of Λc with maximal cubes
of the form [k1/2

l, (k1 + 1)/2l] × . . . × [kd/2
l, (kd + 1)/2l], disjoint from Λ.

This partition is generalized Whitney, but not necessarily Whitney.

Proposition 2.1. For the dyadic partition the assertion of Theorem 1.1
holds.

P r o o f. We can assume that Λ ⊂ I = (−1, 1)d and restrict the family
(Ei) to subsets of I.

We denote by D(n) the number of dyadic cubes with edges of length 2−n

belonging to (Ei). Let A(n) denote the number of dyadic cubes with edges
of length 2−n, intersecting Λ. We also write Gt(n) = A(n) · 2−nt.

From the construction of the dyadic partition we can write

D(n + 1) = 2dA(n) − A(n + 1).

The definition of upper Minkowski dimension can be written as follows:

dim(Λ) = lim sup
1

n
log2 A(n).

Hence

∀t > dim(Λ) ∃c(t) A(n) < c(t) · 2nt,

∀t < dim(Λ) ∃c(t) ∃(ni)
∞

i=1 A(ni) > c(t) · 2nit.(1)

Let us look at the series

H(t) =

∞
∑

i=1

D(i) · 2−it =

∞
∑

i=1

(2d−tGt(i − 1) − Gt(i)).
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We need to prove that it converges for t > dim(Λ) and diverges for t <
dim(Λ). The first assertion is immediate, since for t > dim(Λ) the series
∑

Gt(i) is convergent. In what follows we assume t < dim(Λ).
We have (from (1)) a sequence (ni) of natural numbers for which Gt(ni)

> 1 (even Gt(ni) ր ∞). The sequence Gd(ni) is a subsequence of Gd(n),
so it decreases to 0. We can assume (passing to a subsequence if necessary)
that Gd(ni) > 2Gd(ni+1) for all i. Then

H(t) ≥
∞
∑

i=1

ni+1
∑

k=ni+1

D(k) · 2−kt =
∞
∑

i=1

Hi(t),

where

Hi(t) =

ni+1
∑

k=ni+1

D(k) · 2−kt.

We have

Gd(ni) − Gd(ni+1) =

ni+1
∑

k=ni+1

D(k) · 2−kd ≤ 2−(ni+1)(d−t)Hi(t),

Gd(ni) − Gd(ni+1) ≥
1

2
Gd(ni) = 2−ni(d−t)−1Gt(ni).

Finally,

Hi(t) ≥ 2d−t−1Gt(ni) > 2d−t−1

so the series H(t) diverges.

Now we proceed to the general case. We denote by Kn the union of Λ
and all the sets Ei with diameters smaller than 2−n; this set is compact and
contains Λ. We can estimate

∑

|Ei|
t ≈

∞
∑

n=0

vol(Kn \ Kn+1)

2−nd
· 2−nt.

The volumes of the sets Kn decrease to zero, hence this series is equal to
∞
∑

n=0

(vol Kn−vol Kn+1)+

∞
∑

n=1

∞
∑

m=n

(2n(d−t)−2(n−1)(d−t))(vol Km−vol Km+1)

= vol K0 + (1 − 2t−d)

∞
∑

n=1

2n(d−t) vol Kn.

Hence

(2) sE = d + lim sup
1

n
log2(vol Kn).

Let δ be a constant, to be chosen afterwards. We denote by Ln the
δn-neighbourhood of Λ, where δn = δ · 2−n. Independently of the choice of



Generalized Whitney partitions 237

δ we can rewrite the definition of upper Minkowski dimension as follows:

(3) dim(Λ) = d + lim sup
1

n
log2(vol Ln).

If we choose δ sufficiently large then Kn ⊂ Ln. On the other hand, if
(Ei) is a Whitney partition (not only generalized Whitney) then for δ small
enough we have Kn ⊃ Ln. So the following lemma follows immediately from
(2) and (3):

Lemma 2.2. We have

sE ≤ dim(Λ).

If (Ei) is a Whitney partition then we have equality.

Hence in the case dim(Λ) = 0 the assertion of Theorem 1.1 is immediately
true. In the rest of the paper we assume dim(Λ) to be positive.

3. Cubes. In this section we prove Theorem 1.1 in a special case.
Throughout this section we demand all the sets Ei to be cubes with edges
parallel to coordinate axes. The proof in the general case is similar; we
present the simpler case first to outline our approach.

Let us begin with two lemmas that allow us to restrict our attention to
the case of Λ of small dimension. We denote by l the greatest integer strictly
smaller than dim(Λ)—it is in [0, d − 1].

Lemma 3.1. dim(Λ) > d − 1 ⇒ sE = dim(Λ).

P r o o f. We construct a new family (E′

ij) by applying the following al-

gorithm to all the cubes Ei. First we divide the cube into 2d smaller ones.
In the second step we divide all of them again. In all the next steps we di-
vide not all of them, but only those which touch the boundary of the initial
cube Ei. We execute these steps infinitely many times. Figure 1 shows the
situation after a few steps.

Our new family has residual set Λ′ greater than Λ—it also contains the
boundaries of all the cubes Ei—and this family is a Whitney family. We
then know that

sE′ = dim(Λ′) ≥ dim(Λ) ≥ sE

where sE′ stands for the convergence exponent of the resulting family (E′

ij).
Let us look at a cube Ei from the initial family. It is divided into an

infinite number of cubes E′

ij ; one can check that there are no more than

c · 2−n(d−1) cubes of side length 2−n|Ei| in it. So, for any t ∈ (d − 1, d] we
can write

(4) |Ei|
t ≤

∑

E′

ij⊂Ei

|E′

ij |
t < c(t)|Ei|

t.
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Fig. 1. The subpartition E′ij after the fourth step

Hence for any such t the series
∑

|Ei|
t and

∑

|E′

ij |
t are simultaneously

convergent or divergent. The latter is convergent when t > sE′ and divergent
when t < sE′ . As sE′ ∈ (d − 1, d], the same must be true for the former,
hence the convergence exponents of the old and new families have to be the
same. This, together with the estimate on sE′ and Lemma 2.2, gives the
assertion of the lemma.

This argument will reappear later in more complicated versions.

The next lemma is only a slight strengthening of the previous one.

Lemma 3.2. If some projection of Λ onto a (d−1)-dimensional hyperplane

has positive (d − 1)-dimensional measure then sE = dim(Λ).

P r o o f. Let Π be such a projection. Then

vold−1(Π(Ei)) ≤ c|Ei|
d−1,

∑

Ei

|Ei|
d−1 ≥

∑

Ei

vold−1(Π(Ei)) ≥
\

Π(Λ)

n(x) dxd−1,

where n(x) is the number of cubes Ei whose projection contains the point
x. Of course, n(x) = ∞ everywhere on Π(Λ) so the integral is infinite. This
means that sE ≥ d− 1. As the projection can never increase the dimension,
the upper Minkowski dimension of Λ has to be no smaller than d − 1. If it
equals d − 1 then by Lemma 2.2 the convergence exponent also has to be
d − 1. And the case dim(Λ) > d − 1 was dealt with in Lemma 3.1.
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For the rest of the section we can thus assume l ≤ d − 2.

Now we define some additional notations, to be used in the remainder
of the paper. For any n we can choose a set of points from Λ in such a way
that the cubes of side length 2δn with centres at the chosen points and with
sides parallel to coordinate axes are pairwise disjoint. We call the maximal
such set Mn, and the cube as above with centre at x ∈ Mn will be denoted
by Bn(x). One can check that

♯Mn ≈ 2nd vol Ln.

Let nj be a sequence of natural numbers such that

dim(Λ) = d + lim
1

nj
log2(vol Lnj

).

We then have for any positive ε′ the estimates

♯Mnj
≥ c(ε′)δdim(Λ)−ε′

nj
,(5)

vol Ln ≤ c♯Mnδd
n.(6)

We prove Theorem 1.1 by contradiction. Throughout the rest of the
section we assume that the convergence exponent for (Ei) is not equal to
(hence strictly smaller than) the upper Minkowski dimension of Λ.

We postpone the proof of the following key lemma until the end of the
section.

Lemma 3.3. There exists C such that for any ε and any nj sufficiently

large at least 1
2
♯Mn of the sets Bnj

(x)∩Knj
have volume smaller than εδd

nj

and each of these contains an (l + 1)-dimensional cube D(x) of side length

C · δnj
lying at a distance at least C · δnj

from the boundary of Bnj
(x).

From this lemma Theorem 1.1 easily follows. As the intersection of the
set Bnj

(x) with the interior of Knj
is open, there is a whole rectangular

parallelepiped in it, say D′(x), one of whose (l + 1)-dimensional sides is
D(x).

Now consider only those cubes Ei which meet D′(x) in such a way that
the projection Π of Ei onto the (l + 1)-dimensional surface passing through
D(x) lies inside D(x); those cubes lie in Bnj

(x) ∩ Knj
, so their edges are

not greater than ε1/dδnj
. Their projections cover D(x) except possibly a

strip of width ε1/dδnj
at all borders, and except a set of (l + 1)-dimensional

measure 0 elsewhere. As we can take ε arbitrarily small in Lemma 3.3, we
can guarantee that the (l + 1)-dimensional volume of the union of those
projections is greater than cδl+1

nj
.

For t < l + 1 the ratio of |Ei|
t to the volume of the projection of Ei

onto D(x) (which lies between |Ei|
l+1 and c · |Ei|

l+1) is smallest when |Ei|
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is greatest. Hence

∑

Ei⊂Bnj
(x)

|Ei|
t ≥ voll+1(D(x)) inf

|Ei|
t

voll+1(Π(Ei))

≈ cδl+1
nj

(ε1/dδnj
)t−l−1 = c(t, ε)δt

nj
.

This is the sum in one of the cubes Bnj
(x) only—to estimate this sum

over all the cubes Ei we should multiply it by the number of such cubes
Bnj

(x), that is, by 1
2 ♯Mnj

(Lemma 3.3). Take any ε′ > 0. Set

t = dim(Λ) − 2ε′ < l + 1.

Using (5) we get an estimate for the total sum:
∑

|Ei|
t ≥ c(ε, ε′) · δ−ε′

nj
,

and this can be arbitrarily large for we can take nj arbitrarily large. Hence
sE ≥ dim(Λ) − 2ε′, which (together with Lemma 2.2) ends the proof of
Theorem 1.1.

Now we prove Lemma 3.3. We still assume that sE < dim(Λ).

Let us see what happens in cubes Bnj
(x) with centres in Mnj

. If for
infinitely many nj ,

vol(Knj
∩ Lnj

)

vol Lnj

≥ c > 0,

then the measure of Knj
would be at least proportional to one of Lnj

, hence
we would get sE ≥ dim(Λ)—a contradiction.

For the rest of this section we assume that this fraction goes to 0 as nj

goes to the infinity. Then for any ε > 0, for all nj large enough and for c
taken from (5),

vol(Knj
∩ Lnj

)

vol Lnj

≤
ε

2c
.

This means that for any ε > 0 and all nj large enough the inequality

(7)
vol(Bnj

(x) ∩ Knj
)

vol Bnj
(x)

< ε

holds for at least half the points in Mnj
, because the volume of any Bn(x)

is the same.

We now consider for a while a new family (E′

ik), which is a subpartition
of (Ei), similar to the one in the proof of Lemma 3.1. Like there, we first
divide a cube Ei into 4d cubes, but then we divide not all those which touch
the boundary of Ei but only those which touch one of its l-dimensional sides.
See Figure 2.
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Fig. 2. The subpartition E′ik for d = 2, l = 0 after the fourth step

The construction from Lemma 3.1 was a special case l = d − 1. Like
there, for any t > l we have

∑

E′

ik⊂Ei

|E′

ik|
t ≈ c(t)|Ei|

t

(because this family is a Whitney partition for the union of l-dimensional
sides of Ei).

Hence
sE < dim(Λ) ⇔ sE′ < dim(Λ).

Then we see that even for these new, smaller cubes the set K ′

nj
has small

intersection with most of the cubes Bnj
(x) for nj large enough, that is, the

inequality (7) also holds for K ′

nj
.

Let us now look at the situation in one of those cubes Bnj
(x) for which

this intersection is small. The intersection is the whole Bnj
(x) except those

cubes E′

ik which are too big. From the very definition of E′

ik, the side
length of E′

ik is roughly proportional to the distance between this cube and
the closest l-dimensional side of the cube Ei it lies in. So, if a cube E′

ik meets
Bnj

(x) and is too big to be in Knj
then no l-dimensional sides of the cube Ei

can meet Bnj
(x) provided δ is sufficiently small. As the corresponding sides

of Ei and Bnj
(x) are parallel, Ei has to contain one of the (l+1)-dimensional

sides of Bnj
(x).

We can now return to the family (Ei). We have just proved the following
statement:
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For any ε and for nj large enough, for at least half the cubes Bnj
(x)

the intersection Bnj
(x) ∩Kc

nj
has volume at least (1− ε) vol(Bnj

(x)). This
intersection is a union of intersections of Bnj

(x) with large cubes Ei (those
of side length greater than 1

δ |Bnj
(x)|)—but the intersections with cubes Ei

containing less than 2l+1 vertices of Bnj
(x) have total volume not greater

than ε vol(Bnj
(x)), hence these cubes are at a distance at least (1 − 2ε)δnj

from x.

We know that any of them has to contain 2l+1 of vertices of Bnj
(x)

because the sides of those cubes are parallel to those of Bnj
(x). We take ε

very small.

We now start a geometric part of the proof of Lemma 3.3. A pair (A,B)
where A is a d-dimensional cube and B is the difference of A and a union
of some d-dimensional cubes Ci with disjoint interiors and sides parallel to
those of A will be called a (d, l)-pair when the cubes Ci contain at least 2l+1

vertices of A each but not the centre of A.

Lemma 3.4. Let (A,B) be a (d, l)-pair. Then B contains an interval

between the centre of A and the centre of one of its (d − 1)-dimensional

sides.

P r o o f. Assume that this is not true and any such interval, say xa, meets
one of the cubes Ci, say C. Look at a two-dimensional section of A, passing
through the centre x of A and parallel both to the interval xa and to one of
the edges of A, contained in C. This section is a square for which every in-
terval from the centre to the centres of sides meets one of the squares Ci (we
denote the squares in the same way as the cubes they come from). But C
contains two vertices of the square, so there are at most three squares Ci as
each of them contains at least one vertex. One square Ci can meet only one
interval—but there are four intervals, which leads us to a contradiction.

Lemma 3.5. Let (A,B) be a (d, l)-pair. Then B contains an (l + 1)-
dimensional cube D whose edges are parallel to those of A and have length

greater than c|A| and which lies in a cube A′ with the same centre and

orientation of sides as A but with volume half that of A.

P r o o f. From the previous lemma we know that one of the intervals
connecting the centre of A with the centres of its sides lies completely in B;
call it D1. For l = 0 the lemma follows immediately. For l > 0 we look at
the (d − 1)-dimensional sections of A, orthogonal to D1. We call two such
sections similar if they are equal up to a translation. There are at most
2d−l−1 similarity classes of sections because they depend only on which of
the cubes Ci the section hyperplane meets. Hence there is a subinterval
D′

1 ⊂ D1 of length c · |A|, lying in A′, such that the sections passing through
any two of its points are similar.
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Any of such sections is a (d − 1, l − 1)-pair because the intersection of a
hyperplane π and one of the cubes Ci is a (d−1)-dimensional cube containing
2l vertices of the cube A∩π, and the centre of A∩π (the intersection of D1

with the section plane) lies in B ∩ π. The lemma follows by induction: we
can now find an l-dimensional cube D′ of side length comparable with |A|,
contained in B ∩ π and the cube we seek is D = D′

1 × D′. See Figure 3.

Fig. 3. A (d, l)-pair

To end the proof of Lemma 3.3 we need only see that (Bnj
(x), (Knj

∩
Bnj

(x))) is a (d, l)-pair if we add to Knj
all those cubes Ei which contain less

than 2l+1 vertices of Bnj
(x). Then we have the cube D(x) as in Lemma 3.5—

and it meets none of the cubes added for they are too far away from x.

4. General polyhedra. In this section we allow (Ei) be any family
of uniformly regular convex polyhedra with long edges. Let us start from
some properties of such sets.

Lemma 4.1. Let (Ei) be any family of uniformly regular convex polyhedra

with long edges. Then

(i) the volume of Ei is approximately equal to the dth power of its

diameter , with uniform equivalence constants,

(ii) all the angles of Ei are uniformly bounded away from zero, where by

angles of a polyhedron we mean: in dimension 2 (for a polygon) its angles,
in dimension 3 its solid angles and angles of its sides, and so on in higher

dimensions,
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(iii) for any l < d the number of l-dimensional sides of Ei is uniformly

bounded from above,

(iv) for any l < d we can (as in the proofs of Lemmas 3.1 and 3.3) divide

Ei into (an infinite number of ) subsets E′

k. These subsets can be chosen

to be uniformly regular polyhedra (with regularity constant independent of l
and i), to form a Whitney partition for the union of l-dimensional sides of

Ei (more precisely : part of such a partition, contained in Ei) and to satisfy

inequality (4) for all t ∈ (l, l + 1] with constant c(t) independent of i.

P r o o f. Part (i) follows immediately from the very definition of uni-
formly regular sets. To prove (ii) one has to use convexity of the polyhedra,
for if in a convex polyhedron an angle were very small then any ball con-
tained in this polyhedron (in particular, in the angle) would be very small
when compared with the diameter of the polyhedron.

To prove (iii) consider the radial projection of the boundary of Ei on the
maximal sphere contained in Ei. All the (d− 1)-dimensional sides of Ei are
projected onto spherical polygons with (d−1)-dimensional volume bounded
away from zero, hence the number of those sides is uniformly bounded from
above—this gives our assertion in the case l = d − 1. For l smaller we
proceed by induction, since all those (d − 1)-dimensional sides are again a
regular convex polyhedron with long edges (with a worse constant, but we
repeat this induction step no more than d times).

Part (iv) will be proven indirectly. It is easy to see that we can divide
any of the sets Ei into smaller uniformly regular polyhedra that will form
a Whitney partition of the union of its l-dimensional sides. Inequality (4)
holds for any such partition, the question is only if the constant c(t) can be
chosen independent of i.

Assume that this is not the case, and that for some t > l one can find a
sequence (Ej) of uniformly regular convex polyhedra with long edges (with-
out loss of generality, let |Ej | = 1) and a partition (E′

jk) ⊂ Ej such that

cj(t) > 2tj , where cj is the constant in (4) for (E′

jk) and Ek.

We can see that the l-dimensional volume of the union of l-dimensional
sides of Ej is uniformly bounded by (iii). Consider a family of sets Fj ,
where each Fj is a 2j times smaller copy of Ej , translated in such a way
as to contain the point xj = (21−j , 0, . . . , 0). Denote by F the closure of
the union of all l-dimensional sides of the sets Fj . It is a compact set with
Minkowski dimension l.

In each Fj we have a Whitney partition (F ′

jk) with respect to F . We
have to add some additional sets to get a Whitney partition in the entire
space, but this is easy because the sets Fj are convex and far apart. We can
estimate the convergence exponent of this partition. By Lemma 2.2 it is l;
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in our case, however, it is not smaller than t because
∑

j

∑

F ′

jk⊂Fj

|F ′

jk|
t =

∑

j

∑

E′

jk⊂Ej

2−tj · |E′

jk|
t ≥

∑

j

2−tjcj |Ei|
t = ∞.

This contradiction ends the proof.

Now we can prove the analogues of Lemmas 3.1 and 3.2 for our more
general families (Ei). We skip the proofs, as they are exactly the same as
the original proofs in the previous section, we only have to use Lemma 4.1
to validate the construction.

Lemma 3.3 is more difficult, though. We will alter slightly not only
the proof, but the formulation as well. Let us start from the geometrical
construction of a set we will call a generalized cube.

A one-dimensional generalized cube of size a is just an interval of that
length. This is the first step in the construction. In the second step, we
look at the family of parallel (d − 1)-dimensional hyperplanes, cutting the
interval at an angle bounded away from zero. In each of these planes we
choose an interval of length a with one endpoint lying on the initial interval.
We demand that the directions of these intervals should be piecewise the
same when we move along the initial interval. The union of all those second
order intervals is our generalized square. This set is the union of a finite
number of parallelograms, one of whose sides add up to the initial interval
(imagine some flags, waving on a common pole).

In the third step we have a family of second order intervals, each lying
in an (l − 1)-dimensional hyperplane. For each interval we take parallel
(d − 2)-dimensional hyperplanes, cutting the interval at an angle bounded
away from zero, and we choose third order intervals (all of length a) in these
hyperplanes, with an endpoint in a second order interval. We demand that
the third order intervals have piecewise constant direction not only when
we move along the second order interval, but also when we move along the
first order interval (so the set we get is the union of a finite number of
three-dimensional parallelepipeds); this restrics our freedom of choosing the
(d − 2)-dimensional hyperplanes. The union of all third order intervals will
be called a generalized three-dimensional cube (it is difficult to visualize for
one needs at least R

4 to construct it).

We proceed to higher dimensions in the same way. A generalized k-
dimensional cube of size a has k-dimensional volume approximately ak. We
also have a well defined projection of part of the space R

d on the cube.
Namely, after the last (kth) step of the construction we have a family of
disjoint (d−k +1)-dimensional hyperplanes that cover the generalized cube
and part of the space around it. The intersection of any of those planes with
the generalized cube is an interval (a kth order interval in our construction).
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For any point lying on one of those planes we can define the orthogonal
projection on the line containing this interval.

Just as for an ordinary cube, the set of points whose projections lie on the
generalized cube and which lie not farther than at distance r from it has vo-
lume approximately akrd−k. Also as for an ordinary cube, the k-dimensional
volume of a projection of a ball of radius r is not greater than crk.

We now denote by Bnj
(x) a ball (not a cube) with centre x and radius

δnj
. Our new version of Lemma 3.3 is as follows:

Lemma 4.2. If the convergence exponent for (Ei) is not equal to the upper

Minkowski dimension of Λ then there exists C such that for any ε and any

nj sufficiently large, at least 1
2 ♯Mn of the sets Bnj

(x) ∩ Knj
have volume

smaller than εδd
nj

and each of these contains a generalized (l+1)-dimensional

cube D(x) of size C · δnj
at a distance at least C · δnj

from the boundary of

the ball Bnj
(x).

Before we start the proof, notice that from this lemma Theorem 1.1 fol-
lows in precisely the same way as in the previous section from Lemma 3.3 (for
cubes). The only properties of an (l+1)-dimensional cube we have used were:

• its (l + 1)-dimensional volume is approximately equal to the (l + 1)th
power of its side length,

• the projection of a ball of radius r has (l + 1)-dimensional volume not
greater than crl+1,

and both these properties hold for generalized cubes as well. Also the change
in the sets Bnj

(x) (balls instead of cubes) is irrelevant. Hence we need only
prove Lemma 4.2.

We rewrite the proof of Lemma 3.3, in fact. As before, we can show
(using Lemma 4.1(iii)) that for any ε and nj large enough for most of the
points in Mnj

only a small part (of volume εδd
nj

) of the ball Bnj
(x) is covered

by Knj
; the rest is covered by some big polyhedra Ei whose l-dimensional

sides lie far away from Bnj
(x). These polyhedra avoid x.

If these polyhedra are big enough (when δ was chosen small enough) then
the intersection of any of them with a hyperplane of codimension one passing
through Bnj

(x) chosen in such a way that the angles between this hyperplane
and all the sides of the polyhedron are bounded away from zero—even when
the bounds are not very strong—is again a regular convex polyhedron with
long edges in R

d−1, and the (l − 1)-dimensional sides of this polyhedron lie
again far away from the intersection of this hyperplane with Bnj

(x). Of
course, such an operation makes all the constants (especially the one in the
definition of long edges) worse, but we will use it only a finite number of
times (at most d), so we can control how bad they become and neutralize
this by the choice of δ.
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We can repeat this procedure. In particular, by choosing δ small enough
we can arrange that for given bounds on the angles between a two-dimen-
sional plane and the angles of the polyhedron the edges of the resulting
intersection (which is a polygon) are greater than 2δnj

, hence only one of
its vertices can lie inside Bnj

(x).
As before, we let a generalized (d, l)-pair be a pair (A,B) where A is the

ball in R
d and B is the difference of A and some family of big d-dimensional

uniformly regular convex polyhedra with long edges whose l-dimensional
sides lie far away from A and which do not contain the centre of A. We can
estimate the number of those polyhedra from above, because their angles
are bounded from below (Lemma 4.1(ii)).

We now generalize Lemmas 3.4 and 3.5 to our present situation.

Lemma 4.3. For any generalized (d, l)-pair (A,B) if the removed polyhe-

dra are big enough then one of the radii of the ball A lies in B.

P r o o f. We can find a two-dimensional plane that passes through x and
whose intersection with one of the big polyhedra has no vertices inside A. We
have some freedom in choosing such a plane, hence we can get lower bounds
on the angles between this plane and the sides of all other big polyhedra (as
there are only a bounded number of them). Hence the intersections of the
plane with the other polyhedra will have at most one vertex inside A, and
the rest far away.

Fig. 4. Two-dimensional section of a generalized (d, l)-pair

We call an edge of one of those big polygons (intersections of the big
polyhedra with the plane) visible from x if the intervals connecting x to the
part of this edge contained in A do not meet the interior of the polygon.
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Among the big polygons that meet A, there is one that has only one (vis-
ible) edge meeting A and each of the remaining polygons has at most two
edges meeting A, at least one of them visible. If two neighbouring edges of
two neighbouring polygons are visible—which must happen somewhere, see
Figure 4—one can find a radius of A passing between them, hence contained
in B.

Lemma 4.4. For any generalized (d, l)-pair (A,B) the set B contains a

generalized (l+1)-dimensional cube of size comparable with the radius of A.

P r o o f. From Lemma 4.3, we can find in B some radius of A; denote it
by xa.

Because the number of removed polyhedra is bounded, we can find a fam-
ily of parallel (d − 1)-dimensional hyperplanes with the some lower bounds
on their angles with the sides of the removed polyhedra and with the interval
xa. Take only those hyperplanes that cut the interval xa inside 1

2A (that is,
the ball of the same centre but half its radius).

Choose one such plane π. The intersection of π with A is a (d − 1)-
dimensional ball of almost the same radius. Its centre does not lie in π∩xa,
but we can find inside π ∩ A a ball A′ with centre in π ∩ xa and a slightly
smaller radius. The intersection of π with each big polyhedron is an (l− 1)-
dimensional regular convex polyhedron with long edges (because the angles
between π and the sides of the big polyhedra are bounded from below) and
it does not contain the centre of A′.

Hence, (A′, π ∩ B) is a (d − 1, l − 1)-pair. By Lemma 4.3 we can find a
radius of A′ contained in π ∩ B, hence in B. Let us repeat this for all the
hyperplanes, choosing one interval in each of them. If an interval does not
intersect a polyhedron then parallel intervals close enough will not intersect
it either. This way (for planes π′ close enough to π) we can choose those
intervals to be parallel to the one chosen for π. Hence we may choose all
those intervals to have only a finite number of directions.

As we have constructed a generalized square (in fact, a rectangle; we still
have to shorten some of its “sides” to get a generalized square), we proceed
by induction.

Using this lemma for the pair (Bnj
(x),Knj

∩Bnj
(x)) we get the assertion

of Lemma 4.2, hence of Theorem 1.1.
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