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Product liftings and densities with lifting invariant

and density invariant sections

by

K. M u s i a  l (Wroc law), W. S t r a u s s (Stuttgart)
and N. D. M a c h e r a s (Piraeus)

Abstract. Given two measure spaces equipped with liftings or densities (complete if
liftings are considered) the existence of product liftings and densities with lifting invariant
or density invariant sections is investigated. It is proved that if one of the marginal
liftings is admissibly generated (a subclass of consistent liftings), then one can always find
a product lifting which has the property that all sections determined by one of the marginal
spaces are lifting invariant (Theorem 2.13). For a large class of measures Theorem 2.13
is the best possible (Theorem 4.3). When densities are considered, then one can always
have a product density with measurable sections, but in the case of non-atomic complete
marginal measures there exists no product density with all sections being density invariant.
The results are then applied to stochastic processes.

Introduction. It follows from a result of Talagrand [13] that given a
complete finite measure space (Ω,Σ, µ) there exists a lifting (called consis-

tent) ̺ on (Ω,Σ, µ) and a lifting π on the direct product (Ω,Σ, µ)⊗̂(Ω,Σ, µ)
satisfying the equality

π(E1 × E2) = ̺(E1) × ̺(E2)

for arbitrary E1, E2 ∈ Σ.

Macheras and Strauss [9] proved that given complete finite measure
spaces (Ω,Σ, µ), (Θ,T, ν) and a fixed lifting ̺ on (Ω,Σ, µ), one can find
liftings σ on (Θ,T, ν) and π on (Ω,Σ, µ) ⊗̂ (Θ,T, ν) such that π ∈ ̺⊗σ, i.e.

(P) π(A×B) = ̺(A) × σ(B) for all A ∈ Σ,B ∈ T.

There is now a question whether it is possible to get a lifting π that satis-
fies (P) and has all sections of π(E) lifting invariant for each E ∈ Σ ⊗̂ T .
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We show that given measure spaces (Ω,Σ, µ), (Θ,T, ν) and an arbitrary
lifting ̺ for µ there exist liftings σ for ν and π for µ ⊗̂ ν satisfying (P) and
such that for each E ∈ Σ ⊗̂ T and each ω, we have [π(E)]ω = σ([π(E)]ω).
In the case of identical measure spaces, a similar result holds true but for ̺
taken from a special family of liftings, which we call “admissibly generated”.

We also prove however that if (Ω,Σ, µ) and (Θ,T, ν) are non-atomic,
then there exist no liftings ̺ for µ, σ for ν and π for µ ⊗̂ν such that for each
set π(E) all sections [π(E)]θ are invariant with respect to ̺ and all sections
[π(E)]ω are invariant with respect to σ.

1. Preliminaries. Given a probability space (Ω,Σ, µ) the family of all
µ-null sets is denoted by Σ0. The (Carathéodory) completion of (Ω,Σ, µ)

will be denoted by (Ω, Σ̂, µ̂).

L1(µ) denotes the family of all real-valued µ-integrable functions on
(Ω,Σ, µ); functions that are a.e. equal are not identified. L∞(µ) denotes
the family of all bounded real-valued µ-measurable functions on (Ω,Σ, µ);
functions that are a.e. equal are not identified. The space of equivalence
classes of members of L1(µ) and L∞(µ) is denoted by L1(µ) and L∞(µ), re-
spectively. The σ-algebra generated by a family L of sets is denoted by σ(L).

If f ∈ L1(µ) and η is a sub-σ-algebra of Σ, then each function g ∈
L1(µ|η) satisfying

T
A
f dµ =

T
A
g dµ for each A ∈ η is said to be a version

of the conditional expectation of f with respect to η. It will be denoted
by Eη(f).

N stands for the natural numbers. If M ⊆ Ω, then M c := Ω \M . We
use the notion of lower density and lifting in the sense of [6] and, for any
probability space (Ω,Σ, µ) we denote by ϑ(µ) and by Λ(µ) the systems of
all lower densities and liftings, respectively. Since all densities considered
in this paper are lower densities we will use the word “density” instead of
“lower density”.

We denote by (Ω×Θ,Σ⊗T, µ⊗ ν) the product probability space of the
probability spaces (Ω,Σ, µ) and (Θ,T, ν). (Ω×Θ,Σ ⊗̂T, µ ⊗̂ ν) denotes its
(Carathéodory) completion.

If f is a function defined on Ω × Θ and (ω, θ) ∈ Ω × Θ is fixed, then
we use the ordinary notation fω, f

θ for the functions obtained from f by
fixing ω and θ respectively. In a similar way the sections Eω, E

θ of a set
E ⊆ Ω ×Θ are defined. A filter F in Σ is said to be µ-stable if A ∈ F and
µ(A△B) = 0 yields B ∈ F .

2. Existence of densities and liftings with one-sided density

invariant or lifting invariant sections. We start with the following
general result:
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Lemma 2.1. Let (Ω,Σ, µ) and (Θ,T, ν) be probability spaces and let η
be a sub-σ-algebra of T . Then for each f ∈ L∞(µ⊗ ν),

Ω \ {ω ∈ Ω : [EΣ⊗η(f)]ω = Eη(fω) a.e. (ν|η)} ∈ Σ̂0.

P r o o f. Denote by Σ × T the product algebra generated by Σ and T
and let

C := {C ∈ Σ ⊗ T : χC satisfies the assertion of the lemma}.

One can easily see that Σ × T ⊂ C. Applying now the standard methods of
integration theory and the Monotone Convergence Theorem for conditional
expectations (cf. [1], Th. 34.2) one can see first that C is a monotone class
of sets (and so C = Σ ⊗ T ) and then that the required result holds true.

It is worth noticing that the assertion of Lemma 2.1 is in general false if
one takes Θ-sections instead of Ω-sections.

Example 2.2. Let Ω = Θ = [0, 1), let Σ denote the Lebesgue mea-
surable subsets of [0, 1) and let η be the algebra generated by [0, 1/2). If
f = χ[0,1)×[0,1/3) and g = EΣ⊗η(f) then one can easily check that

∀θ ∈ [1/3, 1/2) gθ = 2/3 a.e. whereas ∀θ ∈ [1/3, 1/2) f θ = 0 a.e.

It has already been observed by Talagrand [13] that not all liftings have
good properties from the product point of view. The same holds true in our
investigations concerning liftings and densities. Therefore we now isolate a
wide class of densities with properties suitable for our purposes.

First, however, for completeness and because of the lack of one assump-
tion in [5], we recall Lemma 2 of [5].

Lemma 2.3. Let (Θ,T, ν) be a probability space and let η be a sub-σ-
algebra of T such that T0 ⊂ η. Moreover , let δ ∈ ϑ(ν|η) and M ∈ T \ η.
If M1 ⊃M and M2 ⊃M c are η-envelopes of M and M c respectively , then

the formula

δ̃[(G ∩M) ∪ (H ∩M c)]

:= [M ∩ δ((G ∩M1) ∪ (H ∩M c
1 ))] ∪ [M c ∩ δ((H ∩M2) ∪ (G ∩M c

2 ))]

defines a density δ̃ ∈ ϑ(ν|σ(η ∪ {M})) that is an extension of δ.

Definition 2.4. Let (Θ,T, ν) be a probability space. A density τ ∈ ϑ(ν)
is called an admissible density if it can be constructed by transfinite induc-
tion as described below.

(A) Let D be the smallest cardinal with the property that there exists
a collection M ⊂ T such that σ(M) is dense in T in the pseudometric
generated by ν. Let M = (Mα)α<κ be numbered by the ordinals less
than κ, where κ is the first ordinal of cardinality D. Denote by η0 the σ-
algebra σ(T0) and for each 1 ≤ α < κ let ηα be the σ-algebra generated by
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{Mγ : γ < α} ∪ η0. We assume without loss of generality that Mα 6∈ ηα for
each α.

(B) τ0 ∈ ϑ(ν|η0) is the unique density existing on (Θ, η0, ν|η0).
(C) If γ < κ is a limit ordinal of uncountable cofinality, then ηγ =⋃

α<γ ηα and we define τγ ∈ ϑ(ν|ηγ) by setting

τγ(B) := τα(B) if B ∈ ηα and α < γ.

(D) Assume now that there exists an increasing sequence (γn) of ordinals
that is cofinal to γ. For simplicity put τn := τγn

and ηn := ηγn
for all n ∈ N.

Then ηγ = σ(
⋃

n∈N
ηn) and we can define τγ by setting

τγ(B) :=
⋂

k∈N

⋃

n∈N

⋂

m≥n

τm({Eηm
(χB) > 1 − 1/k}) for B ∈ ηγ .

It follows by [5], Lemma 1 (or by Lemma 2.3), that τγ ∈ ϑ(ν|ηγ) and τγ |ηn =
τn for each n ∈ N.

(E) Let now γ = β + 1. To simplify the notations let M := Mβ . It is
well known that

ηγ = {(G ∩M) ∪ (H ∩M c) : G,H ∈ ηβ}.

Let M1 ⊇ M and M2 ⊇ M c be ηβ-envelopes of M and M c respectively,
i.e. M1,M2 ∈ ηβ , (ν|ηβ)∗(M1 \M) = 0 and (ν|ηβ)∗(M2 \M c) = 0 (where
(ν|ηβ)∗ is the inner measure induced by ν|ηβ). Define

τγ((G ∩M) ∪ (H ∩M c))

:= (M ∩ τβ((G ∩M1) ∪ (H ∩M c
1 ))) ∪ (M c ∩ τβ((H ∩M2) ∪ (G ∩M c

2 )))

for G,H ∈ ηβ . By [5], Lemma 2, it then follows that τγ ∈ ϑ(ν|ηγ) and
τγ |ηβ = τβ .

(F) We define τ ∈ ϑ(ν) by setting τ = τκ.

Throughout, the collection of all admissible densities on (Θ,T, ν) will be
denoted by Aϑ(ν) and each τ ∈ Aϑ(ν) will be considered together with all
elements involved in the above construction without any additional remarks.

Theorem 2.5. Let (Θ,T, ν) be an arbitrary probability space. If τ ∈
Aϑ(ν) then for each (Ω,Σ, µ) and each δ ∈ ϑ(µ) there exists ϕ1 ∈ ϑ(µ⊗ ν)
such that ϕ1 ∈ δ ⊗ τ and for every E ∈ Σ ⊗ T there exists NE ∈ Σ0 with

[ϕ1(E)]ω = τ([ϕ1(E)]ω) for all ω ∈ Ω \NE .

P r o o f. Let there be given a δ ∈ ϑ(µ) and τ ∈ Aϑ(ν) together with
other elements involved in the construction of τ ∈ Aϑ(ν). In particular the
family M = (Mα)α<κ, the σ-subalgebras (ηα)α<κ and the sequences (γn)
cofinal with limit ordinals are fixed.

Using transfinite induction, we now construct a transfinite sequence
(ϕα)α≤κ with ϕα ∈ ϑ(µ⊗ ν|Σ ⊗ ηα) such that:
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• for all A ∈ Σ, B ∈ ηα,

(1) ϕα(A×B) = δ(A) × τα(B) ;

• for all α ≤ γ ≤ κ,

(2) ϕγ |Σ ⊗ ηα = ϕα ;

• for each α ≤ κ and each E ∈ Σ ⊗ ηα there exists NE ∈ Σ0 with

(3) [ϕα(E)]ω = τα([ϕα(E)]ω) for all ω ∈ Ω \NE .

For the first step, if E ∈ Σ ⊗ η0 then E = Ẽ × Θ a.e. (µ ⊗ ν) for some

Ẽ ∈ Σ. Hence, defining

ϕ0(E) = δ(Ẽ) ×Θ for all E = Ẽ ×Θ a.e. (µ⊗ ν)

we get ϕ0 ∈ ϑ(µ⊗ ν)|Σ ⊗ η0) satisfying (1)–(3).

Assume now, that given 1 ≤ γ < κ, a system (ϕα) satisfying (1)–(3) has
been constructed for all α < γ. We have to distinguish three cases.

Case A: γ is a limit ordinal of uncountable cofinality. Then Σ ⊗ ηγ =⋃
α<γ(Σ ⊗ ηα). Setting

ϕγ(E) = ϕα(E) if E ∈ Σ ⊗ ηα,

we get a uniquely defined density ϕγ ∈ ϑ(µ⊗ ν|Σ ⊗ ηγ) satisfying (1)–(3).

Case B: γ is of countable cofinality. For simplicity put τn := τγn
, ϕn :=

ϕγn
and ηn := ηγn

for all n ∈ N. Then

Σ ⊗ ηγ = σ
( ⋃

n∈N

Σ ⊗ ηn

)
.

Hence, we can define

ϕγ(P ) :=
⋂

k∈N

⋃

n∈N

⋂

m≥n

ϕm({EΣ⊗ηm
(χP ) > 1 − 1/k}) for P ∈ Σ ⊗ ηγ .

It follows by [5], Lemma 1, that ϕγ ∈ ϑ(µ⊗ ν|Σ ⊗ ηγ), and ϕγ |Σ⊗ηn = ϕn

for each n ∈ N. Moreover, by [9] (Section 2, proof of Theorem 3) we have
ϕγ ∈ δ ⊗ τγ .

For P ∈ Σ ⊗ ηγ , fix for each m ∈ N a version EΣ⊗ηm
(χP ) of conditional

expectation. Then, by (3), for all k,m ∈ N there exists Nm,k ∈ Σ0 such
that

[ϕm({EΣ⊗ηm
(χP ) > 1 − 1/k})]ω = τm({EΣ⊗ηm

(χP ) > 1 − 1/k}ω)

if ω ∈ Ω \Nm,k.

By Lemma 2.1 there exist Nm ∈ Σ0 with

[EΣ⊗ηm
(χP )]ω = Eηm

(χPω
) a.e. (ν) for all ω ∈ Ω \Nm.
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So if we put NP :=
⋃

k,m∈N
(Nm,k ∪Nm) and take into account the equality

{EΣ⊗ηm
(χP ) > 1 − 1/k}ω = {[EΣ⊗ηm

(χP )]ω > 1 − 1/k},

which holds true for arbitrary ω ∈ Ω, then we have NP ∈ Σ0 and

[ϕγ(P )]ω =
⋂

k∈N

⋃

n∈N

⋂

m≥n

[ϕm({EΣ⊗ηm
(χP ) > 1 − 1/k})]ω

=
⋂

k∈N

⋃

n∈N

⋂

m≥n

τm({Eηm
(χPω

) > 1 − 1/k}) = τγ(Pω)

for ω ∈ Ω \NP . Hence (3) is satisfied.

Case C: γ = β + 1. To simplify the notations let M := Mβ . It is well
known that

Σ ⊗ ηγ = {(K ∩ (Ω ×M)) ∪ (L ∩ (Ω ×M c)) : K,L ∈ Σ ⊗ ηβ}.

Let M1 ⊇ M and M2 ⊇ M c be ηβ-envelopes of M and M c respectively,
used in the process of describing τγ .

An easy calculation shows that

E1 = Ω ×M1 and E2 = Ω ×M2

are Σ ⊗ ηβ-envelopes of Ω ×M and Ω ×M c, respectively. Define

ϕγ((K ∩ (Ω ×M)) ∪ (L ∩ (Ω ×M c)))

:= ((Ω ×M) ∩ ϕβ((K ∩ E1) ∪ (L ∩Ec
1)))

∪ ((Ω ×M c) ∩ ϕβ((L ∩ E2) ∪ (K ∩ Ec
2)))

for K,L∈Σ⊗ηβ . By [5], Lemma 2, it then follows that ϕγ ∈ϑ(µ⊗ν|Σ⊗ηγ),
ϕγ |Σ ⊗ ηβ = ϕβ , and

ϕγ(A×B) = δ(A) × τγ(B) for all A ∈ Σ and B ∈ ηγ ,

that is, ϕγ satisfies (1) and (2). For E ∈ Σ ⊗ ηγ write

E = (K ∩ (Ω ×M)) ∪ (L ∩ (Ω ×M c)) with K,L ∈ Σ ⊗ ηβ

and put
ME := N(K∩E1)∪(L∩Ec

1
) ∪N(L∩E2)∪(K∩Ec

2
),

where N(K∩E1)∪(L∩Ec
1
) and N(L∩E2)∪(K∩Ec

2
) are taken from (3) with α = β.

Moreover, let KE ∈ Σ0 be such that for ω 6∈ KE the sets (ϕβ [(K ∩ E1)
∪ (L∩Ec

1)])ω and [(K ∩E1)∪ (L∩Ec
1)]ω as well as the sets (ϕβ [(L ∩E2)∪

(K ∩ Ec
2)])ω and [(L ∩ E2) ∪ (K ∩ Ec

2)]ω are ν-equivalent. Then NE :=
ME ∪KE ∈ Σ0 and [ϕγ(E)]ω = τγ(Eω) for ω ∈ Ω \NE . Therefore ϕγ

satisfies the conditions (1)–(3).
We can now define ϕ ∈ ϑ(µ ⊗ ν) with the required properties by just

setting ϕ = ϕκ. The densities are properly defined, since each element of
Σ ⊗ T is measurable with respect to some Σ ⊗ ηα with α ≤ κ.
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Remark 2.6. Some of our results will be applied in proofs in two forms.
More precisely, the role of measure spaces (Ω,Σ, µ) and (Θ,T, ν) is often
interchanged without special comments. We shall denote it by putting the
symbol ⊥ after the number of a relevant theorem.

Corollary 2.7. Let (Θ,T, ν) be an arbitrary probability space. If τ ∈
Aϑ(ν) then for each (Ω,Σ, µ) and each δ ∈ ϑ(µ) there exists ϕ1 ∈ ϑ(µ ⊗̂ ν)
with the following properties:

(i) ϕ1(A×B) = δ(A) × τ(B) for all A ∈ Σ and B ∈ T ;

(ii) [ϕ1(E)]ω = τ([ϕ1(E)]ω) for all ω ∈ Ω and E ∈ Σ ⊗̂ T ;

(iii) [ϕ1(E)]θ is µ̂-measurable for all θ ∈ Θ and E ∈ Σ ⊗̂ T .

P r o o f. If δ ∈ ϑ(µ) and τ ∈ Aϑ(ν) then, according to Theorem 2.5, there
exists ϕ1 ∈ δ ⊗ τ satisfying for each E ∈ Σ ⊗ T the equality [ϕ1(E)]ω =
τ([ϕ1(E)]ω) for almost all ω.

Let E ∈ Σ ⊗ T be an arbitrary set. We define ϕ1(E) by setting

[ϕ1(E)]ω = τ([ϕ1(E)]ω) for all ω ∈ Ω.

It can be easily seen that ϕ1 satisfies the required conditions.

Lemma 2.8. Let (Ω,Σ, µ) and (Θ,T, ν) be complete. Moreover , let

τ ∈ ϑ(ν) be an arbitrary density and ξ ∈ ϑ(µ ⊗̂ ν) be a density such that for

each (ω, θ) ∈ Ω × Θ and E ∈ Σ ⊗̂ T we have [ξ(E)]ω = τ([ξ(E)]ω) and the

set [ξ(E)]θ is µ-measurable. Then there exists ψ1 ∈ ϑ(µ ⊗̂ ν) satisfying for

each (ω, θ) ∈ Ω ×Θ and E ∈ Σ ⊗̂ T the following conditions:

(j) ξ(E) ⊆ ψ1(E) ;

(jj) ν([ψ1(E)]ω ∪ [ψ1(Ec)]ω) = 1 ;

(jjj) [ψ1(E)]ω = τ([ψ1(E)]ω) ;

(jv) [ψ1(E)]θ is measurable.

If additionally ξ is such that [ξ(A × Θ)]ω ∈ {∅, Θ} for each ω ∈ Ω and

A ∈ Σ, then one can choose ψ1 in such a way that for each ω ∈ Ω and each

A ∈ Σ,

(v) [ψ1(A×Θ)]ω ∈ {∅, Θ} and [ψ1(A×Θ)]ω ∪ [ψ1(Ac ×Θ)]ω = Θ.

P r o o f. Let

Φ := {ϕ ∈ ϑ(µ ⊗̂ ν) : ∀ω ∈ Ω ∀E ∈ Σ ⊗̂ T [ϕ(E)]ω ⊆ τ([ϕ(E)]ω)

& ∀E ∈ Σ ⊗̂ T ξ(E) ⊆ ϕ(E) & ∀A ∈ Σ ∀ω ∈ Ω [ϕ(A×Θ)]ω ∈ {∅, Θ}}.

Notice first that Φ 6= ∅ since ξ ∈ Φ.

We consider Φ with inclusion as partial order: ϕ ≤ ϕ̃ if ϕ(E) ⊆ ϕ̃(E) for
each E ∈ Σ ⊗̂ T .

Claim 1. There exists a maximal element in Φ.
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P r o o f. We only have to prove that each chain {ϕα}α∈A ⊆ Φ has a
dominating element in Φ. The obvious candidate is ϕ given for each E ∈
Σ ⊗̂ T by

ϕ(E) =
⋃

α∈A

ϕα(E).

One can easily prove that ϕ ∈ ϑ(µ ⊗̂ ν).

Consider now the section properties of ϕ(E). For fixed ω ∈ Ω,

[ϕ(E)]ω =
⋃

α∈A

[ϕα(E)]ω ⊆
⋃

α∈A

τ([ϕα(E)]ω)

and so (in virtue of [6], Chapter III, Section 3) the set [ϕ(E)]ω is measurable.
It is clear that also [ϕ(E)]ω ⊆ τ([ϕ(E)]ω). This proves that ϕ dominates
the whole chain. According to the Zorn–Kuratowski Lemma the set Φ has
a maximal element ψ1.

Claim 2. For each ω ∈ Ω and A ∈ Σ,

[ψ1(A×Θ)]ω ∪ [ψ1(Ac ×Θ)]ω = Θ.

P r o o f. According to the definition of Φ we have [ψ1(A×Θ)]ω ∈ {∅, Θ}
for each ω and A ∈ Σ. Suppose that [ψ1(A0 ×Θ)]ω ∪ [ψ1(Ac

0 ×Θ)]ω = ∅ for

some ω0 and A0 ∈ Σ. Then define ψ̂ ∈ ϑ(µ ⊗̂ ν) by

[ψ̂(E)]ω =

{
[ψ1(E)]ω if ω 6= ω0,
[ψ1(E ∪ (A0 ×Θ))]ω0

if ω = ω0.

It is clear that ψ1(E) ⊆ ψ̂(E) for each E ∈ Σ ⊗̂T and [ψ̂(A×Θ)]ω ∈ {∅, Θ}

for each ω ∈ Ω and A ∈ Σ. Since [ψ̂(Ac
0 × Θ)]ω0

= Θ we have ψ1 6= ψ̂,
which contradicts the maximality of ψ1.

Claim 3. For each ω ∈ Ω and E ∈ Σ ⊗Θ,

ν([ψ1(E)]ω ∪ [ψ1(Ec)]ω) = 1.

P r o o f. If not, then there exist H ∈ Σ ⊗̂ T and ω0 ∈ Ω such that
ν([ψ1(H)]ω0

∪ [ψ1(Hc)]ω0
) < 1. Let

W := τ [([ψ1(H)]ω0
∪ [ψ1(Hc)]ω0

)c]

and let

[ψ̂(E)]ω =

{
[ψ1(E)]ω if ω 6= ω0,
[ψ1(E)]ω0

∪ (W ∩ [ψ1(H ∪ E)]ω0
) if ω = ω0.

It is clear that ψ1(E) ⊆ ψ̂(E) for each E ∈ Σ ⊗̂ T . One easily checks that

ψ̂ ∈ ϑ(µ ⊗̂ ν).
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It follows directly from the definition that ψ̂ and ψ1 are different densi-

ties. To get a contradiction it is enough to show that [ψ̂(E)]ω0
⊆ τ([ψ̂(E)]ω0

)

and [ψ̂(A×Θ)]ω0
∈ {∅, Θ}. If E ∈ Σ ⊗̂ T , then

τ([ψ̂(E)]ω0
) ⊇ τ([ψ1(E)]ω0

) ∪ τ(W ∩ [ψ1(H ∪ E)]ω0
)

⊇ [ψ1(E)]ω0
∪ [τ(W ) ∩ τ([ψ1(H ∪ E)]ω0

)]

⊇ [ψ1(E)]ω0
∪ (W ∩ [ψ1(H ∪ E)]ω0

) = [ψ̂(E)]ω0
.

One can also easily check that if A ∈ Σ, then [ψ̂(A×Θ)]ω0
∈ {∅, Θ}.

In order to finish the proof of Lemma 2.8, we should still prove the
validity of (jjj) and (v). For each ω ∈ Ω and E ∈ Σ ⊗̂ T set

[ψ̃(E)]ω = τ([ψ1(E)]ω).

Clearly ψ1(F ) ⊆ ψ̃(F ) for each F . Moreover the equality ψ1(E)∩ψ1(Ec) =
∅ yields τ([ψ1(E)]ω) ∩ τ([ψ1(Ec)]ω) = ∅ for each ω. As a consequence,

ψ̃(Ec) ⊆ (ψ̃(E))c. Hence

ψ1(Ec) ⊆ ψ̃(Ec) ⊆ [ψ̃(E)]c ⊆ [ψ1(E)]c

and so the measurability of ψ̃(E) is proven. It follows that ψ̃ ∈ Φ and ψ1 =

ψ̃. In order to prove the measurability of the Θ-sections of ψ1 notice that
(µ ⊗̂ ν)(ξ(E)△ψ1(E)) = 0 since ξ and ψ1 are densities in the same measure
space. It then follows from the Fubini Theorem that there is ME ∈ Σ0 such
that for all ω 6∈ME ,

ν([ξ(E)]ω △ [ψ1(E)]ω) = 0 and ν([ξ(E)]ω ∪ [ξ(Ec)]ω) = 1.

Hence
ξ(E) \ (ME ×Θ) = ψ1(E) \ (ME ×Θ).

Since all sections [ξ(E)]θ are measurable, the same holds true for the sections
[ψ1(E)]θ . This completes the proof of Lemma 2.8.

Theorem 2.9. Let (Θ,T, ν) be complete. Then for each τ ∈ Aϑ(ν),
each complete (Ω,Σ, µ) and each δ ∈ ϑ(µ) there exist ψ1 ∈ ϑ(µ ⊗̂ ν) and

δ̃ ∈ Λ(µ) satisfying the following conditions:

(i) δ(A)× τ(B) ⊆ δ̃(A)× τ(B) = ψ1(A×B) for all A ∈ Σ and B ∈ T ;
(ii) ν([ψ1(E)]ω ∪ [ψ1(Ec)]ω) = 1 for all ω ∈ Ω and E ∈ Σ ⊗̂ T ;

(iii) [ψ1(E)]ω = τ([ψ1(E)]ω) for all ω ∈ Ω and E ∈ Σ ⊗̂ T ;
(iv) [ψ1(E)]θ is measurable for all θ ∈ Θ and E ∈ Σ ⊗̂ T .

P r o o f. If δ ∈ ϑ(µ) and τ ∈ Aϑ(ν) are given, then there exists ϕ1 ∈
ϑ(µ ⊗̂ ν) satisfying the conditions (i)–(iii) of Corollary 2.7. Let

Φ := {ϕ ∈ ϑ(µ ⊗̂ ν) : ∀ω ∈ Ω ∀E ∈ Σ ⊗̂ T [ϕ(E)]ω ⊆ τ([ϕ(E)]ω)

& ∀E ∈ Σ ⊗̂ T ϕ1(E) ⊆ ϕ(E)}.
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Notice first that Φ 6= ∅ since ϕ1 ∈ Φ. According to Lemma 2.8 there
exists ψ1 ∈ ϑ(µ ⊗̂ ν) satisfying the conditions (jj)–(v) of Lemma 2.8 and the
inclusion ϕ1(E) ⊆ ψ1(E). Since ϕ1(A × B) = δ(A) × τ(B) for all A ∈ Σ
and B ∈ T , the inclusion δ(A)× τ(B) ⊆ ψ1(A×B) of (i) is satisfied. Thus,

setting δ̃(A) := {ω : [ψ1(A × Θ)]ω = Θ} for each A ∈ Σ, we get δ̃ ∈ Λ(µ).

It follows that δ̃(A) ×Θ = ψ1(A×Θ).

We now prove that ψ1(Ω × B) = Ω × τ(B) for all B ∈ T . In fact we
shall prove that if [ψ1(Ω × D)]ω ⊆ τ([ψ1(Ω ×D)]ω) for all D ∈ T and all
ω ∈ Ω, then (i) holds true. So let B ∈ T . We have Ω × τ(B) ⊆ ψ1(Ω ×B)
and so

τ(B) ⊆ [ψ1(Ω ×B)]ω ⊆ τ([ψ1(Ω ×B)]ω)

for all ω ∈ Ω. Now, since ψ1(Ω ×B) ∩ ψ1(Ω ×Bc) = ∅, we have

[ψ1(Ω ×B)]ω ∩ [ψ1(Ω ×Bc)]ω = ∅.

Consequently, τ(Bc)∩[ψ1(Ω×B)]ω =∅, and so τ([ψ1(Ω×B)]ω)⊆τ([τ(Bc)]c).
This yields

τ(B) ⊆ [ψ1(Ω ×B)]ω ⊆ τ([ψ1(Ω ×B)]ω) ⊆ τ([τ(Bc)]c) = τ(B).

This clearly proves the validity of (i) since by the multiplicativity of ψ1, we
have

ψ1(A×B) = ψ1(A×Θ) ∩ ψ1(Ω ×B) = δ̃(A) × τ(B).

Remark 2.10. It is natural to ask whether the conditions (ii) and (iii)
of Theorem 2.9 are satisfied for Θ-sections. One can also ask whether the
inclusion in the condition (i) may be replaced by equality. Unfortunately,
the answers to these questions are negative (see Section 3).

In general, even if δ and τ are liftings, the properties (ii)–(iv) of Theo-
rem 2.9 are not sufficient to guarantee the product property.

Example 2.11. Let Ω = {0, 1}, Θ = [0, 1), ν be the Lebesgue measure
on the Lebesgue measurable subsets Σ of [0, 1) and τ be a lifting on the
unit interval. Let µ be the purely atomic measure defined by µ({0}) = 1
and µ({1}) = 0. We define ψ on the product measure space by setting for
each measurable E,

[ψ(E)]{0} = τ(E{0}) and [ψ(E)]{1} = τ(E{0} + 1/2).

It is obvious that ψ ∈ Λ(µ ⊗̂ ν) and satisfies the conditions (ii)–(iv) of
Theorem 2.9 but it is not a product lifting.

Definition 2.12. Let τ ∈ ϑ(ν) be an arbitrary density on (Θ,T, ν). It
is well known by [15] that

F(θ) := {B ∈ T : θ ∈ τ(B)}
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is a filter basis in T for each θ ∈ Θ. Hence we can choose an ultrafilter U(θ)
in T finer than F(θ). Let

σ(B) := {θ ∈ Θ : B ∈ U(θ)} for all B ∈ T,

It has been proven in [15] that if ν is complete, then σ ∈ Λ(ν) and

(4) τ(B) ⊆ σ(B) ⊆ [τ(Bc)]c for all B ∈ T.

If the density τ above is admissible, then σ is called the lifting admissibly

generated by the density τ . The family of all admissibly generated liftings
on (Θ,T, ν) is denoted by AGΛ(ν). We shall prove in Theorem 4.3 that no
lifting on a non-atomic measure space is an admissible density.

Since each element of AGΛ(ν) is consistent (see [8], Corollary 3.8), it fol-
lows that AGΛ(ν) is a subclass of all consistent liftings for ν. This raises the
question whether AGΛ(ν) is a proper subclass of the class of all consistent
liftings.

Theorem 2.13. Let (Ω,Σ, µ) and (Θ,T, ν) be complete probability

spaces. For each σ ∈ AGΛ(ν) and each ̺ ∈ Λ(µ), there exists π1 ∈ Λ(µ⊗̂ν)
such that :

(i) π1(A×B) = ̺(A) × σ(B) for all A ∈ Σ and B ∈ T ;

(ii) [π1(E)]ω = σ([π1(E)]ω) for all ω ∈ Ω and E ∈ Σ ⊗̂ T .

Equivalently , for each f ∈ L∞(µ ⊗̂ ν) and each ω ∈ Ω,

[π1(f)]ω = σ([π1(f)]ω)

and

π1(g ⊗ h) = ̺(g) ⊗ σ(h) for all g ∈ L∞(µ) and h ∈ L∞(ν).

P r o o f. If τ ∈ Aϑ(ν) is a density generating σ and ̺ ∈ Λ(µ) then,
according to Theorem 2.9, we can find ψ1 ∈ ϑ(µ ⊗̂ ν) such that for all
E ∈ Σ ⊗̂ T ,

(5) [ψ1(E)]ω = τ([ψ1(E)]ω) for all ω ∈ Ω,

(6) ν([ψ1(E)]ω ∪ [ψ1(Ec)]ω) = 1 for all ω ∈ Ω,

and

(7) ̺(A) × τ(B) ⊆ ψ1(A×B) for each A ∈ Σ and B ∈ T.

We now define π1 ∈ ϑ(µ ⊗̂ν) by setting for each E ∈ Σ ⊗̂T and each ω ∈ Ω,

(8) [π1(E)]ω = σ([ψ1(E)]ω).

To prove that π1 is a lifting, notice that by (6) we get [π1(Ec)]ω =([π1(E)]ω)c

ν-almost everywhere for each ω. Hence

(9) σ([π1(Ec)]ω) = σ[([π1(E)]ω)c].
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Taking into account (8), (9) and the lifting properties of σ we see that

[π1(Ec)]ω = ([π1(E)]c)ω.

This implies π1(Ec) = [π1(E)]c and so π1 ∈ Λ(µ ⊗̂ ν).

In order to show (i), let A×B ∈ Σ⊗T . Then, according to (7) and (8),

[π1(A×B)]ω = σ([ψ1(A×B)]ω) ⊇ σ([̺(A) × τ(B)]ω)

=

{
σ(B) if ω ∈ ̺(A),
∅ if ω 6∈ ̺(A).

Applying the same considerations to the sets A× Bc, Ac × B, Ac ×Bc we
get

π1(A×B) = ̺(A) × σ(B).

In general the liftings π1 and π2 coming from Theorems 2.13 and 2.13⊥,
respectively, will be different (cf. Theorem 3.5). If (Ω,Σ, µ) = (Θ,T, ν)
and ̺ = σ, then it is easily seen that the equality π1 = π2 would yield the
existence of a symmetric lifting, that is, a lifting π ∈ Λ(µ ⊗̂ ν) with the
property

π(E) = [π(Es)]s,

where Es = {(ω, θ) : (θ, ω) ∈ E}. In the case of non-atomic µ this is however
impossible.

3. Existence of liftings and densities with lifting invariant or

density invariant sections. There is now a question whether there exist
̺ ∈ Λ(µ), σ ∈ Λ(ν) and π ∈ Λ(µ ⊗̂ ν) such that for each E ∈ Σ ⊗̂ T and
each (ω, θ) ∈ Ω ×Θ,

(10) ̺([π(E)]θ) = [π(E)]θ and σ([π(E)]ω) = [π(E)]ω .

An easy calculation shows that (10) yields π ∈ ̺⊗ σ.

It is our aim to prove that the above question has in general a negative
answer. In particular, it is so in the case of non-atomic measures µ and ν.

We start however with some positive results.

Theorem 3.1. For each δ ∈ Aϑ(µ) and each τ ∈ Aϑ(ν) there exists

ϕ ∈ ϑ(µ ⊗ ν) such that ϕ ∈ δ ⊗ τ and for each E ∈ Σ ⊗ T there exist

NE ∈ Σ0 and ME ∈ T0 such that

[ϕ(E)]ω ⊆ τ([ϕ(E)]ω) for all ω ∈ Ω \NE ,

and

[ϕ(E)]θ ⊆ δ([ϕ(E)]θ) for all θ ∈ Θ \ME .

If (Ω,Σ, µ) = (Θ,T, ν) and δ = τ , then ϕ ∈ δ ⊗ δ can be chosen to be

symmetric.
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P r o o f. According to Theorem 2.5 we get ϕ1 ∈ δ⊗ τ such that for every
E ∈ Σ ⊗ T there exists NE ∈ Σ0 with

(11) [ϕ1(E)]ω = τ([ϕ1(E)]ω) for all ω ∈ Ω \NE .

Applying Theorem 2.5⊥ we get ϕ2 ∈ δ ⊗ τ such that for every E ∈ Σ ⊗ T
there exists ME ∈ T with

[ϕ2(E)]θ = δ([ϕ2(E)]θ) for all θ ∈ Θ \ME .

Since ϕ1 and ϕ2 are densities for the same measure, for each E ∈ Σ ⊗ T
there exists a set ÑE ∈ Σ0 such that

(12) µ([ϕ1(E)]ω △ [ϕ2(E)]ω) = 0

for all ω ∈ Ω \ ÑE . Now define ϕ ∈ ϑ(µ⊗ ν) by setting

ϕ(E) := ϕ1(E) ∩ ϕ2(E) .

It then follows from (11) and (12) that for each ω 6∈ ÑE ∪NE ,

[ϕ(E)]ω ⊆ [ϕ1(E)]ω = τ([ϕ1(E)]ω) = τ([ϕ(E)]ω).

Similarly one can get the inclusion [ϕ(E)]θ ⊆ δ([ϕ(E)]θ) for almost all θ.

In the case of δ = τ we take, in the above proof, ϕ̃1(E) = [ϕ1(Es)]s for
all E ∈ Σ ⊗Σ instead of ϕ2 and set ϕ(E) := ϕ1(E) ∩ ϕ̃1(E).

Theorem 3.2. If (Ω,Σ, µ) and (Θ,T, ν) are complete, then for each

δ ∈ Aϑ(µ) and each τ ∈ Aϑ(ν) there exists ϕ̃ ∈ ϑ(µ ⊗̂ν) such that ϕ̃ ∈ δ⊗τ
and for each E ∈ Σ ⊗̂ T and each (ω, θ) ∈ Ω ×Θ we have

[ϕ̃(E)]ω ⊆ τ([ϕ̃(E)]ω) and [ϕ̃(E)]θ ⊆ δ([ϕ̃(E)]θ).

If (Ω,Σ, µ) = (Θ,T, ν) and δ = τ , then ϕ̃ ∈ δ ⊗̂ δ can be chosen to be

symmetric.

P r o o f. Let ϕ1 and ϕ2 satisfy the conditions of Corollary 2.7 and 2.7⊥.
Define ϕ̌1, ϕ̌2 ∈ ϑ(µ ⊗̂ ν) by setting for each ω ∈ Ω, θ ∈ Θ and E ∈ Σ ⊗̂ T ,

[ϕ̌1(E)]ω := τ([ϕ2(E)]ω) and [ϕ̌2(E)]θ := δ([ϕ1(E)]θ).

In a standard way one can check the correctness of the definitions. It is a
consequence of the Fubini Theorem that there exists ME ∈ Σ0 such that for
each ω 6∈ME the sets [ϕ̌1(E)]ω and [ϕ1(E)]ω are measure equivalent. Since
they are density invariant, they are equal. Consequently, for each θ ∈ Θ we
get

(13) δ([ϕ̌1(E)]θ) = δ([ϕ1(E)]θ) = [ϕ̌2(E)]θ.

In a similar way, for each ω we can get

(14) τ([ϕ̌2(E)]ω) = τ([ϕ2(E)]ω) = [ϕ̌1(E)]ω .
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Now define ϕ̃ ∈ ϑ(µ ⊗̂ ν) by setting

ϕ̃(E) := ϕ̌1(E) ∩ ϕ̌2(E).

For each E ∈ Σ ⊗̂ T , θ ∈ Θ and ω ∈ Ω we have

τ([ϕ̃(E)]ω) = τ([ϕ̌1(E)]ω) ∩ τ([ϕ̌2(E)]ω) = [ϕ̌1(E)]ω

and

δ([ϕ̃(E)]θ) = [ϕ̌2(E)]θ.

It follows that

[ϕ̃(E)]ω ⊆ τ([ϕ̃(E)]ω) and [ϕ̃(E)]θ ⊆ δ([ϕ̃(E)]θ).

Remark 3.3. We can consider the collection of all (symmetric) densities
satisfying the conclusion of Theorem 3.2 and partially ordered by inclusion.
With the help of the Zorn–Kuratowski Lemma one can prove the existence
of a maximal element ψ such that for each E ∈ Σ ⊗̂ T and for all ω ∈ Ω
and θ ∈ Θ,

(15) [ψ(E)]ω ⊆ τ([ψ(E)]ω) and [ψ(E)]θ ⊆ δ([ψ(E)]θ).

Notice that for each E ∈ Σ ⊗̂ T and for all ω ∈ Ω we have

either [ψ(E)]ω = ∅ or ν([ψ(E)]ω) > 0.

A similar assertion holds true also for all θ ∈ Θ.

We will prove however that the inclusions in (15) cannot be replaced by
equalities.

In what follows we use the notation ϕ = δ ⊗F τ if, for each E ∈ Σ ⊗̂ T ,
ω ∈ Ω and θ ∈ Θ the equalities

[ϕ(E)]ω = τ([ϕ(E)]ω) and [ϕ(E)]θ = δ([ϕ(E)]θ)

hold true, where δ ∈ ϑ(µ), τ ∈ ϑ(ν) and ϕ ∈ ϑ(µ ⊗̂ ν). The letter F in ⊗F

stands for Fubini, since it would be quite natural to call such a density ϕ a
Fubini density.

Now we are going to answer the question posed at the beginning of the
section. We start with an easy lemma.

Lemma 3.4. Let (Ω,Σ, µ) be an arbitrary non-atomic probability space

and let δ ∈ ϑ(µ). Then inf{µ(A) : ω ∈ δ(A)} = 0 for µ-almost all ω ∈ Ω.

Theorem 3.5. If (Ω,Σ, µ) and (Θ,T, ν) are not purely atomic prob-

ability spaces then there do not exist densities δ ∈ ϑ(µ), τ ∈ ϑ(ν) and

ϕ ∈ ϑ(µ ⊗̂ ν) such that ϕ = δ ⊗F τ .

P r o o f. Assume that µ and ν are non-atomic and we have δ ∈ ϑ(µ),
τ ∈ ϑ(ν) and ϕ ∈ ϑ(µ ⊗̂ ν) such that ϕ = δ ⊗F τ . Fix ω ∈ Ω and θ ∈ Θ
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such that

inf{µ(A) : ω ∈ δ(A)} = 0 and inf{ν(B) : θ ∈ τ(B)} = 0.

Then take two decreasing sequences 〈Ãn,1〉 and 〈B̃n,1〉 in Σ and T , respec-
tively, such that

µ(Ãn,1) > 0 and ν(B̃n,1) > 0 for each n ∈ N;

ω ∈ Ãn,1 = δ(Ãn,1) and θ ∈ B̃n,1 = τ(B̃n,1) for each n ∈ N;

and

lim
n
µ(Ãn,1) = 0 and lim

n
ν(B̃n,1) = 0.

If F(ω) and F(θ) are the filters generated by (δ, ω) and (τ, θ) respectively,

then Ãn,1 ∈ F(ω) and B̃n,1 ∈ F(θ) for all n ∈ N.
Now set

Ã1,0 := Ω \ Ã1,1 and B̃1,0 := Θ \ B̃1,1 ;

and then for each n ∈ N,

Ãn+1,0 := Ãn,1 \ Ãn+1,1 and B̃n+1,0 := B̃n,1 \ B̃n+1,1.

Define new sequences of sets by setting

A1,0 := Ã1,0 ∪
∞⋂

n=1

Ãn,1 and B1,0 := B̃1,0 ∪
∞⋂

n=1

B̃n,1;

An1 := Ãn,1 \
∞⋂

k=1

Ãk,1 and Bn1 := B̃n,1 \
∞⋂

k=1

B̃k,1

and

An+1,0 := An1 \ An+1,1 and Bn+1,0 := Bn1 \Bn+1,1

whenever n ≥ 1. Since the sets
⋂∞

n=1 Ãn,1 and
⋂∞

n=1 B̃n,1 are of measure
zero and the filters F(ω) and F(θ) are measure stable we have An1 ∈ F(ω)
and Bn1 ∈ F(θ). Thus, we have got the sequences 〈Ani〉 and 〈Bni〉 with
i ∈ {0, 1} satisfying for every n ∈ N the following conditions:

An0 ∩An1 = ∅ and An+1,0 ∪An+1,1 = An1;

Bn0 ∩Bn1 = ∅ and Bn+1,0 ∪Bn+1,1 = Bn1;
∞⋃

n=1

An0 = Ω and
∞⋃

n=1

Bn0 = Θ;

∞⋂

n=1

An1 = ∅ and
∞⋂

n=1

Bn1 = ∅;

An1 ∈ F(ω) and Bn1 ∈ F(θ).
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We define two new sets in the product space by setting

U :=

∞⋃

n=1

An0 ×Bn1 and L :=

∞⋃

n=1

An1 ×Bn0.

We have U ∩ L = ∅.
Now if ω ∈ Ω then there is nω ∈ N such that ω ∈ Anω0 and so

Uω =
( ∞⋃

n=1

An0 ×Bn1

)

ω
= (Anω0 ×Bnω1)ω = Bnω1 ∈ F(θ).

Hence Uω ∈ F(θ). Similarly Lθ ∈ F(ω). Applying now the equality
ϕ = δ ⊗F τ one can easily see that (ω, θ) ∈ ϕ(U) ∩ ϕ(L). This is how-
ever impossible since U ∩ L = ∅ and so ϕ(U) ∩ ϕ(L) = ∅.

This completes the whole proof.

In the case of atomic measure spaces liftings with lifting invariant sec-
tions may exist.

Example 3.6. Consider a complete (Θ,T, ν) and (Ω,Σ, µ) such that
Ω =

⋃
n{ωn} and each point ωn is of positive measure. Given σ ∈ Λ(ν)

define a lifting π ∈ Λ(µ ⊗̂ ν) by

π(E) :=
⋃

n

{ωn} × σ(Eωn
).

Then π = ̺⊗F σ, where ̺ is the unique lifting on the family of all subsets
of Ω.

4. Existence of liftings with measurable sections. As we have
proven in previous sections, when admissible densities are under considera-
tion, there always exist product densities with nice measurability properties.
In Theorem 2.9 we have proven the existence of a product density with den-
sity invariant Ω-sections and measurable Θ-sections. In Theorem 3.2 the
existence of a product density with measurable sections satisfying an in-
clusion has been proven. There is now a question whether similar results
can be achieved for liftings; in particular, whether the lifting π1 in Theo-
rem 2.13 can have all Θ-sections measurable. More generally: do there exist
̺ ∈ Λ(µ), σ ∈ Λ(ν) and π ∈ Λ(µ ⊗̂ ν) such that π ∈ ̺ ⊗ σ and for each
E ∈ Σ ⊗̂ T and (ω, θ) ∈ Ω ×Θ,

(16) σ([π(E)]ω) = [π(E)]ω and [π(E)]θ is measurable.

Assuming the existence of real-valued measurable cardinals and taking µ to
be a universal measure on Ω of measurable cardinality, we get an example
of π1 with all sections measurable. In general however π1 with measurable
Θ-sections and lifting invariant Ω-sections does not exist. The full descrip-
tion of liftings satisfying (16) remains an open problem.
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We start with the following result of Blass [2]:

Proposition 4.1. Let X be the countable product of the two-point space

{0, 1} equipped with the ordinary product Haar measure λ and let L be the

σ-algebra of λ-measurable sets. Let (Θ,T, ν) be a complete non-atomic prob-

ability space. If V is a ν-stable ultrafilter in T then there exists a set

E ∈ L ⊗ T such that

(17) {x ∈ X : Ex ∈ V} 6∈ L.

P r o o f. We first prove that if

(18) {x ∈ X : Ex ∈ V} ∈ L

for every E ∈ L ⊗ T , then for each B ∈ V such that B =
⋃∞

n=1Bn and all
Bn are measurable and pairwise disjoint, there is n ∈ N with Bn ∈ V. So
consider B =

⋃∞
n=1Bn ∈ V with all Bn’s being measurable and non-empty.

Then let

E :=
⋃

n

({〈xm〉 ∈ X : xn = 1} ×Bn).

Since E ∈ L⊗T we may apply (18). For each x ∈ X let x̂ ⊂ N be such that
x = χx̂. We can now write for each x ∈ X,

Ex =
⋃

{n:xn=1}

Bn =
⋃

n∈x̂

Bn.

Since V is an ultrafilter and the sets Bn are pairwise disjoint, and B ∈ V,
the collection

(19) W :=
{
Z ⊆ N :

⋃

n∈Z

Bn ∈ V
}

is an ultrafilter on N. Applying (18) and (19) we get

{x ∈ X : x̂ ∈ W} = {x ∈ X : Ex ∈ V} ∈ L.

But according to a theorem of Sierpiński [10], if W is a free ultrafilter on N

then the set {x ∈ X : x̂ ∈ W} is non-measurable with respect to λ. Thus
W must be fixed, which simply means that there exists n with Bn ∈ V.

Now we can prove the main assertion. To do it divide Θ into two disjoint
sets of equal measure. Then divide each piece again into two disjoint sets of
equal measure and so on. It follows from the basic properties of ultrafilters
that we thus obtain a decreasing sequence 〈Cn〉 of sets such that Cn ∈ V for
each n. Moreover

C1 =

∞⋃

n=1

(Cn \ Cn+1) ∪
∞⋂

n=1

Cn

and ν(
⋂∞

n=1 Cn) = 0. It follows from the first part of the proof that
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{x ∈ X : Ex ∈ V} 6∈ L for some E ∈ L ⊗̂ T (otherwise
⋂∞

n=1 Cn ∈ V,
which would contradict the ν-stability of V).

From the above proposition one can easily deduce a more general result:

Proposition 4.2. Let (Ω,Σ, µ) be a complete non-atomic and perfect

probability space and let (Θ,T, ν) be a complete non-atomic probability space.

If V is a ν-stable ultrafilter in T then there exists a set E ∈ Σ ⊗̂ T such

that

(20) {ω ∈ Ω : Eω ∈ V} 6∈ Σ.

P r o o f. There exists a measurable surjection h : Ω → X such that
µ(h−1(B)) = λ(B) for each B ∈ L (cf. [7]). By Proposition 4.1, there is

F ∈ L ⊗ T such that {x ∈ X : Fx ∈ V} 6∈ L. Let h̃ : Ω × Θ → X × Θ be

given by h̃(ω, θ) = (h(ω), θ). It easily follows that h̃−1(L⊗T ) ⊆ Σ ⊗̂T . Set

E := h̃−1(F ). We have

{ω ∈ Ω : Eω ∈ V} = {ω ∈ Ω : [h̃−1(F )]ω ∈ V} = {ω ∈ Ω : Fh(ω) ∈ V}

= h−1{x ∈ X : Fx ∈ V}.

It now follows from the perfectness of µ and the non-measurability of the
set {x ∈ X : Fx ∈ V} that {ω ∈ Ω : Eω ∈ V} 6∈ Σ.

Applying Proposition 4.2 we obtain the main non-existence result of this
paper.

Theorem 4.3. Let (Ω,Σ, µ) be a complete non-atomic and perfect prob-

ability space and let (Θ,T, ν) be a complete non-atomic probability space.

There exist no liftings σ ∈ Λ(ν) and π ∈ Λ(µ ⊗̂ ν) satisfying the following

two conditions:

(j) there exists θ ∈ Θ such that for each E ∈ Σ ⊗̂ T ,

[π(E)]θ ∈ Σ.

(jj) for each E ∈ Σ ⊗̂ T there exists a set NE ∈ Σ0 such that

[π(E)]ω = σ([π(E)]ω) for each ω 6∈ NE .

In particular , no σ ∈ Λ(ν) is an admissible density.

P r o o f. Suppose that liftings satisfying all the above assumptions exist
and let 〈V(θ)〉θ∈Θ be the family of ultrafilters generating σ. If E ∈ Σ ⊗̂ T ,
then by the Fubini Theorem there exists a set KE ∈ Σ0 such that

[π(E)]ω = Eω a.e. (ν), for each ω 6∈ KE .

Set LE = KE ∪NE . Then for each θ ∈ Θ,

{ω ∈ Ω : Eω ∈ V(θ)} ∩ (Ω \ LE) = (Ω \ LE) ∩ [π(E)]θ .
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Since (Ω,Σ, µ) is complete and [π(E)]θ ∈ Σ, we have

{ω ∈ Ω : Eω ∈ V(θ)} ∈ Σ

for every E ∈ Σ ⊗̂ T . This however contradicts Proposition 4.2 since each
V(θ) is measure stable (because σ is a lifting).

Corollary 4.4. Let (Ω,Σ, µ) and (Θ,T, ν) be as in Proposition 4.2 and

let ̺, σ and π1 be liftings satisfying the conclusion of Theorem 2.13. Then

for each θ ∈ Θ there exists E ∈ Σ ⊗̂T such that [π1(E)]θ is non-measurable.

It follows from the above corollary that Theorem 2.13 is the best possible
result, at least when ν is perfect.

Corollary 4.5. Let (Ω,Σ, µ) be a complete non-atomic probability

space and let (Θ,T, ν) be a complete non-atomic and perfect probability

space. Furthermore, let ̺ ∈ Λ(µ), σ ∈ AGΛ(ν) and π1 ∈ Λ(µ⊗̂ν) be liftings

satisfying the conclusion of Theorem 2.13. Then there exists E ∈ Σ ⊗̂T such

that
ν∗{θ ∈ Θ : [π1(E)]θ 6= ̺([π1(E)]θ)} > 0.

We finish with the following open problems, which seem to be interesting.
In both cases we assume the non-atomicity of the measures.

Question 4.6. Do there exist ̺ ∈ Λ(µ), σ ∈ Λ(ν) and π ∈ Λ(µ ⊗̂ ν)
such that π ∈ ̺⊗ σ and for each E ∈ Σ ⊗̂ T and (ω, θ) ∈ Ω ×Θ,

[π(E)]ω ∈ T and [π(E)]θ ∈ Σ?

Question 4.7. Do there exist ̺ ∈ Λ(µ), σ ∈ Λ(ν) and π ∈ Λ(µ ⊗̂ν) such
that π ∈ ̺⊗ σ and for each E ∈ Σ ⊗̂ T there exist NE ∈ Σ0 and ME ∈ T0

with the property that whenever ω 6∈ NE and θ 6∈ME then

̺([π(E)]θ) = [π(E)]θ and σ([π(E)]ω) = [π(E)]ω?

5. Applications to functions of two variables and stochastic

processes. Let (Ω,Σ, µ), (Θ,T, ν) be complete probability spaces and let
X = {Xθ}θ∈Θ be an arbitrary real-valued stochastic process on (Ω,Σ, µ).
If Y = {Yθ}θ∈Θ is another stochastic process then it is called equivalent to
{Xθ}θ∈Θ if for each θ ∈ Θ the equality Xθ = Yθ holds true a.e. (µ) (the
exceptional set may depend on θ). {Xθ}θ∈Θ is said to be measurable if the
map (ω, θ) 7→ Xθ(ω) is measurable with respect to the product σ-algebra
Σ ⊗̂ T ; {Xθ}θ∈Θ is bounded if the family {Xθ : θ ∈ Θ} is bounded in
L∞(µ). There are several papers concerning the existence of measurable
(or separable) processes that are equivalent to a given process (cf. [3], [14],
[12]). Sometimes a measurable process equivalent to a bounded {Xθ}θ∈Θ

can be defined by setting Yθ = ̺(Xθ), where ̺ ∈ Λ(µ) and the initial
process X or (Θ,T, ν) satisfy some additional conditions. In particular, the
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lifting ̺ in [3] is assumed to be strong and Ω is taken to be an interval.
In general however, strong lifting may not exist on the topological measure
space investigated. With the help of Theorem 2.13 and 2.13⊥ we get—by a
different method—the following two results from [3], without any topological
assumptions:

Theorem 5.1. For each σ ∈ AGΛ(ν) and each bounded measurable

stochastic process {Xθ}θ∈Θ on a space (Ω,Σ, µ) there is a collection {Yθ}θ∈Θ

of measurable functions on (Ω,Σ, µ) satisfying the following conditions:

(i) Y·(ω) = σ(Y·(ω)) for each ω ∈ Ω;

(ii) there is MX ∈ T0 such that for every θ 6∈MX we have Xθ = Yθ a.e.

(µ) and {Yθ}θ 6∈MX
is a measurable stochastic process on (Ω,Σ, µ);

(iii) there is NX ∈ Σ0 such that for every ω 6∈ NX we have X·(ω) = Y·(ω)
a.e. (ν);

(iv) if Θ is a separable metric space and (Xθ)θ 6∈MX
is continuous in

probability , then (Yθ)θ 6∈MX
is separable; furthermore, every countable dense

subset of Θ \MX is a separating set for (Yθ)θ 6∈MX
.

P r o o f. We take arbitrary σ ∈ AGΛ(ν), ̺ ∈ Λ(µ) and the corresponding
π1 ∈ Λ(µ⊗̂ν), existing in view of Theorem 2.13. Setting Y := π1(X), we get
a Σ ⊗̂T -measurable function with the property that for each ω the function
Y·(ω) = [π1(X)]ω fulfils the equality Y·(ω) = σ(Y·(ω)). This means that
{Yθ}θ∈Θ is a stochastic process satisfying (i). The conditions (ii) and (iii)
follow from the Fubini Theorem. (iv) can be proved exactly as in [3].

In the terminology of [3] the process {Yθ}θ∈Θ is called σ-canonical .

Theorem 5.2. For each ̺ ∈ AGΛ(µ) and each bounded measurable

stochastic process {Xθ}θ∈Θ on a space (Ω,Σ, µ) there is a measurable pro-

cess {Yθ}θ∈Θ on (Ω,Σ, µ) that is equivalent to {Xθ}θ∈Θ and satisfies the

following conditions:

(i) Yθ = ̺(Yθ) for each θ;

(ii) there is NX ∈ Σ0 such that for each ω 6∈ NX we have X·(ω) = Y·(ω)
a.e. (ν).

P r o o f. Let ̺ ∈ AGΛ(µ) and σ ∈ Λ(ν). In view of Theorem 2.13⊥ there
exists π2 ∈ Λ(µ ⊗̂ ν) such that given a process X = {Xθ}θ∈Θ, we have

[π2(X)]θ = ̺([π2(X)]θ) for all θ ∈ Θ.

By the Fubini Theorem there exists MX ∈ T0 such that

Xθ = [π2(X)]θ a.e. (µ) for all θ 6∈MX .

We now define a stochastic process {Yθ}θ∈Θ by setting Yθ = ̺(Xθ). It can
be easily seen that {Yθ}θ∈Θ satisfies the required conditions.
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Remark 5.3. Notice that in Theorem 5.2 we had to use properties of
π2(X) in order to assure the plane measurability of Y . Directly defining Y
by Yθ = ̺(Xθ) for an arbitrary lifting might destroy the plane measurability
properties of the process X (cf. [3]).

An important problem in the theory of functions of two variables is find-
ing conditions guaranteeing the plane measurability of a separately mea-
surable function. The notion of a stable set investigated by Fremlin and
Talagrand (see [11]) turned out to be very fruitful in this field. In particu-
lar, Talagrand [11] (10-2-1) proved that if Θ is a compact set, ν is a Radon
measure on Θ, f : Ω×Θ → R is measurable as a function of the first variable
and continuous as a function of the second variable, then f is measurable
provided the family {f θ : θ ∈ Θ} is a stable set.

Applying a result of Fremlin [4] we get a similar result for functions that
have lifting invariant sections. For the sake of completeness and because it is
not published we present here Fremlin’s result and his proof (with references
to [11] rather than to Fremlin’s notes).

Proposition 5.4. Let (Ω,Σ, µ) and (Θ,T, ν) be complete probability

spaces. Let f : Ω × Θ → R be a separately measurable function such that

{f θ : θ ∈ Θ} is stable. Then there is a Σ ⊗̂ T -measurable function

f̃ : Ω ×Θ → R such that f̃ θ = f θ a.e. (µ) for every θ.

P r o o f. (a) Suppose first that f is bounded and let Z be the pointwise
closed convex hull of {f θ : θ ∈ Θ}. By [11] (11-2-1), Z is stable. Since f is
bounded the set Z is also pointwise compact. Furthermore, according to [11]
(9-5-2), Z is also compact for the L1-pseudometric. Thus, given ε > 0 there
are L1-open sets Z1, . . . , Zp ⊂ Z covering Z and such that

T
|g − h| dµ ≤ ε

whenever g, h belong to the same Zi. Moreover, each Zi can be taken to be
of the form Zi = {h : |h(ω)−αi

ω | ≤ δ ∀ω ∈ Ii} for some finite Ii ⊂ Ω, δ > 0
and 〈αi

ω〉ω∈Ii
∈ R

Ii .

Set Ej := {θ : f θ ∈ Zj}. Then Ej =
⋂

ω∈Ij
{θ : |fω(θ) − αj

ω| ≤ δ} ∈ T .

Set E′
j := Ej\

⋃
i<j Ei and write J := {j : ν(E′

j) > 0} and M = Θ\
⋃

j∈J E
′
j .

Then, given (ω, θ) ∈ Ω × E′
j and j ∈ J , set

g(ω, θ) :=
1

ν(E′
j)

\
E′

j

f(ω, ξ) ν(dξ)

and g(ω, θ) := f(ω, θ) if θ ∈ M . It is clear that g is Σ ⊗̂ T -measurable.
Moreover, since gθ ∈ Zj if θ ∈ E′

j , we get
T
|gθ − f θ| dµ ≤ ε for every θ.

(b) Let now f be arbitrary. For each n ∈ N let gn be a Σ ⊗̂T -measurable
function on Ω ×Θ such that for each n ∈ N and θ ∈ Θ,\

|gθ
n − f θ

n| dµ ≤ 2−n,
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where fn(ω, θ) := max{−n,min(n, f(ω, θ))}. One easily sees that gθ
n → f θ

a.e. for every θ and that 〈gn〉n∈N is convergent a.e. to a Σ ⊗̂ T -measurable

function f̃ .

The following consequence of Proposition 5.4 and of the main result of
this paper may be considered as a strengthening of Talagrand’s method [12]
of modification of a stochastic process with the help of consistent liftings.

Theorem 5.5. Let (Ω,Σ, µ), (Θ,T, ν) be complete probability spaces and

{Xθ}θ∈Θ be an arbitrary real-valued bounded stochastic process on (Ω,Σ, µ)
with measurable paths (i.e. all functions Xω are ν-measurable). If the set

{Xθ : θ ∈ Θ} is stable then for each ̺ ∈ AGΛ(µ) the process {Yθ}θ∈Θ given

for each θ by Yθ := ̺(Xθ) is Σ ⊗̂ T -measurable and equivalent to {Xθ}θ∈Θ.

P r o o f. Applying Proposition 5.4 we get a bounded Σ ⊗̂ T -measurable
function X̃ : Ω × Θ → R such that X̃θ = Xθ a.e. (µ), for every θ. If
π2 ∈ Λ(µ ⊗̂ ν) is a lifting satisfying the assertion of Theorem 2.13⊥ (with σ

arbitrary), then π2(X̃) is measurable and for each θ,

[π2(X̃)]θ = ̺([π2(X̃)]θ).

By the Fubini Theorem there is a set Mf ∈ T0 such that Yθ = [π2(X̃)]θ for
all θ 6∈Mf . It follows that {Yθ}θ∈Θ satisfies the required conditions.

Corollary 5.6. Let (Ω,Σ, µ), (Θ,T, ν) be complete probability spaces

and let f : Ω×Θ → R be a separately measurable function such that the set

{f θ : θ ∈ Θ} is stable. If there exists ̺ ∈ AGΛ(µ) such that ̺(f θ) = f θ for

each θ ∈ Θ, then f is Σ ⊗̂ T -measurable.
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