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On operator ideals related to
(p, o)-absolutely continuous operators

by

J. A LOPEZ MOLINA and E. A. SANCHEZ PEREZ (Valencia)

Abstract. We study tensor norms and operator ideals related to the ideal Pp o,
1<p<oo,0<e <], of (pa)-absolutely continuous operators of Matter. If @ is the
tensor norm associated with Pps (in the sense of Defant and Floret), we characterize the
(a’)t—nuclear and (a’)t~ integral operators by factorizations by means of the composition of
the inclusion map L™ (i) — L (1) +LP () with a diagonal operator By : L% (u) — L7 (p),
where r is the conjugate exponent of p' /(1 - &). As an application we study the reflexivity
of the components of the ideal Pp,q.

1. Introduction. The ideal P, of {p, o)-absolutely continuous oper-
ators was introduced by Matter [8] in order to get a classification of the
absolutely continuous operators previously defined by Niculescu [10]. Since
Py 18 a maximal ideal, it is interesting to study the tensor norm o (or
the transposed o) associated with P, and the properties of the opera-
tor ideals naturally related to o. The results obtained could be applied to
study the metric properties of o as well as some topological properties of
the components of P, . As far as we know, this work has not been done
yet. Concretely, the main questions can be reduced to the following:

1. Find the tensor norm o such that (E®.F) = Ppq(F, E') for every
pair of Banach spaces E and F.
9. Characterize the q-nuclear and o-integral operators.

Tn this spirit, we have characterized in [6] the tensor norm gy .o which
solves question 1. In the present paper we give o full answer to problem 2.
Although this can be done without any reference to tensor products (Def-
initions 2 and 4 below have a meaning in the context of purely operator
ideals), we have chosen the tensorial approach for two reasons. The first one
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Key words and phrases: tensor norms, operator ideals, (p,o)-absolutely coptinuous
operators, gp,e-nuclear and gp,e-integral operators.
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is to motivate the complicated Definition 2. The second one is to get the
applications we have in mind and which will be developed in Section 4.

It turns out that the g, ,-nuclear operators can be characterized (Sec-
tion 2} by factorizations which contain the composition of an inclusion of
type £7{u) — £Y(p) + £7(n) with a diagonal operator B : £°°(u) — £7(u),
where 7, p, o satisify a certain relation (see (3)). The main result of our pa-
per is that an analogous factorization with “continuous” spaces L% (u) —
L™(p) — LY(p) + LP(p) characterizes the g, .-integral operators, i.e. the
operators of the ideal associated with the tensor norm gy, (Section 3).

Section 4 is devoted to applications. We begin by studying the coinci-
dence of gp ,-nuclear and g, ,-integral operators. This result is applied to
study some metric properties of gy, and its dual tensor norm g;,’a. Finally,
we consider some topological properties of the spaces Pp o (F, F') (density of
the space of finite rank operators and reflexivity).

In order to reduce the length of the paper, we agssume the reader is
familiar with the theories which we need. For instance, we refer to [3] for
results about tensor norms and to [11] for operator ideals. In general, we
follow the standard notation. We point cut the following special symbols
and conventions:

We denote by BAN the class of all Banach spaces. If E € BAN, Bg will
be the closed unit ball of E, B the topological dual Banach space, Jg the
natural embedding of F into its bidual E” and FIN(E) the set of all finite-
dimensional subspaces of E. Sometimes, to call attention to the norm of the
Banach space E involved, we write |- ||g. Given p € [1, 00], a measure space
{12, M, 1) and a measurable, not everywhere null real function g, we denote
by LP(f2,M,g, ) {or simply LP{g,p) if there is no risk of confusion) the
Banach space of classes of functions f such that fg belongs to the Lebesgue
space LP(£2, M, p), provided with the norm || f|| = [|fg|ze(u)-

In the whole paper, o will be a parameter such that 0 < ¢ < 1. Given
(z;) € BN and 1 < p < oo we put

oo = op (Slar?)”

B

i@ = (Sl
il

bp,o((i)) = rLsup (ZU(”’% G)|1—cr“mi”a)p/(1_a))(l—cf)/p‘

B g
If p = o0, the definitions are the same with Y772 replaced by sup;y, hence
Eoo{(T4)) = Moo ((2:)) = b0 o ((2:)) = supiey iz
The word operator (or map) will always be used to denote a continuons
linear map between normed spaces. If B,/ € BAN and 1 < p < oo, we
say that T' € P,(E, F), the set of p-absolutely summing operators from E
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into F, if there is C > 0 such that m,((Tz;)) < Cep{(x:)) for all sequences
(z;} € EN. We then put IT,(T) = inf C for which the above inequality holds.
(Pp, Ip) is a normed ideal in the sense of Pietsch (see [11]). In connection
with Pp, Matter, in his study of absolutely continuous operators, introduces
for every o the ideal Py, of (p, o)-absolutely continuous operators setting
T € Ppo (B, F) if there is C > 0 such that Tpr1-o)(T2:)) < Cdpo((z1))
for all ((z;)) € EN. Then we put IT, ,(T) = inf C for all such constants C.
Another equivalent formulation is to say that T € P, .(E, F) if there are
G € BAN and S € Pp(E, G) such that

(1) VYee E | T()| <=7 |5 {z)]|* 7.
Then
(2) 1T,.(T) = inf (IT,(S))*~°,

where the infimum is taken over the maps S such that (1) holds (see [8],
Theorem 4.1). (Pp,o, Ip o) turns out to be a maximal normed operator ideal
in BAN. Clearly Pp C Py, In [8] there are given some relations of the ideal
Pp,s to other classical operator ideals. Since we shall not use them in this
paper, we simply refer the interested reader to the quoted reference.

Given p € {1, 00], p' is the conjugate of p: 1/p+1/p’ = 1. Throughout the
paper, given 1 < p < oo and 0 < o < 1, r will always represent the number
satisfying

(3)

Inspired by the notation used by Saphar [12], we denote by g, the tensor
norm defined on every tensor product £ ® F' of Banach spaces E and F by

n
9o (% B ® F) = inf {my((2:))0pr0 (1) [2= > _mi@ui € BQ F}.
i=1
In [6] we have proved that the tensor norm associated to the ideal Py o,
1 < p < 0o, is the dual tensor norm of the transposed of gp,,. Moreover
9p < Gpo DA T = gio.

Given a compatible couple (A, A1) of Banach spaces (i.e. two Banach
spaces which are continuously embedded in a larger Hausdorff topological
vector space E), the spaces Ap + A1 and Ap N A; will always be endowed
with their canonical norms

“m”-Ao‘FAl = inf{Ha'HAO + “bﬂfh ! r=a+b a€ Ay, bE Al}
and

”m”Auﬁfh = max{”w”Am Hm“.-‘h }
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It is easy to check that, given a measure space (2, p) and 1 < p < oo,
there is always a continuous inclusion map

L=() N IP () € I/ ().
Hence we have a continuous inclusion map J¥ : L™ (u) C L*(u) + LP ().
On the other hand, it is clear that every continuous linear map T €

L(E,F), E,F € BAN, defines canonically a linear map Tar from E into the
dual M’ of every subspace A C F' by

Vee B, ye M, (Ty(z)y = (T(z),y).
In [7] we have shown the following theorem which will be used in Section 3.
Since its proof widely uses results of Banach lattice theory, we shall always
deal with vector spaces over the field of real numbers. We refer the reader to
f1] for all questions concerning Banach lattices.

THEOREM 1. Let 1 <p< oo and 0 < o < 1. Let T € L(E, F) be such
that for every M € FIN(F'), the restriction of Tur to every N € FIN(E)
factorizes as

m
N — £2°(2n,dn) 25 02y, un) £ 2N, ) + Py, ) — M

where every (2y,pn) 15 a discrete measure space with o finite number of
atoms and every Dy is a positive dingonal operator. Then there is o o-finite
measure space ({2, ) such that JpT factorizes as

E — L%, 1) 22 17(0, 1) L5 LHQ, 1) + LP(02, 1) — F

where B, is o diagonol operator.

2. gp,o-nuclear operators. Using a standard argument {see for example
12.6 in [3]), it can be proved that given E,F € BAN, every element of the
completion B &, F canbe writtenas z = 3 oo, z{®y; where 7.((z})) < oo
and 8y o ((1:)) < 0c. Let B p : B'®y, , F — L{E, F) be the canonical map.
In accordance with the general theory of tensor norms and cperator ideals,
we set

DerFINITION 2. Let E, F € BAN. An operator S : F — F is said to be
Ipo-nuclear if § = &g p(2) for some 2 € E' &, F.

In that case we write § € N, ,(E, F') and define
Np,o(5)

oo
= inf {Wr(($2))5p',a((yi)) S =®mp(2), 2= 2 QUi € E' &, F}

g,
It is easy to see that (Np,-,N, .} is a normed operator ideal. It is clear
that if p = 1, we have N1, (E, F) = N1{E, F), the space of nuclear operators
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from E into F. Hence, from now on, we always assume that 1 < p < co.
Next we characterize the (p,o)-nuclear operators by means of special fac-
torizations. We shall need non-canonical measures i on N. Then we shall
put p; = u({e:}) and denote the corresponding L*(N, 1) spaces by £{u),
1 <u < oo,

THEOREM 3. Let E,F € BAN and let T € L(E, F). The following are
equivalent:

(1) T is gp o-nuclear.
(2) There is a measure u on N such that T can be factorized as
E & F

Al TD
£ (u) =g £ () = £1 () + £ ()
where B is a diagonal operator generated by a sequence (b;) € £7(u). Fur-

thermore Ny (T} = inf{||D]| - | B|| - ||Al|}, where the infimum is taken over
all such factorizations.

Proof. (1)=(2). Suppose that T"is a g, o-nuclear operator. Given e > 0,
wiite T = @g (Y ioq @) ® yi) where mn((2}))0p o ((4:)) € Npo(T) + & and
xf 5% 0, yi # 0 for each ¢ € N, If we put 2z; = /0y o({v:)), we have
T = &g r(lpo((1) Xy 2 ® z) and 6y -((z)) = 1. Now, we consider
the measure u on N such that w; = ||z[[?'/*~7, 4 € N, and define A €
L(E, 6= () and B € L{E(u), & (1)) as

Ale) = s ) (S22

Ve e K
=il /i1

and
B((0:)) = (asllefllu; M2y Vlas) € €°().
We casily obtain ||A|| < 8y () and [|B]| < 7o ((=()).
Finally, we define
DM p)+£p) — F
by

V) € () + () D)) =D "z
i=1

D is well defined and continuous: in fact, first remark that

sup ||z;]| = sup sup [{z;,3")[* 2] < 6,0 ((2:)) = 1.
jeN JEN Y E€Bp

Y
On the other hand, given n > 0 and (A;) € £3(u) + #(u) there is a de-
composition (A} = (e;) + (8i) such that (e;) € £1(w), (8;) € £°(u) and
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(@)l + 1B sy < IO + 7. Noting that we have

Vie N sup [(z,9|ud "t < a0 2,

y' €B g
for each (X;) € £} (p) + £P(1u) we get
DA
U

o
< sup | > o Ly
y'EBp =l

3 AR ve/i-a) 5 )P
<ol + sup (3 160Pme) (anm 2y
i=1 YERR Mo =1

= [[(@i)llerguy + 1(Be)llew gy O o (20)) 47
< e ller gy + 1B ey < M) +7
and hence || D{{X;))|| < [|(A;)]| and || D]} £ 1. Obviously T'= DJ#BA and
D0 B - A < e ((25))0p 0 (413)) € Npo(T) + 5.

+ sup
Y EBp

Zﬁ 1/p 1/r l/}J( ; !

i

(2)=(1). Take a factorization of T as in the previous diagram. Let F; :
£°(p) — K, i € N, be the canonical projection on the ith axis. Then
zt = PA € B and Alz} = ({z}, z})52,. If the diagonal operator B is given
by the sequence (b;), we have

o0 o0

VreE  T(z) =) bileiz) DI es) = (i, 7)
i=1 i=1
where we have defined y! := bzp,;l/T L and z; = pi—l/rDJ#(ei).
Let us see that 7.((y;)) < oco. Given & > 0, for every n € N, there is

Ty € E such that iz, < 1+¢ and (zn, 2},) = [z || Then |[({2n, 25,))|] 202 ()
< (1+42)||A4]| and

e () = sup { iaibm:/"m,wni | 7 s1-my () < 1}

= sup{|({asp; V), B(((s, 2
< IBl(L+ )4

R Ty! f(1— a)((a,)) <1}

since (azuy “T7P € £2'/2=)(). In consequence 7,((¢)) < || B| - ||A}.

On the other hand, as (£*(u) +£°(u)) = £7° () N £¥ (1) (see [4], Theorem
2.7.1), for every w' € F' we have D'(w'} = ({e;/pi, D'(w")))2,. Hence,
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putting H = DJ¥ we get
Ee). D'y N 1" | Hes)
i i

(sup sup |[{J¥(es)/ s, D' (2P 0/ =y m) /2
PN 2/ € pr

P’rr/(l—a)) (1—e)/p’

H

y'€B g

by (1)) = sup (Z

IA

o . IFSNISET (1-o)/p'
X sup (Z <']'r= (6;),D('y )) /1'?1)
WEBm N iD Hi
= 3 D o
szquF, D" (=")llz (,L) SUP | D* (y)ngp ()
< sup [D'(z )I\ew(p)nepf(#)SIID | = D).
Z'GBF!

Thus T € Ny» (B, F) and Ny o(T) < |4 |B] - | D] With the bound of

" the necessary condition, we obtain the final result. w

3. gp,o-integral operators. According to the general theory of tensor
norms and operator ideals (see [5]) we make the next definition:

DEFINITION 4. Let E,F € BAN. An operator § : E — F is called
gp,o-tntegral if it belongs to the maximal normed operator ideal (7, ,, Iy »)

associated with the tensor norm gy o, i.e. to the associated maximal ideal

(Npe*, Npex) in the sense of Pietsch [11].

In particular, an operator T' € L(E, F') is g, ,-integral if and only if
T € (E®g, _F). The aim of this section is to characterize the g, -integral
operators hy means of suitable factorizations. The basic idea is to apply
the ultraproduct technique to the diagram obtained in the above section for
gp,c-nuclear operatars.

THEOREM 5. Let E,F € BAN and T € L(E,F). The following condi-
tions are equivalent:

(1) T is gp,o-integral.

(2) There is a o-finite measure space (2, M, ) such that J FT can be
factorized as

B - F L—"
| K
L () 5> L7 (1) = L (1) + L7 ()

where By, is the multiplication operator by o measurable function w € L™ ().
(3) The same as in (2) with an arbitrary measure space (£2, M, ).
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Furthermore, in (2) and (3), the canonical gp,,-integral norm Ipo(T) of
T satisfies
Ip o (T) = inf{| D] - [ Bu]l - [|All},
where the infimum is taken over all such factorizations.

Proof. (1)=(2). The proof goes along the same lines as in the classical
case of p-integral operators, although using, of course, our main results of
Theorems 1 and 3 (see for example [3], Chapter 18, or [4], Theorem 9.3,
where more details can be found).

(2)=>(3). Trivial.

(3)=(1). Suppose that T € L(E, F') is such that JpT factorizes as in
the above diagram. Let us see that T € (E ®g  F') and Lo (T) < D] -
| Byl - |All. For every z; € E and yj € F', i = 1,....n, we have

(JeT, z 2 ®,) = (/£ Bu, Z Ale) ® D'(W)))

Hence, by the metric mapping property of tensor norms, it is enough to see
that H := J# B, belongs to (L°(u )®g . (L ()N P ()Y and I, o (H) <
[| B, Since the set T of step functions on (2 with support of ﬁmte measure
is dense in L°(u) N LP (1) and L () + LP(u) € (L) NV LP (1)), by the
density Lemma (see Lemma 13.4 in [3]) we only have to show that H is in
(L(1) by, T

Let z € L°(p) ®, , T and let My and My be finite-dimensional sub-
spaces of L (u) and T respectwely such that z € My ® M. Let {XB] 3y
be a basis of M1 such that {B;}/L; is a finite sequence of pairwise dis-
joint sets in (2 and let {f;}, be a basis in My. For 1 € § < m, let
& = xa; € (L) NLP (1)) and ¢; € (L*(w)) be such that

(h,¢5) = \ xp,whdp  Vh e L®(p).
0
Then ¢; is well defined. In fact, since xn € L®(u), we have w € L"(u)
and hence wxg, € L'{u) + LP(y) can be written as wxp, = a; + &; with
a; € L*(u) and by € LP(i). Then, by Holder’s inequality,
Vhe L) 1h,¢5)| < max(L, w(By) )Rl pee gy (lagll iy -H 105l 2o )
and hence
[, )| < ma(L, p(By) M2 )| Lo e, | ity )

Now, given f ® h € My ® My, there are finite scalar sequences {o},
and {B;}™, such that f =3, cufs and h =3 7", Bixs,; Then

FonH =335 § ufia -Zf€£§ Yo | whidp

i=1 j=1 = il Bj
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(N(Bj)“"-l § o dn) (u(B) (g5, 1)

By

.,
1l
—

li

1/T 1¢)®(N(B) I/r&-]) f®h>

i= 1

i
o /‘\

Hence {(z, H) = (z,U) for every z € My ® M, where

[ = Z(# 1/7‘ 1

and qﬁj and fj denote the canonical images of ¢; and §; in My and M
respectively.

Since by Hélder’s inequality

sl = sup {| § whdp | bl < 1}
B;

< (ol )" sup { ( § WP/ a) T hllmgy < 1)
5 B;

ir '
< ({ folrau) w00,
2

) ® (u(B)T"E) € My ®q,, M= (Mo ®g M)’

we obtain
o ((u(B;)/7718)) )<(Zu

= “wHLP(u) = [|Bul.
On the other hand, if

K ={f € L®(u) N L* (1) | sup(||F || oo ey |l 2o ) < 1,

1 T"LL(B )r (L—a)/p" S |w|rd/,l,)1/
B

]

we get
S ((By)™M7E)) < sup (37 |(u(By) ™m0 gy, gy
Y et
— —1/r fo /(10 (1-o}/p'
x 1(By) N (By) gy |0

and since {|&]| < llxs, |z = #(Bj), using Holder's inequality for the
evaluation of {£;, f}, we continue the inequality as

< sup (ip‘(B')pI/p_p’"*"l_H'cf S |f|p’ d’.,’)(l—cr)/;ﬂ'
T fek = J

B;

sup p I 150 S -
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Hence

(H, 2)| = (U, 2)} £ gp,0(U)gp o (2 Mo @ M1) < || Bullgy 0 (% Mo ® M)
and I, .(H) < [|Byl. =

REMARK 6. We have T o C L, C I CPp CPpii-a) C Ppyo-

This is a direct consequence of Theorem 5, Theorem 19.2.6 and Propo-
sitions 19.2.10 and 17.3.9 in [11] and Proposition 4.2 in [8] combined with
the fact that g, > (g;)' in BAN. u

4. Applications. In this last section we state some results which can
be derived from the previous factorization theorems of Sections 3 and 4.
The first one concerns the equality N, o (B, F) = I, .(E, F). We make the
following

DEFINITION 7. If E,F € BAN, we say that T € L(E, F) is a strictly
gp.o-tnlegral operator if it can be factored as

e
B4 L(5) 25 L7 () =5 LMp) + L () = F
where C, is the multiplication operator by a function w € L™(u). In that

case, we define SI, ,{T) = inf{||A|}-||Cw| - | D||}, where the infimum is taken
over all such factorizations.

The ideal of strictly gy ,-integral operators will be denoted by 87, ,
Clearly, if F is a dual space (or F is 1-complemented in its bidual), we have
STyl B, F) = I (B, F) and SI, ,(T) = I, . (T").

Given a measure space ({2, 4, u) and a Banach space E, we denote by

L?(u, E) the Lebesgue~Bochner space of order p.

LEMMA 8. Suppose that u(2) < oo, ¢ € L7(u, E'), go € LP(2,p) is
p-everywhere positive, ||goll ey = 1 and Ty is a diagonal positive operator
from L7(02, ) into L* (2, u) + LP(82, go, ). Then Ty : & — h(t)z, ¢(t)) is
& gp, o -nuclear operator from E into Ll(.Q W)+ LP (02, go, ).

Proof Suppose that ¢(t) = 377, #lxa, 1 is a simple function with
pairwise disjoint sets {4;}7,. Then

Tple) = { Do (4" al) @ (u(A) ™ hxa,), o).
i=1
‘We have

T

oA ")) = (3 mlA )" = ol

Now, put F = L2, u) + I* (12, 9%, w) to 51mp11fy the notation. As gp €
LP(u), we have F' = L®(p) N LP (2,057, u) and xo € F'. Put by =

=
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T (X_Q) € L (). Since T}, is also a positive operator, we have ||ho[| g~ ) =

|71l < ITw]|- By Hélder's inequality, if f; € F” is such that | fill 7 < 1 and
HhXA |= = [(hxa,, fi}|, we have

1/r'

= 0ean TR < | § Thlfiddn| < mCanM (1ol dn)
Aj Ag

< ”fiHLw(;L)M{Ai)l/T( S |hol” d,u)m’
A

+ 1/7',
!J:(Az')lfr( S [ho|" d#) .
Ay
In consequence, using again Holder's inequality we get
Sy (((A) ™ hixa)1y)

n '

o {l—o _. N {1-eifp
- \fﬁupq(zuﬂ AL TN AL [PTOR) ”rTh(XA,-),f”p)
F/ 1

e (é (ol )"t e, T )
B HfIIFf<1 (g (i [ol” d#) p(Aq) P'/T(i |T;’b(f)|du)p )(1—0)/1:
: Hfﬁup Hflf‘”"“‘}(g (i [Rol” d'”) )(—13’)/”"(_§i 1 d#)p’)(l—v)/p’
< (i—: ( S |r’m[T'dM)U( S |h0|f" d#)l—a)(lma)/?” < th”Lr,(#) = |ITh]l.

=1 A i

Hence Ty € Np,o (B, L9, 1) + LP (12, g0, 1)) and Np o (T} < || Tn| - |-
This means that V' : ¢ — T is a continuous linear map from the vector space
H of simple functions on L™ (g, E') into Np o (B, LY (2, u)+ LP(12, go, 1)) and
IVl < IITn]l - ||¢l. As K is dense in L"(u, E'), V can be continuously
extended to L"{u, E') and hence Ty = V(¢) is gpo-nuclear for all ¢ €
L (4, B'"). Morcover, Np o (Ty) < ||Thl| - @]l »

It is interesting to know sufficient conditions as general as possible for
the equality N, o (B, F) = 8T, ,(E, F):

THEOREM 9. Given E,F e BAN, the equality Np (E, F) =81, ,{E, F)
holds if E' has the Radon-Nikodym property. In that case, Ny (T) =
SI,.o(T) for every T € 8L, ,(E, F).
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Proof Suppose that E' has the Radon-Nikodym property. Fix T ¢
ST, -(E,F). Given £ > 0, there is a measure space ({2, M, p) and a factor-
ization as in Definition 7 such that SI, .(T) +¢e 2 || 4] - |Cu| - ||D]|. Since
w = Cy(xn) € L"(1), w has o-finite support S(w). Then we can suppose
that (2, M, i) is a o-finite measure space by projecting onto the sectional
subspace relative to S{w) if necessary. Now, let g be an everywhere positive
function in {2 such that kg € L* (1) N L?(p) and ||Ag|zs () = 1. We consider
the finite measure v on M such that

v(A) = | hodp
A
Put g5 := hép_l)/p. The maps Ay, : f— fha"l/r and C, : f — fhp are isome-
tries from L7 (u) onto L7 (v) and from L (v) + LP(go, v) onto L' (1) + LP(p)
respectively. Since hy is everywhere positive and v is absolutely continuous
with respect to w, the identity I : L% (u) — L°°{») is also an isometry. Then
there are multiplication operators . and O} which make the diagram

E L 3

: N

L(p) o L7 () s L} () + L (1)

| lA" le.

L= (y) Ce Lr(y) Ch Lt (‘V) + Lp(gﬂa V)

YA e M.

commutative. Since E' has the Radon-Nikodym property, there is a function
¢ in L*®(v, B') such that for all € E we have TA(z)(¢) = (z,0(t)) v-
almost everywhere on (2. Clearly z¢ € L7(v, E') and ||go||zr) = 1 by the
construction of hy. Now, the conclusion is obtained by direct application of
Lemma 8 since

Npo (T) < [[ID - [Chll - [[z¢l] = | DI 17| - || 4w CuwA]] < 8T,0(T) + 2.
By Theorem 5, as ¢ is arbitrary we get SI, ,(T) = N, (7). m

The second application we consider concerns metric properties of the
tensor norms gy, , and gp ., 1 <p < o0, 0 <o < 1.

THEOREM 10. g, . is a tolally accessible tensor norm, i.e. for all B, F &
BAN, F'®g  E is a subspace of Py - (E', F).

Proof Let z =3 1 ®z; € FQ F and let H, € L(E', F) be the
canonical linear map associated with z. By Proposition 12.4 and the duality
theorem 15.5 of {3], we have Il ;(H.) < g, , (2 F ® E). On the other hand,
given N &€ FIN(F) such that 2 € N ® B, there is V € I, ,(N,E) =
8Zp,0(N, E') such that I, (V) = 8L, , (V) < 1 and 9p o (5 NQE) = {z,V).
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By Theorem 9, as N’ has the Radon-Nikodym property, V € Np,o (N, E)
and given & > 0, there is a factorization V = DBA as in the diagram of
Theorem 3 such that

DI - IBI - Al S Npo (V) +6 = Lo (V) +e < 1 +e.

As £ has t_l'vze extension property, A can be extended to amap 4 L(F, 2%
such that || 4]l < ||A]l. By Theorem 3, W := DRA isin Npo(F, E') and there
is a representation W = &g p(w) where w = PIARE A - T o
such. that '

T ((Wi)0pr o ((21)) < Npo (W) + 6 < D} - || BI| - 1 4] + € <1+ 2.
Clearly (2,V} = (z,W). Then
9,05 F®E) < g, (5 NQE) = (2,V) = (5, W)
< gp,g(w)ﬂpra(f-fz) < (1 + QE)pra-(Hz).
Since € > 0 is arbitrary, we get 9o FQE) < ITyo(H,). u

COROLLARY 11. g, 15 an accessible tensor norm, i.e. M R, £ and
F @g,.., M are subspaces of T, ,(M',F") and T, .(F', M) respectively if
F ¢ BAN and M s a finite-dimensional space.

Proof. This is immediate by Theorem 10 and Proposition 15.6 of [3]. =

In the last application we study some topological vector space properties
of B ®g,, F and Pp,(E,F). In the next theorem we need a theorem of
Matter [9] which uses interpolation spaces (Fy, Fy)1—,,1. We refer the reader
to [2] for this topic.

THEOREM 12. Let 1 < p < oo, 0 < o < 1. Suppose E € BAN does
not contain £*, and E’ has the approzimation property. Then for every F €
BAN, the set of finite rank operators is dense in Py (B, F).

Proof. For each z € E, denote by f. the scalar function on E’ given
by fe(2') = {z,2') if &’ € E'. Given a probability measure u on Bg/, let
I, B — LP{Bg:,p) send every @ € F to the class of f; in LP(Bg, p).
Let E, be the quotient space of E by the kernel of I,, K, € L(B, E,)
the canonical quotient map and Jy » the inclusion B, C (E,, LP(1))1—0,1.
Clearly, I, = JpJp o K, where J,, is the inclusion (E,,, L?(14))1-0,1 C LP(p).

Fix T € Py -(E, F). By a theorem of Matter {corollary of Theorem B in
[9]), there are a probability measure y on By and REL((E,,, LP (1)) 1-0,1, F)
such that

(4) T = Ry oKy

By the theorem of Grothendieck-Pietsch (see Theorem 11.3 in [3]), I, is
p-absolutely summing. Morecver, by interpolation space properties, there is
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C > 0 such that
(5) [0 K ()| < |1 K (@)%, 1CY O L) 1357,

Ee ()
e e E A C 2

Then, by (1), JpoKy € Ppo(E, (Ey, LP(1))1-0,1). As B does not contain
£, by Theorem 2.2 of Niculescu [10], Jp oK), is compact. Since £’ bas the
approximation property, given € > 0, by 43.1(6) of [5], there is § € E' &
(B, LP(p))1—0,1 such that
(6) sup ||(Jp,e Ky - S)(z)|| < /2.

zEBe
By definition of the elements of (E,,, L?(1))1-¢,1, S can be written as

k 0o
S =,;x;1® (j};fm;)

where the series 3.2, for is convergent in (B, LP(1s)}1-0,1 (Proposition 3,
Section 1, Chapter IT in [2]} and hence in LP{u). Then there is j € N such
that

[» )
£
(7) | > sy W=1k
22, N
If we put y, = :;':“:1 z7 and consider the canonical operator from E in-

to (Ey, LP{u))1—4,1 defined by the tensor Z = 2?;:1 @ {2;0:1 fm?) =
Ei=1 z, ® fu.., by (6) and (7) we have
8)  IpeKu—Z| = sup |[(JpoK, — Z)(z)]|

zeBg

k oo

< sup {[(Jp oKy — S) (@)l + sup <e.
2ehm €82 T j=do+l
Furthermore, for every z € B and 2’ € F',
& k
(Z(2),3) = 3" (@5l s o) = (3 (@ 2y, o).
n=1 n=]

Consequently, J,Z(z) = fuw(,) where W € L{E, E) is the map W(z) =
k I .

2 on=1 (T 27 )Y Setting H := Jp(Jp o Ky ~ Z) € L(E, L (), since Z(E) C

E,,, we have

(9) Vo€ B ||(Jp,o Ky — Z)(z}]| < Ol 7| Hz}| .

Moreover, H € Pp(E, L?(u)) since J, Z is a finite rank map and JpJp o Ky =
I, € Pp(E, L¥(u)}. Then, for every weakly p-absolutely summable sequence
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(2:)52, in E, using (8) we have
i 1/p
a0 (X 1HE)P)
i=1

= ( § 3 Wlpu = D)o, )P dute))

BE! z=]

- ((Jp,affu -2y |

By

(5

i=]

) (Jp(Jp.aKu = Z)) (')
< (o K — Y| >

P 1/p
) dﬂ(w'))
< ep((ms))e/P.

Hence, by (9) and (10) we see that J;, . K, —Z € P, o (B, (B, IP (1)1 0,1)
and by (2), Hpo(Jpo Ky — Z) < Cet=2)/2. Then, by (4),
y.o(T ~ RZ) < | Rl Ipo (Jp,o Ky — Z) < O||R|leR /P
and E' ® F is dense in Py ,(E,F}. u
THEOREM 13. Suppose that F has the approzimation property, 0 < o < 1

and 1 < p < co. Then E &, F, Npo(B,F), E®y F, Pyo(E,F) and
Ipo(E, F) are reflexive if and only if B and F are.

Proof Let F and F be reflexive. Then F also has the approximation
property. By Theorems 10, 12 and 9 and [6],

(E &g, F) = Pyo(F,B)=E &, F
and
(& ®9},.a FIY =L o{B' F) = 8Tp,0 (B, F) = Npo (B, F).

By a result of Grothendieck (see Proposition 21.7 in [3]), we have N}, - (B, F)
=FE®,  F. Hence ER,,  F (and in consequence every space of the state-
ment) is reflexive. m
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Tauberian theorems for Cesaro summable
double integrals over }Rﬁ_

by
FERENC MORICZ (Szeged)

Abstract. Given f € L (B), denote by s(w, ) its integral over the rectangle
[0,w] % [0,2] and by o{u,v) its (C,1,1) mean, that is, the average value of s(w, z) over
[6,u] x [0, %], where u,v,w,2z > 0. Qur permanent assumption is that (*) o(u,v) — A4 as
u,v — 00, where A is a finite number.

First, we consider real-valued functicns f and give one-sided Tauberian conditions
which are necessary and sufficient in order that the convergence (#x) s(u,v) — A as
u, v — oo follow from (*). Corollaries allow these Tauberian conditions to be replaced
either by Schmidt type slow decrease (or increase) conditions, or by Landau type one-sided
Tauberian conditions.

Second, we consider complex-valued functions and give a two-sided Tauberian con-
dition which is necessary and sufficient in order that (#x) follow from (x). In particular,
this condition is satisfied if s(v, v) is slowly oscillating, or if F(2,y) obeys Landau type
two-sided Tauberian conditions.

At the end, we extend these results to the mixed case, where the (€, 1,0) mean, that
is, the average value of s(w,v) with respect to the first variable over the interval [0, 4], is
considered instead of o11(u, v} := o(u,v).

1. Summability (C,1,1) of double integrals over R2 . We remind the
reader that a complex-valued function f(z,y) is said to be locally integrable
over R3, := [0,00) X [0, 00), in symbols f & L, (B2 ), if for all 0 < u,v < oo
the integral

u v
S(’u.,’l)) = S S fla,y)dz dy
00
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Key words und phrases: improper double integral, convergence in Pringsheim’s sense,
Cesiro summability (C,1,1), (C,1,0), and (C,0,1), one-sided and two-sided Tauberian
conditions, Schinidt type slow decrease (or increase), slow oscillation, Landau type Taube-
rian conditions.

"This research was partially supported by the Hungarian National Foundation for Sci-
entific Research under Grant T 029 094, :

{41]



