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Extreme points of the complex binary trilinear ball
by

FERNANDO COBOS (Madrid), THOMAS KUHN (Leipzig)
and JAAK PEETRE (Lund)

Abstract. We characterize all the extreme points of the unit ball in the space of
trilinear forms on the Hilbert space C2. This answers a question posed by R. Grzaslewicz
and K. John [7], who solved the corresponding problem for the real Hilbert space RB*. Asan
application we determine the beat constant in the inequality hetween the Hilbert—Schmids
norm and the norm of trilinear forms.

Tt is well known that the extreme points of the unit ball in the space L(H)
of all bounded linear operators on a Hilbert space H are just isometries or
coisometries {see [8]). For real Hilbert spaces H, £(H) can be identified
with the space B{H, H) of all bounded bilinear forms on H. This leads in
a natural way to the problem of characterizing extreme points of the unit
ball of multilinear forms. In the case of trilinear forms on H = R? this
question was solved by R. Grzaglewicz and K. John [7]. The complex case,
where H = €2, was left there as an open problem (see [7], Remark 5).
Accordingly, we prove here such a result. As an application we compute the
exact value of the best constant d in the inequality ||T]l2 < d||T|| between
the Hilbert-Schmidt norm and the norm of a trilinear form 7" in the binary
case, thus complementing our previous results in [3] for the m-ary case,
where the asymptotic behaviour of these constants was investigated. For
more background material about trilinear forms we refer to [4].

Let B(H,H, H) be the space of all trilinear forms 7': H x Hx H = C
equipped with the norm

1] = sup{[T(2,9,2) ¢ 2]l = loll = el = 13-

Qur main results are the following.

THEOREM 1. For o trilinear form T : Hx Hx H — C on the Hilbert space
H = C? one has |T|| = 1 if and only if there are three orthonormal bases
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{er,ea}b, {f1, o}, {91,092} of H and complex numbers b1,bs, b3, ¢ such that,
if Tim = T(ey, fr, o), then Tiny = L, T = Tiox = Tonn = 0,Than = by,
Thip = by, Toor = b3, Thzo = c and F = [b1|*+ b2+ |ba[* + 1c|? /2 + | X| < 1,
where we have set X = 2b1boby + ¢2/2.

THEOREM 2. A trilinear form T as in Theorem 1 is an exireme point of
the unit ball of B(H, H,H) if and only if F =1, and in addition either the
equality X = 0 or the strict inequality | X — c2/2| < | X|+ |c|2/2 holds.

Proof of Theorem 1. If |T'|| = 1, then by compactness of the unit sphere
of H there are vectors e, f1, g1 of norm one with T'(eq, f1,91) = 1. Choose
now vectors ey, f2, g in the unit sphere of H such that e; L ey, f2 L fi and
g2 L g1. Then |T| =1 yields

[T(ze; + e, f1,g1)|2 =lz+ Tgll[2 = |:z:12 +2RexTa11 + |T21112
<|zP+1 Vvzed,

whence T1; = 0, and similarly we get Ti21 = Ti1p = 0. Observe that the
choice of the second vectors in the three bases is only unique up to multi-
plication by arbitrary unimodular complex numbers. Setting 1 = arg Tz,
w2 = arg T, s = arg Ty and replacing e, f5, g2 by e = ™6y, f4 =
€2 fa, gy = "™ gy with o = 5 — 3 375 ke We get Tiyy = Tlen, f3,05) =
eileataa) 50 = |Th99|, and similarly To15 = |T212], T5o1 = |That]- So we can
and do assume that the thres complex numbers b; are even real numbers
with 0 < b; < 1. This will simplify some of our further arguments.

Clearly, every trilinear form T with 711y = 1 is of norm ||T|| > 1. So it
remains to show that the condition F < 1 is equivalent to {T|| < 1. Note
that the latter inequality means that

2yz + bz + by + b3z + o < (L4 [2P) (1L + [y (L + ) Vaz,y,2€C,
which in turn is equivalent, by Cauchy’s inequality, to
() lyz+baf + by + b3z + o < A+ )1+ 212) WyzeC.

First we show the equivalence of (1) and F' < 1 in the special cases where
one of the b;’s, say by, equals either 0 or 1.

CASE by = 0. Here (1) simplifies to
bay +bsz + o <1+ yf + 2] wyzeC,
which is, again by Cauchy’s inequality, equivalent to
[b2f? + b2 + ef* < 1,
but this is just F < 1 for b; = 0.
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CAsE by = 1. Upon writing |yz + 1{* = |y2|2 + 2Reyz + 1, expanding
the right-hand side of (1) and collecting terms, inequality (1) reads
(2)  |bayFbsz+c? <|y® —2Reyz+ |2 =y -7 Vy,zeC,
which is equivalent to by = by = ¢ = 0. (One implication is trivial, the other
follows by taking the special values y =z = 0,1,4 in (2).) But, for b, = 1,
the condition F' < 1 is equivalent to by = bgy = ¢ = 0.

Next we show that in the remaining case, where 0 < b; < 1forj = 1,2, 3,
inequality (1) is equivalent to the non-negative definiteness of a certain real
(3 x 3)-matbrix.

Expanding both sides of (1) we can rewrite it as
(3)  (L—83)yl® ~2Re (biz +balbaz + c))y

S
P Q
+ 3+ P8 sz +c) >0 wy,zeC.

o

R

Since P = 1 —b% > 0, (3) is equivalent to PR > |Q|?, that is to say, to the
inequality

4y (1 =bo) (1 + |2* — b8 — b3z +¢*) > [brz + balbzz + )] VzeC
After expanding and collecting terms, (4) takes the form
(5) Alz|* — BRez? ~2ReCz+D >0 VzeC,

where we have set

A=1-b} - b — b3,

B= 2blbgb3,

C = by bac + bt

D= (1-b3)(1—b3) ~ e
Thanks to our particular choice of the three bases the quantities A, B, D are
real numbers. Splitting z and € in real and imaginary parts,

z=g+iy, C=0C1+1i0;,
and using the relations Re 22 = 22—y?, Re Cz = Cyz—Chy we can transform
(5) into
(A= B)z? + (A+ B)y? - 201z +2Cy+ D 20 Vo,yeR,
which means that the real (3 x 3)-matrix

A-B 0 —Cy
M= 0 A+B Cy
¢, C D
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is non-negative definite (M > 0 for short), meaning that {(Mu,u) > 0
Yu € R, where (-,-) denotes the standard inner product. So it remains
to prove that the conditions M > 0 and F < 1 are eguivaelent. For the proof
of this equivalence we can assume that we additionally have

(6) A>B (>0 and A>|c?/2,

since either of the conditions M > 0 and F < 1 implies {6). Indeed, if F <1,

then clearly A > |c|*/2. Moreover, by the triangle inequality, we obtain

|e?
2

2

C
- >
s+ ]es,

3
Zb z 5 + |X| =
=1
where equality holds if and only if
(7) ~ct=|c* <2B.

On the other hand, if M > 0, then all principal minors of M are > 0, in
particular A — B 2 0, whence 4 > B. For the second-order minors we get

(A-B)D- 0220, (A+B)D-CE>0,
and consequently
(8) 24D > C7 +C} = |C.

Let us introduce the quantity E = b3b3 + b. Since D + |¢|?
(1 —82)(1 — b2) > 0, inequality (8) 1mp11es

2A(A+ B) =24(D +|cf*) > |C]* +24]c]?

= Elc|* + BRec® + 24|c* > (A+ E)|e|?,
>— Afe[?

therefore A > [c[2/2.
Next we prove that det A4 > 0 is equivalent to F' < 1. We have

det M = (A* - B*)D — C}{A + B) — C3(A — B)
= (4% - B®)D — A|C)* — BReG>.

Taking into account that

|C|* = Eld® + BRec® and ReC®= B|o|? + ERec?
we see that det M > 0 is equivalent to

(A* — BY)D > A(Elc|* + BRee?) + B(B|c + BRec?).
Adding now (A* — B?)|c|? to both sides, we get

(A = BY)(A+ E) = (42~ B%)(D +|c*) > (Al¢|* + BRe (A + B).
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Dividing by A -+ E (>> 0) and adding |¢|*/4 implies
(A= |e2/2)? = 4 = AJof® + |l 4
> B*+BRec* +|e'/4 = |B + /2| = | X|2.
Taking square roots (observe that we have A > |¢|?/2) we arrive at A —

|c|2/2 > | X1, but this is just F < 1. Since all operations can be reversed, we
have shown that

detM >0 ifand onlyif F <1.

Finally, we prove the equivalence of M > 0 and F < 1. Note that without
loss of generality we can do this under the additional assumption that the
inequalities (6) hold. If M > 0, then clearly det A > 0, but this implies
F <1, as we have alveady shown. Now let F < 1; this gives det M > 0. We
distinguish two cases.

Strict inequality A > B. Then we have the following chain of principal
minors of the matrix M:

A—DB>0 (first order minor),
A? —B*>0 (second order minor),
det M >0  (third order minor),
whence M > 0.

Equality A = B. As observed earlier {see (7)), we have equality in the
inecquality A > B if and only if —c2 = |¢|%, whence Rec = 0 and ¢y =
Re & = Re(bibyc + bst) = 0 as well, so that in this case

0 0 0 )
M={0 24
0 Cy D
A sufficient condition for M > ( is then
24>0 and 24D —CZ>0.
The first inequality follows from.
OA = 2B = 4bybobs > 0 (since all b; > 0).
On the other hand, Re ¢ = 0 implies
C2 =[O = Blc/* + BRec? = Elc)* - A!c\z
which gives
2AD — C2 = 2A(A + E — |ef*) — Elcf* + Alef*
=(A+E)(24-|c*) =0,
because A + B = (1 — b2)(1 — b3) > 0, and 24 ~ |¢[* 2 0 by (6). The proof
of Theorem 1 is finished. =
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Proof of Theorem £. Let T be in the unit ball of B(H, H, H), and let
w = (b1, by, b3, c) € C* be the vector of its coefficients with respect to the
three orthonormal bases. Again we assume without loss of generality that the
b;’s are real numbers with 0 < b; < 1. Then F(w) < 1 by Theorem 1. ¥ we
even have strict inequality, then the same holds for a certain neighbourhood
of w in C*, in particular w could be moved along a straight line without
violating F' < 1, whence T cannot be an extreme point.

Assume now that F{w) = 1 and that T is not extremal, so it can be
represented as a non-trivial convex linear combination

T = (1—6)T" + 67"
with 0 < § < 1 and ||T'|| < 1, ||T"]| < 1. This implies

1=T(er, fi,01) = (1= T (ex, fr,01) + 0T"(e1, f1, 1)

and therefore Tj;; = T34; = 1 as well. The same argument as in the proof
of Theorem 1 yields now T4;; = T1q; = T4;2 = 0, and similarly for T". Let
w' and w” be the coefficient vectors of 77 and T” in €*. This means that w
is an inner point of the segment with endpoints w' and w” in

G={uecC*: F(u) <1},

50 w is not an extreme point of the subset G of C*. Conversely, it is obvious
that a non-extremal point w € G cannot correspond to an extremal trilinear
form T of the unit ball of B(H, H, H). Thus we have established that T is
extremal if and only if its coefficient vector w (with respect to our three
orthonormal bases) is an extreme point of the set G. So it only remains to
determine all these extreme points. Note that G is convex, since it can be
identified with the intersection of two convex sets, namely the unit ball of
B(H, H, H) and the affine manifold of all trilinear forms R with coefficients
Ri11 =1, Ra11 = Ry21 = Rz = (0 with respect to the three bases.

Given any w € & with F(w) = 1, we must now decide whether or not it
is an extreme point of 7. We distinguish three cases.

CAsE 1: X = 0. Suppose that w = (1 — 8w’ + fw"” for some 0 < § < 1
and w',w"” € G. By convexity we get

Zlb |2 |C|

i=1

<(1- «9)(Zlb’{2 )+9(Z|b”|2 |°|)
< (1-8)F(w) + 0F(w") < 1,

Bu_t the convexity is even strict, therefore w = w' = w”, and w is an extreme
point.

1=F{w)=
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CASE 2: [ X —c?/2| = |X|+]|¢|?/2 and X # 0. The first condition implies
that the three complex numbers X — c?/2 = 2b;bybs, X and —c2/2 have
the same argument, so they are all non-negative real numbers. The second
condition gives then 0 < X = 2b1bybg + 2 /2, whence e = it for some real t
with |t| < r = 24/b1bybs, s0 w is a non-trivial convex linear combination of
the points wy = (by, bg,bg,:l:z"r) Moreover, we have

3
Z b? ~+ 2b1bobs

2
F 'I.U_L sz + —_ + ‘Zblbzbg — E
i=1

=1

= Zb2+|X\+ I _ Py =1,
j=1
whence ws. & @&, and w s not extremal.

CASE 3: | X ~ c2/2| < |X| + |¢|?/2. First we remark that this condition
implies that X # 0,¢ # 0 and b; < 1. Indeed, X = 0 or ¢ = 0 obviously
contradict the condition, and b = 1 (together with F{w) = 1} would again
yield ¢ = 0.

Agsume now that w belongs to a segment which is contained in G, with-
out loss of generality let w be the midpoint. Since F(w) = 1, the point w
belongs to the boundary 8G = {u € C* : F(u) = 1} of the convex set G,
50 the whole segment is contained in JG. Let w; = w + at be this segment,
where a = (a1, a2, as,a4) € C* and ¢ is a real parameter, say t € [~1,1]. So
we have

3
9) 1=F(w) =Y |b+aitf+

j=1

ltetl v welny

where we have set
(10) Y () = 2(by + o1t) (bz + Cbgt)(bg -+ a3t) + (¢4 a:4t)2/2.

In order to prove the extremality of w for G we have to show that ¢ = 0.
Solving (9) for |Y'(¢)| we see that this is a quadratic polynomial in ¢, so
¥ (£)|2 is & polynomial of degree < 4. From (10) we obtain

Y (£)]2 = Y)Y {t) = (2a100a5)*t° + lower order terms,

and we conclude that aiasas = 0. So at least one of the factors must vanish,
say a; = 0. Letting Y = Y (1), the triangle inequality gives the following
estimate:
{11) [V + [Yo| > ¥y + Y| = |2X + 4bragas + af

> 2|X| — 4b1|azas| — aq)?.
Taking now the sum of equations (9) for t = 1 and ¢ = —1, inequality (11
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vields
(12) 2=Fw.)+ Flwy)

3
=23 b2 +|e|* + 2laa|? + 2|as)? + el + [Vi| + Y|
=1

> 2F{(w) +2(1 - bl)(!az\z “+ Ja3|2)a

where we have used moreover the trivial estimate 2|azas| < |ag|? + |as)?.
Since F(w) = 1, inequality (12) implies that az = a3 = 0 (remember

that in our case by < 1) and that, in addition, we even have equality in (11).

Since ap = a3 = 0, this holds if and only if the four complex numbers

2 2
Y+=2x+ca4+92é, Y_=2X—m4+%‘%, —a?, X (0)

have the same argument, say ¥, = aX, Y_ = gX, —a3 = vX for certain
real numbers a, 3,7 > 0. This gives

1 —
(13) cas ==Yy —¥-) = "‘—2—9)(.
If o # 3, then we obtain

2
—cv X =czar,fL = (a_—ﬁ) X2,

2
and from ¢ # 0, X # 0 we conclude that also y 5 0 and that
2 _me
_< =0X, where §= M > 0.

2 8
This implies the contradiction
X =2l = (14 8)|X| = |X] + [¢[*/2,
so we must have a = 3, Then (13) gives cay =0, and ¢ # 0 yields a4 = 0.

"This shows a = 0, and the proof is finished. =

REMARK 3: The real case. The analogous results for trilinear forms on
the real Hilbert space B2, found in [7], are the following:

(i) ITl = 1 if and only if the (real) numbers b; and c satisty |b,| < 1,
le] <1 and L = 52 + b2 + b2 + 2b1bobs 4+ 2 < 1. '

(ii) T is an extreme point if and only if L = 1, and either |b;| < 1 for all
jor [b;| =1 for all 5.

REMARK.ZL: The réle of the guantity X . In order to clarify the significance
of the quantity X = 2b,bybs + 2 /2 we now show that X has an invariant-
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theoretic meaning. Every trilinear form
2

T=T(z,y,2)= Z Akl L5 Yk
Fikyl=1

on C? can be viewed as a bilinear form 7, whose coefficients depend on z:

2 2
Tp=Toly2) = 3 (Zajklzj)ykzi-

k=1 j=1

Let Az) denote the corresponding (2 x 2)-matrix of its coefficients. Then
the determinant A(x) = det A(z) is an invariant of T, (with respect to
non-singular linear transformations of the variables y and z). Since A(z)
is a 2-homogeneous polynomial in z, say A(z) = Az? + Bxizy + Cx3, its
discriminant D = B? — 4AC is an invariant (with respect to non-singular
linear transformations of the variable z}. Consequently, J = D(A(z)) is an
invariant of the binary trilinear form 7'. It was shown by E. Schwartz [9]
in 1922 that there are no other invariants. Actually, the invariant A had
already been introduced by Cayley {1], who named it the hyperdeterminant,
as early as 1843; it has been rediscovered many times (see [6]). According
to the first part of the proof of Theorem 1, every complex binary trilinear
form T with ||T|| = 1 can be represented in the special shape

T = zyy121 + bimiyazs + bawoyr 22 + bawayezy + exoy222.

Therefore

o= b3za — p 2 _ 2
A('ﬁl’:) = (523'52 by + ng) R A(ZL‘) = blml + 21T bgbsﬂﬂg,
and the invariant is J = ¢® + 4b1boby, which is X up to a factor 2: J = 2X.

For an elementary introduction to invariant theory the reader is referred
to [5].

REMARK §: Normal shape of trilinear forms. Let us return to the first
step of the proof of Theorem 1, that is to say, to the fact that for any given
trilinear form T on C? there are three orthonormal bases of C* such that
the correspouding coefficients of 7' satisfy Th1y = |T|| and Tige = Tio1 =

More generally, when couvsidering a trilinear form 7' on the product
Hy x Hy x Hs of three arbitrary Hilbert spaces (over the same field) one
can iterate our arguments from the complex binary case obtaining, in a
quasi-unique way, three orthonormal bases of Hy, Hy and Hy and a special
representation of 7', called the normal shape. This procedure works even for
infinite-dimensional Hilbert spaces, provided tbat the form T' is compact.
For more details we refer to [2], where the normal shape was introduced.
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REMARK 6: Comparison with the Hilberl-Schmidt norm. Besides | T
there are other natural norms to be considered in B(H, H, H) as the Hilbert—
Schmidt norm. For a trilinear form T on an arbitrary Hilbert space H with
dim H < oo we set

172

1Tz = (37 1T(es. fon0)®)

Bkl

where {e;},{fx} and {g} are fixed orthonormal bases of H. It turns out
that this quantity does not depend on the special choice of the bascs and
defines a norm on B(H, H, H), namely the Hilbert-Schmidt norm. Clearly,
we always have ||T| < ||Tls.

In [3] we investigated the best constant d in the inequality {[T|s < 4|7,
where T is any trilinear form on a given finite-dimensional Hilbert space H.
Clearly, for H = K" with K = R or C, we have

d=d(n,K) =sup{|[T2: |T: K* x K* x K" — K| =1}.
By probabilistic arguments we showed in [3] that

V2n n
— <d < — 4
37 = (n,R) <n and W < d(n,C) <n.
As an application of our results we now determine the exact value of d in
the binary case.
THEOREM 7. We have
d(2,R)=2 and d(2,T) =3/2.
Proof. Let T be any trilinear form on R? or €2 with |7 = 1 and
coefficient vector w = (b1, by, b3, ¢). Then
3
M=143 (6 + e = |72
J=1
Due to the description of all extremal trilinear forms of the unit ball in
terms of the vector w (see Theorem 2 and Remark 3) we only have to solve

the maximum problem M = max under certain constraints; then d(2, K) =
vmax. In the real case the constraints are

3
b/ Ljel <1 and L= 0246 4 2bybyby = 1
g=1
which gives M = 2 — 2b,bybs < 4. Equality holds if and only if
w=(-1,1,1,0), (1, -1,1,0), (1,1,~1,0), or (~1,~-1,-1,0).
This shows d(2,R) = 2.

b
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In the compler case the constraint is

3
— 2, Jei? _
F=;|bjt + -+ lX| =1
Again we assume without loss of generality that the numbers b; are real
with 0 < b; < L.

If bibsbs = 0, then F = T23_, [bsi? + [cf?, whence M = 2. Next we
show that in the remaining case 0 < bbbz < 1, M cannot attain its maxi-
mum unless ¢ = Filel. Indeed, let w # u = (b1, ba, bs, 3|c|). Then trivially
M(w) = M (w), while | X (u)| < |X{w)|, and consequently F'(u) < F(w) = 1.
(The inequality | X {u)| < | X (w)| is geometrically obvious: Fix bibabs > 0
and r > 0 and consider the circle K = {2b1babs +c2/2 : c € C, |¢| = r}
in C. Since the centre of K is on the positive real half-axis, the only complex
number on K with minimal absolute value is the “left” intersection point
with the real axis, that means, ¢® = —|¢|* or ¢ = Lilc|.) By continuity of F
and limg—. F(f1u) = oo there is some real ¢ > 1 with F(tu) = 1. This gives
M(tu) > M(u) = M(w), so M is not maximal at w.

Using the notation b = /b1babs and the inequality between the arith-
metic and the geometric means we get

3
> 6% > B(brbaby) /% = 30
Jj=1
Therefore our constraint and the triangle inequality imply

3
L=F > b5 +2bibobg > 35" + 267,
=1
in other words
2 + 30 — 1= (26— 1)(b+1)2 €0,

which gives b < 1/2. ,
Now we show that, under the assumption ¢ = —[¢|?, we have M <
2420, If |¢|® 2 40% (= 4bybobs) then

3 2 3
Zz le 3_|C| __Zg 2 9% = 1.

j=1

consequently,
M=1+3% bi+lef?=2+2"
For |¢|? < 4b® we have F = E}Ll b? + 2b° = 1, whence
M=2-20"+|cf <2+20°
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We conclude that M < 24 2b < 24+ 2(1/2)® = 9/4. Our considerations also
show that equality holds if and only if b, = by = bs = b = 1/2 (condition
for equality in the inequality between arithmetic and geometric means) and
—c? = |¢|2 = 4b® = 1/2, i.e. ¢ = £i/+/2. This proves that the maximum of
M (under the constraint F' = 1) is 9/4 and that the maximum is attained

at the points /111 i_i_
Y=z

and only there, and finally this yields d(2,C) =/9/4 =3/2. =

REMARK 8. Theorem 7 exhibits a significant difference between real and
complex trilinear forms. This is surprising in so far as the corresponding con-
stants for bilinear forms are d{n, K) = 1/n regardless of whether K = R or C.
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Applying the density theorem for derivations
to range inclusion problems

by
K.I BEIDAR (Taman) and MATEJ BRESAR (Maribor)

Abstract. The problem of when derivations (and their powers) have the range in the
Jacobson radical is considered. The proofs are based on the density theorem for derivations,

1. Introduction. In beth ring theory and the theory of Banach alge-
bras, there are a number of results showing that under certain conditions a
derivation (or its power) of a ring (algebra) must be zero or must map into
the Jacobson radical. The ring-theoretic results are often proved by combin-
ing Kharchenko's theory of differential identities with some elementary (but
clever) algebraic manipulations (see (3] for details about background and nu-
merous references). Many of the analytic results in this vein were obtained
as attempts to get noncommutative versions of the classical Singer—Wermer
theorem [23]. Their proofs usually combine analytic and algebraic tools. For
a more detailed discussion on this topic and bibliography we refer the reader
to the survey articles [16, 19] and our recent paper [2].

Tt is our aim here to present a new possible approach to these problems,
which works in both algebraic and analytic setting. It is based on an exten-
sion of the Jacobson density theorem, recently obtained in {2]. In order to
state this result we have to introduce some notation and terminclogy. Let A
e any ring and M be a simple left A-module. Recall that D = End{ 4M)
i a division ring by Schur's lemma. Let d be a derivation of A. We say
that d is M-inner if there exists an additive map T : M — M such that
aty = T'(uw) ~a(Tw) for alla € A, & € M (we shall always write derivations
as exponenﬁﬁ). The concept of M-innerness obviously extend's the Conce};?t
of (ordinary) innerness. Moreover, in case A is a primitive ring and 'M is
a faithful sinople module, every X-inner derivation (cf. [3]) is also M-inner,
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