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Schauder decompositions and multiplier theorems
by

P. CLEMENT (Delft), B. b8 PAGTER (Delft),
F. A. SUKOCHEV (Adelaide, S.A.) and H. WITVLIET (Delft)

Abstract. We study the interplay between unconditional decompositions and the
R-boundedness of collections of operators. In particular, we get several multiplier results
of Marcinkiewicz type for LP-spaces of functions with values in a Banach space X. Fur-
thermore, we show connections between the above-mentioned properties and geometric
properties of the Banach space X,

1. Introduction. A number of important operators i1 analysis may
be represented as multiplier operators with respect to a given Schauder
decomposition {Dy,}22,; of a Banach space X, i.e.,

(1) T (z) = Z MeDpz, ze€X,

where A = {Ar} € C. The characterization of the sequences A for which (1)
defines a bounded operator Ty on X for a given decomposition {0, }22 , is
an interesting problem. The study of this problem for the Schauder decom-
position defined by the trigonometric system in L7(0, 1} led J. Marcinkiewicz
[Mar39} (see also [EGT77]) to his famous multiplier theorem.

A similar description to that of Marcinkiewicz was obtained by G. I. Sun-
ouchi [Sun51] for the Schauder decomposition defined by the Paley-Walsh
system in L?(0,1). Vector-valued extensions of the Marcinkiewicz theorem
are given in [Bou83] (see also [BGO4]).

In all results mentioned above the descriptions of the sequences A for
which T} is bounded are given in terms of certain blockings A = {Ax}32.,; of
the Schauder decomposition {D, 152, (the dyadic blocking for both trigono-
metric and Paley~Walsh systems), which turns out to be an unconditional
decomposition of X. In fact, the study of the operators given by (1) naturally
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leads to operators of the form

(2) S(z) = > Tz, z€X,

and

(3) Sy=>"T > Aw, F.CN FNF,=0, z€X,
JEF,

defined by a sequence of operators {T7%}52,, where the T} are operators on
X which commute with Ax. An obvious necessary requirement on {7%}2°
for the boundedness of S is that the sequence {T}}$2., is uniformly bounded;
if X is a Hilbert space, this is also sufficient. In the case of general Banach
spaces X an interesting property which lmmplies boundedness of S is singled
out from [BG94] under the name R(andomized)-boundedness (called the
R{iesz)-property in [BG94]). The boundedness of S (for an arbitrary choice
of subsets Fy,) provides the most complete analogue of a Marcinkiewicz
multiplier theorem.

The present paper intends to study the relations between R-bounded-
ness and various geometric properties of X and their further applications
to (vector-valued) multipliers defined with respect to bounded Vilenkin Sys-
tems, which are an immediate generalization of the Paley-Walsh system.

After collecting the necessary definitions in Section 2, we study in Sec-
tion 3 the relations between R-boundedness and the various unconditional
blockings of {D,}52,. In Theorem 3.4 we show that R-boundedness of
{Z:}52, is indeed a sufficient condition for the boundedness of S. The latter
result enables us to present a slightly strengthened version of the generalized
Marcinkiewicz-type multiplier principle from [BG94] (see Theorem 3.5 and
Corollary 3.6). It follows from these results that in order to give a satisfac-
tory description of those A for which 7Y is bounded, we need to study the
R-boundedness of operators § defined with respect to the sequence {Te}e,
where

k
To=>D; k=12,
j=1

Since in many examples an unconditional decomposition A is defined via a
suitable sequence of mathematical expectations, we first present a proof of
the vector-valued Stein inequality (Proposition 3.8) formulated in [Boug3]
and apply this inequality to the partial sum projections in UMD-spaces in
Theorem 3.9, showing that the partial sum projections are R-bounded. To
ensure that the operator 9’ is also bounded, we use the so-called property
(o) introduced in [Pis78] (see Definition 3.11 and Theorem 3.14). The ap-
plication of the results presented in the third section to multiplier theory is
discussed in Section 5.
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In Section 4 we introduce the necessary notation concerning Vilenkin
gystems and show that our study of R-boundedness has an interesting appli-
cation to the basis theory in vector-valued I¥-spaces. In fact, we show (The-
orems 4.5 and 4.6) that any bounded Vilenkin system generates a Schauder
decomposition of L% if and ouly if X is a UMD-space. In the special case
X = C we recover the result of C. Watari [Wat58] that a bounded Vilenkin
system is a Schauder basis in LP(0,1) for all 1 < p < oo {see also [DS97]).

Finally, in the last section we present a generalized version of a multiplier
theorem for bounded Vilenkin systems in vector-valued spaces L%, provided
X is a UMD-space with the property (a) (Theorem 5.1). Specializing our
considerations to the case of the Paley~Walsh system, we give a complete
characterization of Banach spaces X for which the multiplier theorem holds
(Theorem 5.6). It turns out that in the Schatten classes C, such a multiplier
theorem fails if p £ 2 (see Corollary 5.7).

2. Preliminaries. In this section we collect some of the relevant defini-
tions and facts concerning unconditional decompositions. By E we denote
a complex Banach space. The range of a linear operator T on E is denoted
by R{T}.

DeFINITION 2.1 {cf. [LT77], Section 1.g). A. A sequence D = {D,}32,
of bounded linear projections in F is called a Schauder decomposition of
Eif

(i} DpD; = 0 whenever k # {,

(i) z =3 regDrzforallz € E.

The corresponding portial sum projections {P, 22, are defined by

(4) Py = i Dy
k=0

If the series Z;‘;O Dz i3 unconditionally convergent for all € E, then DD
is called an wnconditional decomposition.
Given a strictly increasing sequence {gx}2°, in N, put

ar
(5) Ay= Y. D (k=0,1,...)
I=gp—1+1
(with g_1 = ~1). Then the Schauder decomposition A = {Ax}72, is called
a blocking of D.
B. Given a Schauder decomposition D = {Dy}p2, of E let By =
span{R(Dy) : k € N}. For any sequence A = {Ag}3, in C we define the
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linear operator Ty : Fg — Fg by

o0
(6) T)\l‘ = E )\]ﬂka.

k=0
If this operator is bounded on Ky, then it extends uniquely to a bounded
linear operator (denoted by 7% as well) on F.

By {e1}2, we shall denote a sequence of independent symmetric
{—1,1}-valued random variables on some probability space (£2,F,P). If
necessary, we shall use {g},}%2, to denote a second similar sequence on
some ({2, F', P'). We denote by L%(2) the Bochner space of p-integrable
E-valued functions on (12, F, P).

If D == {Dp}52, is an uncenditional decomposition of £, then the small-
est constant C'p such that '

N N
<
[$ee], <ol 3]
k=0 k=0

holds for all ex, = £1, 5 =0,1,...,N, al N € Nand all z € E, is called the
unconditional constant of the decomposition.

We will need the following property of unconditional decompositions,
which is a well known consequence of unconditionality (see e.g. [DJT95],
Lemma, 1.4).

LEMMA 2.2. Let D = {D,}5%, be an unconditional Schauder decompo-
sition of the Banach space E. Then for all 1 < p < oo we have

N N N
(N 051 Zkal < H ZEka:L’H . < GDH Dk$||
H o 'E Pt LE () g B
forallx e FE and oll N € N.

REMARK 2.3, If for some 1 < p < oo there exists a constant C' such that
{7) holds, then the decomposition D is unconditional,

3. R-boundedness. In this section we shall study in some detail the
so-called R-boundedness for collections 7 of bounded linear operators on
a Banach space E. This R-boundedness was already implicitly used by
J. Bourgain in [Bou83] and was introduced by E. Berkson and T. A. Gille-
spie in their paper [BG94]. The results obtained in the present section will
be used in later sections for our study of the vector-valued Vilenkin sys-
tem. However, a number of these results may be of independent interest, in
particular Theorem 3.9 and Theorem 3.14.

We start off by recalling the definition of R-boundedness. As usual, we
denote by £{E) the space of bounded linear operators on a Banach space E.

icm
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DEFINITION 3.1. A collection 7 C L(F) is said to be randomized bounded
(R-bounded) if there exists a constant M > 0 such that

N N
(8) HZEkaEkH I MHZEkwk
k=0 Lxle) k=0

for all {Tx}i o C 7, all {ax}_, € F and all N € N. The smallest constant
M such that (8) holds is called the R-bound of T.

L3(0)

We emphasize that the operators in the collections {T }i_, in the above
definition need not be mutually distinct. Note that by Kahane's inequality
(see e.g. [DITY5], Theorem 11.1) we can replace L% by L%, 1 < p < oo,
adjusting the constant M appropriately. The constant in this case will be
denoted by M. The following lemma gives an easy method to enlarge an
R-bounded collection. For the reader’s convenience we include a short proof.

LemMma 3.2. Let T C L(E) be an R-bounded collection with bound M.
Then the absolute convex hull of T is also R-bounded. For the real absolute
conwex hull, the B-bound is again M. For the complex absolute conver hull
the R-bound is at most 2M.

Proof. It is suflicient to prove the lemma for the real absolute convex
hull. Since T U (—7') has the same R-bound as 7, we may assume that 7 is
symmetric, in which case the absolute convex hull coincides with the convex
huil. The result now follows from the equality

conv(T) x ... x conv{T) =conv(T x ... xT),
where conv(7") denotes the convex hull of 7. =
LEMMA 3.3. For T C L(E), the following statements are equivalent:

(i) T is R-bounded.
(ii) For all Tp,T4,...,Tn € T with Ty # Tj (i # ), oll zo,71,...,Tn
€ E and oll n € N we have

[}
“ S &iTya;
30

for some constant M. .
Moreover, if T = {T :n € N}, then (i) and (ii) are equivalent fo

(iii) For all mo,%1,...,%n € E and all n € N we have
3 i
HZSjijj SM Zajasj
LT LY

for some constant M.

<] o
£3(@2) ;j”Lg(ﬂ)

13,0y



140

Proof. The implication (1)=-
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(ii)=(i). Take T3 = T (j = 0,1,...
E. Let Sy, 81, ...

0<k<m

(9)

that

m.
DA™
k=0

let Fk =

HZeJTJwJ]

and similarly

m
| >t
k=0

Using these observations in combination with the hypothesis (ii) on the Sy's,

we find that

DIESY

ij‘

Sk Z Ejmj’

JEFy

L@ ( Hzak(wl)s’“ Z ‘“‘"J"“’JH 13,
(1|0 s

()

)y Ejmj‘

, 8y be the distinet operators in {Tp,T1,...
{j:Tj = Sk} Then

=l s S
JEF

Since for fixed w’ € {2’ the random variables {({g}(w)e;
0,1,...,m}and {&;:5=0,1,...

Ly()

L ()

™

(1]

k=0

g PIPIEE

> ek Z Ej(w)xj’

(ii) is obvious.
,n) arbitrary and xg,%1,...,2Zn €
I} For

L)

Z Z ep{w ejSka|

k= OJEFk

Z Z sJSka:J

k=0 jEFy 72

ZS’“ Z €45

k=0 JEF

LL(@)

?

L)

. .
k=0 jeFy Lp(2)

)

2 dP(Q))1/2

Ly (a2

: azp(w))” ?

LA ()

E.1)|

JEFy

1/2

1 J € Fk) ko=
,n} have the same distribution, it follows
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For (#) we have used the inequality in the hypothesis (ii). This, together
with (9), shows that 7 is R-bounded.

Now assume 7 = {7}, : n € N}. Tt is clear that only the implication
(it)=>(il) needs proof. So take Ty, Tk,,..., Tk, € T {Tk, # Tr, whenever
1 # 7) and Try, Tk, ,. .., 2, € E. We have to show that

(10) HZEJTk E?AJ S MHZEjDka
=0

F==0
Since the quantities in (10) are invariant under permutations of the k;’s, we
may assume that kg < k1 < ... < k,. But then (10) follows immediately
from (iii) by chooging zx =0 k£ k;. w

L)

The following two theorems show the relevance of R-boundedness in
connection with unconditional decompositions.

THEOREM 3.4. Let {Ax}32, be an unconditional Schauder decomposi-
tion of the Banach space X. Suppose that T C L(X) is R-bounded (with
R-bound M). If {Th}2, €T such that ApTy = Tp Ay for oll k € N, then

the series

oo
Sz = ZTkAkm
k=g
is convergent in X for oll & € X, and defines o bounded linear operator
S: X — X with ||S|| £ K (where K only depends on M and the uncondi-
tional constant of {Ak}2.q).

Proof Takez € X and 0 < m < n in N. Then

|3 Diaie], = | 3 ana],
k=m
-3 a(¥ amas)],
k=0 j=m
< CAH ismk( ) AJ-TJ-AJ-:G)\
k=0 j=m

< C'AMH Zn: akA,..,a;\
k=m

L5 (92)

n
== CAH Z SkaAk$|
k==

L2(@) L ()

sy 3 s,

k=m

Since z = 3 g Ax®, the result now follows immediately. w
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THEOREM 3.5, Let D = {Dy}2, be a Schauder decomposition of E.
Let {qp}2, be a strictly increasing sequence in N ond let A = {Ag}72, be
the corresponding blocking of D. Let K > 0 and let Ax be the set of all
complex sequences A = {Ag}i>, such that

o [ Agi < K for all k €N,

o > kT q;, g1 A1 — N S K forall keN

Then the following are equivalent:

(1) {Ih : X € Ax} C L(E) with |Th|| £ CK for all A € Ag and some
constant C' > 0.

(i} The blocking A is unconditional and there exists a constant M > 0
such thai

N
(11) HZEkPkaUk'
k=0

N

<M” EpT ’

Li(m Z kk
k=0

for all N € N, oll {z}2, C F with z € R(A) and all {my} such
that gg—1+1 < my, < g for ke N

Here the P, and Ty, are defined in (4) and {6).

FERION

Proof. (i}=(ii). By choosing the sequence A € {—1,0,1} to be constant
on each of the blocks of A, the unconditionality follows immediately. Let
{mi}72, be given as specified and take N € N. For fixed w € 2, a suitable
choice of Ay € {—1,0,1} gives the operator

Thw = Zek W) Prr Ay

From () with K = 1, we get

N N
e1(w)P AmH <c” Ay
’kgok()m" L kz=0 P

Integration over §2 and an application of Lemma 2.2 gives the result,

(ii)=>(i). Take z € span{R(Ax) : k € N}. Using summation by parts, we
can write

gr—1

Thz = Z Mo Dy = ZA%A,CH Z (Y«

— A1) Pz)ﬂkﬂﬂ
k=0 I=gp_y-+1

(finite sum). Since the blocking is unconditional, the norm of the first term
is bounded by KCalz].
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For the second term we have
ar—1

HZ Z (A= A1) Pz)Akﬂ?“

k=0 I=gk-1+1

gr~1
< C““ZE’“( )‘E*l)P’)A"’m‘ L3 ()
I—Qk 1+1
O oxmo H A
4 ZEk W 1

(5
< 2KMC Akm = 2KMC% ||z z-
P A
k=0

Here (x) follows from the unconditionality of the blocking and (*) follows
from an appropriate modification of Lemma 3.2 in combination with (11).
This gives the desired bound on Thx. m

If the partial sum operators of the Schauder decomposition {Dy} are R-
bounded, then (11) is certainly satisfied. This gives the generalized multiplier
principle as formulated by E. Berkson and T. A. Gillespie,

COROLLARY 3.6 ([BG94], Theorem (4.4)"). Let D = {Dy}3, be a Schau-
der decomposition of the Banach space E. Let {gr}52 be a strictly increas-
ing sequence in N and let A= {4}, be the corresponding blocking of D.
Suppose that

(i) the partial sum projections of D are R-bounded,
(i1} A is an unconditional decomposition.

For any sequence {Aix}l o n C for which there exists o constant K > 0
such that

(iii) |As| € K forall k 20,
@v) oot - M S K forall k20,

the operator T, defined by (6) is bounded and | T)\|| < CK, where C depen(ls
only on the decompositions A and D.

REMARK 3.7. We note that in Theorem 3.5 condition (11} is in general
strictly weaker than the R-boundedness of the collection { P, }75_o. Indeed,
take X = (; as in Example 3.10 below and Dy = Ay = Rg.

In the situation of the above corollary, it follows in particular that if
SUpgsp (gx — gu—1) < o0, then the Schauder decomposition D itgelf is un-
conditional. Tt should be noted that in general the partial sum operators of
a Schauder basis are not R-bounded. It was pointed out to us by P. Woj-
taszczyk that in [KP79] N. J. Kalton and N. T. Peck have constructed a
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reflexive Banach space which has an unconditional Schauder decomposition
into two-dimensional subspaces, but which does not have any unconditional
basis. By choosing an appropriate basis in each of these two-dimensional
subspaces we obtain a Schauder basis of E whose partial sum projections
are not R-bounded. Indeed, as observed above, this would imply that this
basis is unconditional.

Next we discuss an extension to general unconditional decompositions
of an inequality due to E. Stein in the case of martingale decompositions
in scalar valued LP-spaces (See [Ste70], IV.3, Theorem 8). In [Stc70] this
inequality is given as a square function estimate, but this is in the scalar-
valued situation equivalent to the formulation given below, via the Khinchin
inequality. The vector-valued version for martingale decompositions is for-
mulated without proof in [Bou85]. For the sake of completeness we include
a proof of this result (Proposition 3.8).

We first introduce some notation. Given a probability space (S, A, )
and an increasing sequence Ay C A; C ... of sub-c-algebras of A, we
denote by E(-|.4;) and E* (| 4,) the conditional expectation operators with
respect to A; in LP(S) and L% (9) respectively (1 < p < o), where X is a
Banach space (for information concerning conditional expectations in spaces
of vector-valued functions we refer the reader to [DU77]). Furthermore, we
recall that X is called a UMD-space if there exists a constant Cy(X) (the
UMD-constant of X} such that

o (£la0) + 3 s (B (£1ks) ~ % (71.4;-0))]

J=1

< 2
s S Co(X)[ £l 23, sy

for all choices of a; = =1, for all f € L%(8), for all n = 1,2,... and for
all (S, A,p) and {A;}32, as above. We note that in this definition of the
UMD-property L% (S) may be replaced by any L5 (8) with 1 < p < o0
(replacing Co(X) by Cp(X); we refer to e.g. [Burg3), [Bou83| for more on
UMD-spaces).

PROPOSITION 3.8 {[Bou8b], vector-valued Stein inequality). Let X be
a UMD space and E = L%(5), 1 < p < oo, for some probability space
(S, A, p). Then for any increasing sequence { AR} of sub-o-algebras of A,
all fo, f1,.... fn € B and all n € N we have

” éEkEX(fkiAk)} e = Cuéekfk|

{(where C depends only on p and the UMD-constant of X,

L)

Proof. By Kahane's inequality it is sufficient to show that there exists
a constant C > 0 such that

icm
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| (1)
k=0

SO” EL
@ kZ=o xfe

Without loss of generality we may assume that A, A (if not, then we
replace A by the o-algebra generated by the A,’s).
For n = 0,1,... we define the sub-g-algebras F,, ¢ F by

IEXTN

Fn = 0{501515- --7En}1

i.e., F, is the sub-o-algebra of F generated by the functions eg,&1,...,&n.
As above, we may assume that F,, / F. We denote by F ® A the product
o-algebra of F and A in 2 x 5. Now define the sub-g-algebras G, of F ® A
in 2x8 by

{gfénm}_n@An (TLZU),

g2n—1 =Fna1® An (ﬂ = 1)

Then Gg ¢ G1 C ... /" FQAUF e I5(2x5F®AP®u), then
EX(F|Gn) — F as n — co in norm (see e.g. [DU77], Theorem V.2.1) and
hence the series

E* (F|Go) + i{}EX (Fign) — B (FIGn-1)} = F

n==l
is norm convergent in L% ({2 x §). Since X is a UMD-space, this series
converges unconditionally and hence

Q(F) = EX (FGa) + >_{EX (F|G2n) — B* (F|02n—1)}

n=1
defines a bounded linear operator @ : L% (2 x §) — L5 (2 x &) with

QI < Cp(X).
If we take g € LP(2) and f € L5 (S5) then

Q(gf) = E(g|Fo)EX (] 4a) + i{E(glfn) — E(g1Fn-1) YEX (F1An).

el

Now take fo, fi,-. ., fn € L%(S) and let F == 3 ¢ _q e fe. It follows from

Qexfr) = xBX (fulAr), 0< k<,
that
Q(F) =" sxE* (fu|Ax)-
k=0
Congequently,

L2 (2% 8)

H k;) B ()] g S ||@1|Hki:D s
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Since [|Q| < Cp(X), it now follows via Fubini’s theorem that

H éskﬂ"mw)ﬂ% oy S G0 kizoekfk

THEOREM 3.9. Let X be o UMD space and let {Ax}7e, be an un-
conditional Schouder decomposition with unconditional constant Ca. Let
P, =%y A Then

H E EkPkwk|
k=0
for all mo,®1,...,an € X and oll n € N. Consequently, the collection
{P,}nen is R-bounded.

Proof. Let Ca > 1 be the unconditional constant of the decomposition
{Ax}52 5. Then

n n n
o3| $5 vl 5] S kv g <00 5 20,
k=m k=m X k=m

for all z € X and all 0 € m < n in N. This implies, in particular, that

for each » € X the series $(x) = _po. £ Az is norm convergent in E =
L% (2}, and

by,
L(12)

<amc| e
k=Q

L2.(%2 L4(2)

Catlzlx < 11222, 0y < Callzx-
Hence @ : X — L% (') is an isomorphism,
For n € N define

Fl =o{eh, &, .. .,eh
It is straightforward to verify that
E*(2(2)|77) = B(Paz)

for all x € X and n € N, where P, = Y 5, 4. For zp,@1,...,2, € X it
now follows via Proposition 3.8 that

H kZ:;)EkPkmk @ (}2 H goek(w)Pkm,ﬂHidP(w))l/z

<04 ({S} H ésk(w)dﬁ(l”kmk)} ;{(m dp(w))1/2
.

=y “ kzzgsk@(f)kﬂ?k)”i%(m

- | Se e, ,
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< CaCalX)| o entan)]
k=0

r3,(2)

= 02Ca(§ | X erBm)|

2 k=0

/
)dP(w))l ’

L2 (&

< 03302()()( S H ZH: £k (w)zkHl dP(w)) M
2 k=0

= AGa(x)| iskwk
k=0

L2y

This proves the desired inequality. The final statement of the corollary is
now an immediate consequence of Lemma 3.3. =

Let {AR}$2 5 be an unconditional decomposition of the UMD space X . In
connection with Theorem 3.9 it is a natural question whether the collection

(12) §={ 3 A:FCN, F finite)

kel
is R-bounded. Even if X is a UMD-space, this need not be the case as shown
by the following example.

ExaMpLE 3.10. Let H be a separable Hilbert space and let X = Cp,
1 < p < oo, be the Schatten p-class of compact operators on H. Take a
fixed orthonormal basis {e,}3y in H. For m,n € N we define the matrix
units Emn € Cp by Emn(z) = (%, en)em for all z € H. For m € N we define
the row projections Ry, : Cp — Cp and column projections Cr, @ € — Cp
by Rm(A) = Epmd and Cin(A4) = ABnm, A € Cp, respectively. It is easy
to see that { Ry} g and {Cm 52 are both unconditional decompositions
of C, and that Cp Ry, = RnCy for allm,n e N

If 1 < p < oo, then C, is a UMD-space (see e.g. [Bou85]). We claim that
the collection

R={} Re:FCN, F finite}
RCF

is not R-bounded if p # 2. Tndeed, assuming that R is R-bounded, it follows
from Theorem 3.4 (with 7 = R, Ay = C) that for any choice of finite
subsets F,, < N the operator

Avs i( S Rm)Cal4)

n=0 meF,
is bounded on C,. But this would imply that the matrix units {Emn
m,n € N} form an unconditional basis in Cp, which is false if p # 2
(see [KP70]).
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Finally, we note that if X = Cy, then the collection P = {P,:n € N},
with P == 3 peq Bk, is not R-bounded. Indeed, if P is R-bounded, then
Theorem 3.4 {with 7 = P, A, = C) implies that the operator

o]
A PaCa(4),
n=0
which is the triangular truncation operator, is bounded on Cy, which is false
(see e.g. [GK70]). This shows that the result of Theorem 3.9 (and hence of
Proposition 3.8) does not bold in general if X is not a UMD-space.

There is an interesting class of Banach spaces in which the collection S,
as defined by (12), is R-bounded. We recall the following definition.

DEFINITION 3.11 ([Pis78]). A Banach space X has property (a) if there
exists a constant ¢ > 0 such that

n
§ : ’
H 41 EiEj Tij

#,j=1

n

t
2,3=1

<af
L%, (%) L2.(02xa")

for all zy; € X (4,5 = 1,...,n), all ayy = *£1 (4,7 = 1,...,n) and all
n e N\ {C}.

REMARK 3.12. (i) In the definition of property (o) we may replace oy ==
+1 by’ Q5 = 0, 1.

(ii) Any Banach space with local unconditional structure and finite co-
type has property (). This follows from a combination of Proposition 2.1
in [Pis78] and e.g. Theorem 14.1 in [DJT95] (we also refer the reader to that
book for relevant definitions). In particular, any Banach lattice with finite
cotype has (a).

(iii) Property (@) and the UMD-property are independent: any infinite-
dimensional L*-space has (a} but is not UMD the Schatten classes Cp (1 <
p < oo and p # 2) are UMD spaces, but do not have (o).

(iv) If the Banach space X has (&), then L% (5) has {«} as well for any
o-finite measure space (9, X, u) and 1 < p < o0.

LEMMA 3.13. Let X be o Banach space, let T C L{X) be R-bounded and
suppose that X has property (c). Then there exists o constant K > 0 such

that
n
f
” E E,;Ejﬂj:]:.ij
i,7=1

7

< KH il 2
L3 (%)~ A

L2 (2% 0)

1=

forall Tye T, all z; € X (i,7=1,...,n) and all n € N\ {0}.

Proof. Let {a;;}7%-, be a sequence of independent symmetric {-1,1}-
valued random variables on some probability space (2", F”, P"). Since X
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has (@), it follows that

K
!
H E AT

i,j=1

n
" '
< 0:“ Z O!jj(b-’ )EiEjTijl'ij

i,j=1

L2 (%) L2 (2% 02)

for all w” € 2. Integration over 27 yields

n
2 : '
“ EiEjTijl‘,;j

iij:l

L% (1%Q1)

T
<o § || X eote e Ty Pn)

@ el L5 (22

|3 el T v
A WIE . W s ;
54 Ji ijdeig Lgx(ﬂ”)

=o( |

2% i,5=1

dP(w) dp'(w’))
For fixed w and o', {a;€;(w)e;(w’)} is a sequence of independent symmetric

{—1,1}-valued random variables, so we can use the R-boundedness of 7 to
get

n
§ : i
H E-gEjTij:E?jj

5 L3, (% 02)
-~ ! i 2 J / 1/2
< aM( { H S anjes(w)e (W)oy| , oy FP(0) 4P ))
X0 4j=1 X
< a2M( S “ i £iE5T4; : dP”(w”))I/B
— 1 J 7 5 .
P e L2 (2x Q)
2 < ro P
O
a4 ijz=1 Ei84T45 L2 (2% )

where M denotes the R-bound. This proves the lemma with K = oM. n

THEOREM 3.14. Let X be a Banach space that has property (@), let A =
{ AL, be an unconditional Schauder decomposition and let T C L(X) be
an R-bounded collection of operators. Let

o
§= {3 Thdy: Ty € T such that AT =Ty for all k € N}.
k=0
Then & is R-bounded.

Proof. Without loss of generality we may assume that 0 € 7. Take
S1,..., 8, € S which are of the form
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N

Sp=Y Tipd;
J=0

with Tj, € 7 such that TjpA; = ATy (7=0,1,...,Nand k= 1,...,n)
for some N € N. Take z1,...,2, € X. Then

n - N n
(St - 155 (e

k=1

. N n
< $ e (e
k=1

<KCa iieke;.ajmq
-0
= KCx ieke_’jdj(imk)l

< KC% kaxk
k=1

L% ()

LE (0282

Ly ()

where K is the constant from Lemma 3.13. The result follows by letting
N —co. n

The above result can now be applied to the collection {12). Indeed, ap-
plying Theorem 3.14 with T = {0, I} we get the following corollary.

COROLLARY 3.15. Let {4}, be an unconditional Schauder decom-
position of a Banach space X with (). Then

sz{ZAk:GcN}

ked
is R-bounded.

It follows from Corollary 3.15 and considerations presented in Ex-
ample 3.10 that C,, p # 2, does not have property (a). The latter fact
was established hy G. Pisier in [Pis78] by different methods.

For later reference we collect below some additional results concerning
R-boundedness. The proof of the next gimple lemma is left to the reader.

LEMMA 3.16. Let X be a Banach space and let T,5 C L(X) be two
collections which are R-bounded. Then the collection

ST ={8T:5¢ S, TeT}
is R-bounded,
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We will use the following notation. Let X be a Banach space and
E = L% (5) for some o-finite measure space (S, Zop)and 1 < p < oo For
¢ € L*°(5) we denote by M, the multiplication operator on LE(S) given by
(Myf)(s} = ¢(s)f(s) p-ae on § for all f € L% (S). Note that M, € L(F)
and ||My| = |[¢lee- If T € L(E) and $,7p € L*(S), then we denote the
operator MyTM, also simply by ¢T%.

LEMMA 3.17. Let E = L%, as above. Then the collection
(13) {My: ¢ € L2(5), |4lieo <1}
is R-bounded in E.
Proof. Take ¢ € L*(8) with |[ds]lcc < 1 and fi & L%(9), k =

0,1,...,n It follows from Kahane’s contraction principle that

” éskafk‘ T Q;H kznjzoskqbk(s)fk(s)’ zg(m)dﬁ(s))lfp
<o St )

8 k=0
n

= 2” kafk
k=0

which proves the lemma. =

L5y

The following corollary is now an immediate consequence of the two
lemmas above.

COROLLARY 3.18. Let F = I5.(S5) as above. If T C L(E) is B-bounded,
then the collection

16T : ¢, € L(S) with |¢lleo; [|[¥llec <1, T €T}
18 R-bounded as well.

4. The Vilenkin system in UMD-spaces. We start this section by
recalling some facts and introducing some notation concerning the Vilenkin
systems (for more information we refer the reader to e.g. [SWS90]). For any
p € N, p > 2, we denote by Z, the cyclic group Z/(p) = {0,1,...,p — 1}
Let p = (py,pz,...) be a sequence of natural numbers py > 2 a.nd. let Gp =
[Ty Zp,, equipped with the product topolog'y and the normalized Haar
measure. As is well known, the dual group G, of Gp, can be identified with
the collection of all sequences n = (ny,na,...) with ny € {0,1,...,0% — 1}
for all k and ng 5 0 for only finitely many values of k (see e.g. [SWS90],

Appendix 0.7). The pairing between G, and ﬁp is given by

(14) (8, n) = ¥n(0),
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where

(15) (8 = [ ] 67+ (6)
k=1

and
(16) Gi(B) = ¥ %/Px for all @ = (61,02,...) € Gy,

The characters {¢, : n € @I.} form a complete orthonormal system
in L*{G,), which is called the Vilenkin system corresponding to p =
(p1,p2,-..). I pr = 2 for all k € N, the system is called the Paley-Walsh
system. In this case we use the notation I = Gp, the dyadic group. For
m,n € @p we define m < n if and only if there exists a & € N such that
mj = ny for all § > & and my < ng. This defines a linear ordering in @p,
with smallest element 0 = (0,0,...). From now on we shall consider the
system {¢f, 11 € @p} with the enumeration induced by this ordering in @,,.

-~

for all = (ny,na,...) € Gp

Remark 4.1, (a) Of course, it is also possible to use N as the index set
for the characters {# : n € Gp}, preserving the enumeration introduced

above as follows. Define

1 if k=1,
My = { eip k=2

To each n € G, we assign the natural number n = 25:1 75 M. This defines

an order preserving bijection between @p and N. Denoting the character
U by 1y, where n corresponds to m as above, we may write the Vilenkin
system as {1, 122 ,.

{b) Although we work with the groups Gp, we could also have chosen to
work with the interval [0, 1]. There is a natural measure preserving identifi-
cation between the groups G, and the interval [0, 1]. As in the dyadic case,
this identification is given by the mapping 6 — z(8) € [0, 1], where

z(8) = Z Mk+1 for all 8 = (61,6,,...) € G,

‘We denote the Borel o-algebra in Gp by B. For k =1,2,... we define

(17) m-@xH@JAcH@J

>k
and By = {0, Gp}. Then By C By C ... are sub-c-algebras of B and the
o-algebra generated by |J;—, Bk is equal to B. For a fixed complex Banach
space X and fixed 1 < p < co we consider the Bochner space E = L% (G,).
We denote by Ep the conditional expectation projection in L% (G’p) with
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respect to By (k € N). Note that
(18) (Ex £)(0) =§ (64,...,

for all @ = (81,0,...) € Gp, where the integration is taken over I1
with respect to the (normalized) Haar measure.
As is well known (see e.g. [DU77], Theorem V.2.1),

(19) Bef—f ask—oo

in norm for all f € L% (G,). Defining

(20) Ao =Fy, Ap=E, By (k> 1),
it follows from (19) that

6ka£§e+139;z+2= " ) d( lk+1:9;;+2= " )

jok L

(21) F=3 A forall f e L5 (Gp)

k=0
(norm convergent series in L5 (Gp)). Hence {Ax}32, is a Schauder de-
composition of L5 (Gp). I we assume in addition that X is a UMD-space
(see e.g. [Bur83], [BouB3]), then (21) converges unconditionally for all
IZ(Gp). So {Ax}7, is an unconditional Schauder decomposition of
L5 (Gy). i

For k = 1,2,... define dy = (d;x)52; € Gp and dg =0 (note that dy
corresponds to the function ¢g}. Since
(22)  span{tm :n € Gp, n < dpr1} = LP(Zy, ¥
it is easy to see that
(23) R(Eg) =span{¢p, ®z:n € @p, n<dyyyandze X}
for all & € . Moreover,

X T, ) © LP(Gp),

(24) Exf= % tn®calf) foral fe L5(Gy),
n<dr4l
where
(25) en(f) = | Bn(0)£(6) 6.
Gp
Tt follows in particular that
(26) Af= Y tm®ealf)
dpEn<deyl

for all f € L% (Gp) and all k € N. Note that

27) {nelp:idi<n<din}
= {n= (nl,nz,...)E@p:nk#Oandnj.—:Ofor all j > k}.
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For k=1,2,...and 1 < j < pp — 1 we define
dixjy = (Jdik)izy € Gp-
These d ;) can be associated with gb",’;. It will also be convenient to define

dik.p,) = drp1 and dg gy = 0. Note that dyg,1y = dg for £ =1,2,... The
set

is linearly ordered by the lexicographical ordering. Note that (k,7) < (I,4)
in A implies that dir ;) < dy,;) in Gp. For {(k,7) € A, k > 1, we define
(29) Ay f = Y ¢n®en(f)
do, i) Sn<din, j41)

for all f € L% (Gp) and Ay ) = Ag. Note that
(30) {'n € ép : d(k’j) <n< d(k‘j+1)}

={n=1{n,ng,..)ing=7and n; =0 for all i > k}
for all (k,4) € A, k > 1. Furthermore,

pr—1
(31) Ap = Z Ag,yy B = Z Ay
=1 (L)< (k1,1
forall k =1,2,...
LEMMA 4.2, Fork=1,2,... and 1 < § < pr_1 we have
(32) Ay =SBk 1 (BLF)  for all § € I5(Gy).
Proof. From (19} and (23) it follows that
(33) span{yn @z :n € Gp, z € X}

is dense in L% (G'p). Therefore it is suflicient to prove (32) for f = b, ® =

with n € @p, z € X. For n = 0 this is clear. Assuming that n # 0 take [
such that 1, @ x € R(4;), i.e.,, di £ n < diy1. Now we consider three cases:

o>k Then Ay ;(¢m @ ) =0 and
HFk—1 (B, - %n ® ) = $1Bom1 (B (3] - ¥ © 1))
= $1B-1(8}, - Ei (Yn ® 7)) = 0,
since Eg (¢, ® z) = B Ai(¢n @ ) = 0.
o ! < k. Then Ay ;1{¥by ® ) = 0 and
DB (8] ¥n © 2) = LB (§))  n® 2 =10,
since Ek_]_(qg‘i) =0forl1<€j<pg~1.
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o [ =k. Then 1, = [[7, ¢™ and

k
jE_ _j” = J i 79k . 'l,bn_@ﬂ: ifj:nk,
H Bt (F Y ® 2) kI:I¢> B (Bl @ = {0 -

since By_1 (o7 ) = 8, L.
Hence the lemma is proved.

We consider again the collection {Aq, ;) : (k,J) € A} of projections in
L5 (Gp), where A is linearly ordered by the lexicographical ordering. The
corresponding partial sum projections are given by

(34) Sy = 2 Buw

(Li)< (ko)
if (k,7) # {0,0) and S(O,O) = A(D,O) = Ag. Note that it follows from (31)
and (32) that for & > 1 we have

je1
(35) Sy = . Aunty,Ama
Q)< (k1) i=1

i=1 Jj-1
=By + Y AiBeo1 8k = Y 6hEx16}
i=1 i=0
foralll <j<pp-—1.

LeMMa 4.3, Suppose that X is a UMD-space and that maxppg — 1 =
m < oo {i.e., the Vilenkin system {Yn : n € Gp} is bounded}. Then the
collection {Si ;) : (k,J) € A} of operators in E = LE(Gp), 1 < p< o0, 18
R-bounded.

Proof. Since each of the operators Sy ;) is a sum of at most m operators
of the form ¢4 Ey_1 %, it is enough to show that the collection {piB_1 4%
1<i<pp—1, k& N} is R-bounded.

Since X is a UMD-space, it follows from Proposition 3.8 that the col-
lection {F;}%,, is R-bounded. Since |[$rlleo < 1 for all k € N, the result
follows from Corollary 3.18. =

COROLLARY 4.4. Suppose that X s a UMD-space, sup,pr < o0 and
let B = L5 (Gy). Then {Aw : (k,5) € A} is an unconditionel Schauder
decomposition of E.

Proof. Tt follows immediately from (35) that if supypy < oo, then
the S(,; are uniformly bounded. Since these Sy ;) are the partial sum
projections corresponding to {Ag, ;) : (k,j) € A} and since span{R{A,j)) :
(k,§) € A} is dense in E, it follows that {Ag,; : (k,7) € A} is a Schauder
decomposition of E. '
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Since {Ar}$2, is an unconditional blocking of {Aw,z : (k,J) € A},
since the partial sum projections {Sw 5 : (k,j) € A} are R-bounded and
since supy, pr < 00, it is an immediate consequence aof Corollary 3.6 that the
decomposition {Ay,; ¢ (k,7) € A} is unconditional (see Remark 3.7). m

For 0 < n € Gpand f € L5 (Gp) we define

m<n
and Pg = AD = S(Q,g).
We will now formulate a Paley identity for a Vilenkin system. To this
end, for every n € Gp, define the disjoint subsets A, and B, of A by

An = 10,000 | J{(k,5): 1 <5 <pp—mi — 1},
k=1

(37) Bp=|J{(k.5) i pr —ni <5 < —1}
k=1

(see also [DS97]). Note that A = A, UBy, and A,NB, =0 forevery n € @p.
For a subset A C A we define
(38) PA = Z A(k,j)-
(ki)eA
Then we have

(39) Po = 9aPB, %,

Indeed, if m < m, then ¥,¥m € R(Ps,), whereas for m = n we have
P Wm € R(Pa,). For the Paley-Walsh system, (39) is called the Paley
identity (see also R. E. A. C. Paley [Pal32]).

Define for n € G the projection D, in L% (@'p) by
(40) Dof=tn@enlf), | €I5(Gy).
Note that P, = Zﬂi enDmforall0 <m e @p and Py = Dyg. It is clear that
span{R (D) : n € Gp} is dense in L5 (Gp).

THEOREM 4.5. Suppose that X is o UMD-space and that the Vilenkin
system {¢n : n € Gp} is bounded. Then {Dy : n € Gp} is a Schouder

decomposition of L% (Gp), 1 < p < co.

Proof. Since the fine decomposition {Ay 5 : (k,5) € A} is uncondi-
tional and since the collection {4, : n € Gp} is uniformly bounded, it
follows from (39) that the collection of projections {P, : n € Gp} is uni-
formly bounded. Since {P, : n € G} are the partial sums corresponding to
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{Dn:m € ap} and since span{R(Dy) : n € G, } is dense in L% (Gp), the
result now follows. w

It is well known that a Banach space X is a UMD-space if and only
if the trigonometric system generates a Schauder decomposition in LE(T),
1 < p < oo. For the bounded Vilenkin systems we get a similar result. ‘We
have shown that if X is a UMD-space, then the bounded Vilenkin system
generates a Schauder decomposition in L%. The converse of this implication
is also true. Using Vilenkin systems, we get the following characterization
of UMD-spaces:

THEOREM 4.6, Let {¢n : 1 € @p} be a bounded Vilenkin system and
1< p < 0o. The following statements for a Banach space X are equivalent:

iy X is a UMD-space.

(ii) The coarse blocking { Ap}y is unconditional in Iy (Gp).-
(ili) The fine blocking {Au ;) - (k,7) € A} is unconditional in L% (Gp).
(iv) {Dyn : 1 € Gp} is o Schauder decomposition of IE (Gp).

Proof The implication (i)=(ii) is clear, since the coarse blocking is
associated with a martingale. The converse implication can be obtained via
approximate embeddings of the Paley-Walsh martingale into the martingale
associated with the coarse blocking of the Vilenkin system. This can be
achieved using the identification of Gp with [0,1] (see Remark 4.1(b)) in
combination with the technique used by B. Maurey in [Mau75]. We leave
the details to the interested reader.

The implication (ii)=-(iil) follows from the proof of Corollary 4.4, while
the converse is obvious, since the coarse blocking is a blocking of the fine
blocking.

The implication (ifi}=>(iv) is given in Theorem 4.5. Now we shall prove
the implication (iv)=(iii). It is sufficient to show that {Pg: AC A} is
uniformly bounded (here A is defined by (28) and P4 via (38)). Let AC A
be given. For 0 £ j < m = maxy pi —~ 1 define

Fy={keN: (ki) e Al

and let A; = {(k,§) : k¥ € Fj}. Then A = U7 4, 2 disjoint union. For
1< j < m define n(j) € Gp by
v [pe—i-1 #fkeF,1<i<m~1,
()l = {0 otherwise,

and define m(j) € Gp by

, —j ifkeF;,1<iSp—1
= {57 i,

otherwise.
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Then

Py, = PBm(j)PA 1<i<m.

n(i}?
By hypothesis, {D, :n € @p} is a Schauder decomposition of I (Gp) and
so the partial sum operators {P, : n € Gp} are uniformly bounded, i.e.,
| Prnll € K for all n € G, and some K > 0. Now it follows from (39) that

[1Pa; | £ K(K +1), 1<j<m,
and so || Paf| <mK(K-+1)+1. u

In the special case of the Paley~Walsh system, the implication (i)=>{iv)
of Theorem 4.6 is given in [SF94] and [SF95]. The equivalence (i)<>(iv) for
the Paley-Walsh system is given in [Wen93]. The implication (i)=-(ii), in a
more general setting, is given in [SF94].

5. Multiplier theorems. The following theorem is a vector-valued ana-
logue of the Marcinkiewicz multiplier theorem for the bounded Vilenkin
system. It should be noted that its scalar-valued specialization yields an
extension of a multiplier theorem given by G. I. Sunouchi in [Sun51].

We will use the notation I + 1 to denote the successor of the element
leGp.

THEOREM 5.1. Let X be a UMD-space with property (a) ond 1 < p < cc.

Let {tpn, : m€ ép} be a bounded Vilenkin system. Suppose {\, : ne @p} cC
i8 such that

o |\| < K forall L€ G,
® Y dicicdpss Pt — M| S K for all k>0,

for some constant K > 0. Then there exists a (unique) bounded linear oper-

ator Ty in L5 (Gp) satisfying Ts(¥n @ @) = (An¥m) @z for all n € @p and
all x € X. Moreover, ||[T)\|| < OK, where the constant C' depends on p, X
and the Vilenkin system.

Proof. By Corollary 3.6 it is sufficient to prove that the collection
{FPn i m € Gp} of partial sum projections, as defined by (36), is R-bounded.

Since, by Corollary 4.4, the fine blocking {4 ¢ (k,J) € A} is an
unconditionil decomposition of L5 (G,), it follows from Corollary 3.15 that
{PB, :n € Gp} is B-bounded. Now Corollary 3.18 combined with (39) yields
that {P, : n € G,} is R-bounded as well, and we are done. =

Let X be a UMD-space, let D be the dyadic group and {¥r}2, the
Paley-Walsh system enumerated as in Remark 4.1(a) (i.e., the Paley—Walsh
enumeration). Let D and A denote the Schauder decomposition and the
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dyadic blocking in L% (D) corresponding to the Paley—Walsh system, respec-
k_

tively. So Dy f = ¢y @ ci{f), with ex(-) given by (25) and 4z = 3o o1 Dy

As before let we let Py = E?:n Dy. It will be convenient to have the following

terminology available,

DEFINITION 5.2, We say that (MPW) holds for X if statement (i) of the
multiplier Theorem 3.5 is true in L% (D) for the Paley-Walsh system with
respect to the dyadic blocking,.

Note that if X is not UMD, then the dyadic blocking is not unconditional,
so the multiplier theorem cannot hold. By Theorem 5.1 every UMD-space
with property («) has (MPW). Finally, we shall characterize those UMD-
spaces X for which (MPW) holds.

We will begin with the following lemma.

LeMMA 5.3. Let X be a UMD-space for which (MPW) holds. Define

"
Qmf= Y walf), feLlkD),
Lepk—1
for 2%~ < m < ok and k € N. Then, for any sequence g = +1, for any
collection {my} in N satisfying 28~ < m < 2% (k = 1,2,...) and for all
M e N we have

M
| 3 evom,| < 2

k=1

Proof. Let the sequences {ex} and {my} and M € N be given. Define
a sequence {Ap} by
A = J Ek if2k-l<pn<m,and k<M,
" 0  otherwise.

This sequence satisfies the conditions of Theorem 3.5, with constant K = 1,
and so (MPW) implies that

[e=]
Tof = Aneal(f)thn
n=1
. M -
is a bounded operator on L% (D). Since Th = 3 41 xQm,, this gives the
result. =
Yor m € N, define Fp, = {lo, 11, ..., lx} where lp < lh < ... < I, and
m =2 4 28 4, 4 2%, Also define Ag,, = 3 1cg, Do
LEMMA 5.4. Let X be a UMD-space with (MPW). For any .choice Cff
{mu} as in Lemma 5.3, the collection {Ap,, }ie 15 R-bounded with a uni-
farm R-bound.
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Proof. The Paley identity (39) states that P = 9 Ap, tm. So, by
Lemma, 3.3 and Corollary 3.18, it is enough to show that

M M
ity <]
”}; ™ Sk LE(2) ; wfi 12 (02)

for fi,...,fm € BE=L%(D) and all M € N, for some G > 0.
Since P, = EY | + Qm,, it follows from Proposition 3.8 that it suffices

to show that
M
H > ek Qumy I
k=1

for some ¢ > 0.
Since @y, = Qum, Ar = Ap Q... we can write

M M
> er(w) Qi fi = (Zsk(w)ka)f for all w € £2,
k=1 k=1

M
<o
13@) ;E"f Fileg o)

with f = Zﬂil Ap fr. For every w fixed it follows from Lemma 5.3 that

M
“ Z £k (W)kafk‘
k=1

Integration over {2 yields

<
am S Co(X)E ||l 22y -

M M
”,;Ek@m"f'“ s = Kl = CE(X)K”,;A” 1% @)
(é) GH” iskdk‘f
T g e
) M
<o
>~ ‘;Ekﬁc LBE(.Q)’

where (1) follows from the unconditionality of the decomposition {A} and
{2) follows from Proposition 3.8, a8 Ay = lEkX - ]EkX_l. [

Note that max{F,,,,} =k —1forall k € N,

LeMMAa 5.5. Let X be ¢ UMD-space for which (MPW) holds. Let
{232, e an unconditional decomposition of X. For F C N finite
define D = 3. pD;. Then {Dp: F C N, finite} is R-bounded.

Proof Define ¥ : X — L% (D) by

U(z) = rp ®Dila),
k=0
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where the 7y denotes the kth Rademacher function on ID, ie., rg = 0 and

7k = tpas-1 for k > 1. This defines an isomorphism (cf. the proof of Theo-
rem 3.9), and moreover we have

Ap(¥(z)) = ¥(Dr(2))
for any finite F' C N, where Ap = 7, . 4. So it is enough to show that
{Ap: F CN, finite} is R-bounded.

Let {F,}71 | be an arbitrary collection of subsets of N. Now define a new
collection {GyHL, as follows: Gy = Fy and Gy, = F, U a(k), with a(k) € N
given by

a(k) = L + max{a(k - 1), max(Fy)}, keN
(with @(0) = 0). With this choice the sequence {max(Gx) <, is strictly in-
creasing. Now observe that the sequence {n;}{Z, defined by ng = > ;cq, 27
is a subsequence of some {my} as considered in Lemmas 5.3 and 5.4. Hence

by the previous lemma, there exists a constant ' > 0 independent of the
choice of the Fy’s and such that

M M
erda, fr SC“ exfx
H ; SR (@) ;

for all f1,..., far € L%(12). Since Agry = Ef(k) — Ef(k_l), it follows from
Proposition 3.8 that the collection {A,x}5e, is R-bounded. Since

L2.()

AFk = AG;G - Aa(k):
it now follows easily that {Ap: F C N, finite} is R-bounded. m
Now we are in a position to prove the final result of this paper.

THEOREM 5.6. For a UMD-space X the follounng statements are eguiv-
alent:

{) (MPW) holds for X.
(ii) The partial sum projections Pp = } ycp, Dn (n € N) of the Poley-
Walsh system are R-bounded in L% (ID).
(ii1) For any unconditional decomposition ® = {Dy}%, in L% (D), the
collection {3, cr Or : F C N, finite} is R-bounded.

Moreover, if (MPW) holds for X, then for any unconditional decomposition
D = {Dp}5%o in X, the collection {3 . p Dk : F CN, finite} is R-bounded.

Proof. It is well known that if X is a UMD-space, then so is L% (D). Sim-
ilarly, from Fubini’s theorem, it follows that L% (I) satisfies (MPW) when-
ever X has this property. Now Lemma 5.5 gives the implication (i)=r(iii}).
Av application of the Paley identity (39) shows (iii)=-(ii). The uncondition-
ality of the blocking A together with Theorem 3.53(ii) gives (ii)=-(i). Finally,
Lemma 5.5 yields the last statement of the theorem. m



162 P, Clément et al.

The row decomposition in Example 3.10 is an unconditional decomposi-
tion of C,, whereas the corresponding collection R is not R-bounded. Hence
the last part of Theorem 5.6 combined with considerations presented in
Example 3.10 implies the following corcllary.

COROLLARY 5.7. The multiplier theorem with respect to the Poley—Walsh
system fails in any Lép (D), L <p <o and p# 2.

References

[BG34] E.BerksonandT.A. Gillespie, Speciral decompositions end harmenic anal-
ysis on UMD spaces, Studia Math. 112 {1094), 13-49.

[Boud3] J.Bourgain, Some remarks on Banach spaces in which martingale differences
are unconditional, Ark. Mat. 21 (1983), 163~168.

[Bou85] —, Vector-valued singular integrals and the H'-BMO duality, in: Probability
Theory and Harmonic Analysis, Dekker, New York, 1985, 1~19.

[Bur83] D. Burkholder, 4 geometric condition thet implies the existence of certain
singular integrals of Banach-space-valued functions, in: Proc. Conf. on Har-
monic Amnalysis in Honor of Antoni Zygmund (Chicago, 1981), Wadsworth,
Belmont, 1983, 270-286.

[DJT95] J.Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cam-
bridge Univ. Press, 1995.

[PUTY]  J Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math.
Soc., Providence, RI, 1977.

[DS97] P. Dodds and F. Sukochev, Non-commutative bounded Vilenkin systems,
preprint, 1997.

[EGT7] R.E.Edwardsand G, L Gaudry, Littlewood-Paley and Multiplier Theory,
Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977.

[GK70] L C.Gohbergand M. G. Krein, Theory and Applications of Volterra Opera-
tors in Hilbert Space, Trans). Math. Monogr. 24, Amer. Math, Soc., Providence,
RI, 1970.

[KP79] N.J.Kalton and N. T. Peck, Twisted sums of sequence spaces and the three
space problem, Trans. Amer. Math. Soc. 255 {1979), 1-30.

[KPT0] S. Kwapiefi and A. Pelczytiski, The main triangle projection in mabriz
spaces and s applications, Studia Math. 34 (1970), 43-68.

[LT77] J.Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Brgeb. Math.
Grenzgeb. 92, Springer, Berlin, 1977,

[Mar39] J. Marcinkiewicz, Sur les maultiplicateurs des séries de Fourier, Studia
Math. 8 (1939), 78-91.

[Mau78] B. Maurey, Systéme de Haar, in: Séminaire Maurey—Schwartz 1974-1975:
Espaces Ly, applications radonifiantes et géométrie des espaces de Banach,
Exp. Nos. I et II, Centre Math., Ecole Polytech., Paris, 1975, p. 26.

[Pal32] R.E.A. C. Paley, A remarkable series of erthogonal functions, Proc. London
Math. Soc. 34 (1932), 241-279.

[Pis78]  G. Pisier, Some results on Banach spaces without local unconditional struc-
ture, Composito Math, 37 (1978), 3-19, '

Schauder decompositions and multiplier theorems 163

[SWS90] F.Schipp, W. R. Wade and P. Simon, Walsh Series, Adam Hilger, Bristol,
1990.
[Ste70] E. M. Stein, Topics in Hormonic Analysis Related to the Littlewood—Paley
Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970.
[5F94] F. A Sukochevand8. V. Ferleger, Hormonic analysis in symmetric spaces
of measurable operators, Dokl. Akad. Nauk 339 (1994), 307-310 {in Russian);
English transl.: Russian. Acad. Sci. Dokl. Math. 50 {1895), 432-437.
[SF95] — —, Huormonic analysis in (UMD)-spaces: Applications to the theory of
bases, Mat. Zametki 58 (1995), 890-005 (in Russian); English transl.: Math.
Notes 58 (1995), 1315-1326.
[Sundl] G. I Bunouchi, On the Walsh-Kacemars series, Proc. Amer. Math. Soc. 2
(1951), 5-11.
[Wats8] C. Watari, On generalized Wailsh Fourier series, Téhoku Math. J. (2) 10
(1958), 211-241,
[Wen83] J. Wenzel, Mean convergence of vector-valued Whalsh series, Math. Nachr, 162
(1993), 117-124.

Department of Mathematics, Faculty [T8 Department of Mathematics and Statistics
Delft University of Technology The Flinders University of Sputh Australia

P.0. Box 5031 G.P.O. Box 2100
2600 GA Delft, The Netherlands Adelaide, South Australia 5001
F-mail: Clement@twi.tudelft.nl Australia

B.dePagter@twi.tudelft.nl E-mail: sukochev@ist.finders.edu.au

H. Witvliet@twi.tudelift.nl

Received October 27, 1998 {(4195)
Revised version November 22, 1999



