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On the growth of analytic semigroups along vertical lines
by

JOSE B. CALE (Zaragoza) and THOMAS J. RANSFORD (Québec)

Abstract. We construct two Banach algebras, one which contains analytic semigroups
(az)]_{ez>() such thal‘.'Hal'Hy H -t OO arbitrarily SlOle as ‘y} —r 00, the other which contains
ones such that ||a’™%| — co arbitrarily fast.

1. Introduction. A family of elements (a®)ge »»0 in a Banach algebra
A is called an anolytic semigroup if the map z — ¢ is analytic on the
half-plane {z € C: Rez > 0} and satisfies

a* T = g%g® (Rez >0, Rew > 0).

The structure of a Banach algebra is frequently reflected in the growth
properties of its analytic semigroups (this fact has applications in recent
classifications of Banach algebras, more particularly when spectral methods
are not available [E3, S]). For example, in aradical Banach algebra we always
have

: z(|l/z
(1) Jimn {|a%]] 0.

This is a simple consequence of the spectral radins formula. On the other
hand, along vertical lines these semigroups must actually grow. Esterle [E1]
exploited this fact to give a new proof of the Wiener tauberian theorem.
Building on his work, Sinclair [S, Theorem 5.6] showed that, in a radical
Banach algebra, an analytic semigroup (a7} satisfying

log™ [la’+¥|
1+ y?

[0}

(2) |

dy < 0o
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166 J. E. Galé and T. J. Ransford

is identically zero. The same is also true in a Banach algebra with no zero-
divisors [E4].

There are several other results of this general nature. For example, in a
general Banach algebra, if an analytic semigroup (o?) satisfles (2), then the
closed subalgebra B generated by (¢*)re >0 IS regular [EG, Theorem 1]. For
semigroups such that

1441 11—y
N T st I
y—oo y

0,

the algebra B is weakly amenable (W, Theorem 2.3], and it fails the strong
Wedderburn decomposition if it is also assumed that sup,e (g q) o] < oo
and [a!t®| = O{ly[*) as fy| — oo, for some k > 0 [W, Corollary 3.4]. If
(2!}, cp is relatively weakly compact, then the character space of B is at
most countable, B itself is generated by its idempotents [G, Theorem 3.1],
and either B is semisimple or Bt := {b &€ B : bB = 0} # 0 [G, Proposi-
tion 3.2].

In the case when the ambient algebra is L'(R") or M(R"), this last
result can be strengthened. Let us say that a Banach algebra A4 has the
Beurling-Helson property if the only analytic semigroups (¢?) in 4 such
that sup,cp [l6' %] < co have the form a* = €%§ for some ¢ € R (if the
algebra contains an identity §) or they reduce to zero. It was shown in [GW,
Theorem 2.4] that L'(R™) and M(R") have the Beurling-Helson property.
This can be viewed as an analytic-semigroup analogue of the classical the-
orem of Beurling and Helson [BH], that an invertible element a of M(R)
satisfying sup,qz lla™| < co must be of the form o = ¢%§, for some b, ¢ € R,
where 4, denotes the unit mass at b.

Of course, there are numerous analytic semigroups in L'(R) for which
('), er is unbounded, but all the examples we know grow at least as fast
as the Poisson semigroup {P*), for which

| P41 < log ly|

"This is conceivably the slowest possible growth rate for a non-zero analytic
semigroup in this algebra. The analogous question for the algebra £1(Z) of
absolutely convergent Fourier series is a long-standing open problem (see
e.g. [X, p. 87] or [GM, p. 407]}.

In each of the situations above, there is a minimum growth rate for
lla+*¥ ]}, as if analyticity forces semigroups with small growth on {Rez = 1}
to be bounded there, or even zero. This appears to lend support to the
possibility that, for any given Banach algebra A, all analytic semigroups
which tend to infinity along {Rez = 1} do so at a certain rate. Our first
result shows that this is not the case. Moreover, although we do not know
whether it is possible to take 4 = LY(R) or M (R), our example does possess

as |y| — oo
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the Beurling-Helson property. (Our A is non-separable: see the remarks at
the end of §3.)

THEOREM l1.1. There is a Banach algebra A with the Beurling—Helson
property such that, given any function ¢ : R — R satisfying
lim (y) =o0 and inf @(y) >0,
yER

ly|—oo
there exists an analytic semigroup (o%) in A with
lim |e*t¥| =co and o' <) (yeR).

[ul—o0

The proof of Theorem 1.1 is based upon a construction of analytic semi-
groups of convolution operators on weighted H I.spaces. The details of this
construction are given in §2, and the proof of the theorem is completed in §3.
On the way we obtain two quantitative results, Theorems 2.3 and 3.1, which
may be of independent interest.

Returning, for a moment, to the case of analytic semigroups in radical
Banach algebras, although the convergence in (1) may be arbitrarily slow [S,
Corollary 3.13], it can not be arbitrarily fast [£2, Theorem 3.1]. Again, this
depends heavily on analyticity [£2, Theorem 3.6]. By analogy, one might be
tempted to guess that, for an analytic semigroup (a*) in a general Banach
algebra, there are constraints on the growth of [[a’*™] as |y| — co. There
is some supporting evidence for this view. For example, it was shown in R,
Corollary 1.4] that, if (2) holds, then ||a®|| is of exponential type on Rez > 2.
However, our second theorem demonstrates that in general [lat®| may
indeed grow arbitrarily fast.

THROREM 1.2. There is o separable Banach algebra A with the Beurling—
Helson property such that, given any locally bounded function ¢ : R — R,
there exists an analytic semigroup (a*) in A with

e 2 ely) (yeR).

This time the proof depends on a construction of an analytic semigroup
in an infinite direct swm of tensor powers. The details are given in §4.

9. Convolution operators on weighted H l_spaces. In this section
we describe the main construction used in the proof of Theorem 1.1.
We begin by recalling the definition of the Poisson semigroup in L' (RR).
For Rez > 0, define P* : R — C by
1 =z
722 + 12
The following proposition summarizes some basic properties of P%.

Pt = (teR).
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ProposITION 2.1, Let P* be defined as above.

(i) The Fourier transform satisfies Pz (&) =e?lél (€ e R).

(i) The family (P*)Res>0 15 an analytic semigroup in LY (R).

(i) If f € HYR) (i.e. f € LHR) and f(£) =0 for all £ < 0), then

P s f=PTxf, (23>0, y€R),

where f,(t) = f(t —y).

(iv) P* satisfies the pointwise estimate

1+]22Y) 1

3 PE(Y)| <
® e (B ter nesso)

Proof. For (i) and (i), see e.g. [S, Theorem 2.17].
For (iii), we compute Fourier transforms: given £ € R, we have

(P [y () = PT(g) flg) = ekl i)

and
(P% % £)7(&) = P&}, () = em"¥lem e flg).
As f € HY(R), we have f(¢) = 0 for all £ < 0 and so the two right-hand
sides are equal.
Finally, for (iv), we divide the proof into three cases. If || < |z|/2, then
22 4 2| > 2|2 — ¢2 S 2> —|#|%/4 53 3 |22 3 |z|(Re =)
L4+42 & 1442 = 1+ 22/4 41+§z{2“41+|zf24
If [2]/2 < Jt] < 2|2 +1, then
|22+ 2| o, 2ltl{Re2) o __|2|(Rez) 11z{(Re2)
L+82 7 1442 7 14 (2] +1)2 T 8 14+ (22
Lastly, if |t] > 2|z| + 1, then
|22 + 12 S 2 — |2]? 1 1 1 > 3 |2|(Rez)
1+ = 22 =327 2\3 81+22 "
Hence, in all cases,
2

7|22+ T 7w [z[(Rez) 1482 “ 7w\ Rez /142’
as claimed. =

A weight is a Borel function w : R — [1, 00) satisfying
wls+1) Sw(slwl(t) (s,tcR).
Given a weight w, we define

={ferim

o0

Yilflle = | If®)w() dt < oo}.

— o0
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The condition on w ensures that (L%, - |l) is & Banach algebra under
convolution.

PROPOSITION 2.2. The Poisson semigroup (P?)re»»o0 8 an analytic
semigroup in the Banach olgebra L) if and only if

Proof. The “only if” is clear, since |PY|, = I(w).
For the “if”, assume that f{w) < co. Then, for Rez > 0, we have

o L2\ %
| ipalmes () | e

Rez 14 ¢2
—0

2
=8(1;;Jz‘ )I(w) < oo
z
so P* € L.

Also, given z,w with Rez > 0 and Rew > 0,
— w |zw| + ¢2
T t22+t2llw2+t21

—00

1Pe(t) — P(t) <

< w|zwwa(1+ !—1”7) (14 ENP* I (),

whence, using (3) once more,

|P*— Pl < 64;z—w1(1 + 24) (1;3!2'2) (1§£'2)I(w).

In particular, z ~» P# is continuous as a map into L.

Next, for each triangle A in {Rez > 0}, we have S P*dz = 0 by
Cauchy’s theorem. Hence, by Morera’s theorem, z — P? is analytic as a
map into L.

Finally, the semigroup property is automatic since (P*) is already a
semigroup in L' (R). w

Given a weight w, we define
HY = LN nHYR) = {f € L : F(§) = 0 for all § < 0}.
Observe that HY is a closed ideal in L}.
THEOREM 2.3, Let w be a weight satisfying
| 17 wit)
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ForRez > 0, define T? : HL — H} by
TAHf) =P «f (f€H)

Then (T%)Re >0 08 an analytic semigroup in L(H}), the Banach algebra of
bounded linear operators on H, and

L
@ TP = ol

Proof From Proposition 2.2, it follows immediately that (7%) is an
analytic semigroup in £(H}). It remains to prove the estimates (4).
We begin with the upper bound. Let y € R. Then, given f € H},

T flo = [P 5 fllo = | P fyllw < IP ullfylle = )l Filw,

where the second equality is from Proposition 2.1(iii). Now

(y € R).

< I(w)

oo o0

[fllo= | fE— ey dt= | |f(s)lw(s+y)ds

—00 —0Q
oo

< § 1F)lw(s)wly) ds = w(y)| f]l..

As this holds for each f € HL, we conclude that

[T < Iw)w(y) (v € R).
Now for the lower hound. Let
1 1
'f,‘ = - ——
g(t) YT (t e R).

Then |g(t)] = P'(t), so g € L with |jgllo = P!l = I{w). Further, a
simple computation with Fourier transforms shows that g € H}. Therefore,
using Proposition 2.1(iii) once more, we have

Ty =P sg=Plsg,=h, (yeRk),
where h = P % g. Thus, for y € B,
oo o0
1T g, = | iaG~w)lwt)di= | [h(s)w(s +y)ds

> | e s — () T he) L s

e w(—s) e w(s)
Ll
= Wiy )
.
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the last inequality resulting from an application of Cauchy-Schwarz. Now
another calculation with Fourier transforms shows that

1 1
0= (P90 = s (ER,
In particular, [h| < g, s0 ||hlu < |lglle = I{(w). Also, |jh]1 = 1/2. Hence,
we obtaln the lower bound
-4 1/4
Titi| >
72 2 wly)
REMARK. By taking g(t) = (n/7)(t +ni)™2 (n > 1) in the proof above,
the lower bound in (4) may be improved to
e n? 1
oza (0 1) TP
‘We shall need one further result. Recall from §1 that a non-unital Banach
algebra hag the Beurling-Helson property if it contains no non-zero analytic
semigroups (a®) such that sup,cp [a'+¥] < oc.

(yeR). n

THEOREM 2.4. Let w be a weight satisfying I{w) < oo. Let B, be the
closed subalgebra of L{HL) generated by the semigroup (T*)re >0 of Theo-
rem 2.3. Then B, 15 non-unital, and it has the Beurling-Helson property if
and only if sup,epw(y) = co.

Proof. For & > 0, choose f € H} with f(ﬁ) = 0, and define x¢ : B, — C
by
x¢(8) = (SHE)/F(&) (S € Bu).

This definition of y¢ does not depend on the choice of f. Indeed, given
Fi, fo € HY, we have T#(f1)* fo = P« fi* fo = f1+T*(f2) fox;a__l] z, Yhence
S(f1) * fo = f1 % 8(f3) for all § € B, which in turn implies Sf1(£)f2(§) =
fie )s"}E(g ), as claimed. From this, it readily follows that x; is a character
on B,. Further, for each z with Rez > 0,

lim e (T%) = lim e~#lél == 0,

£r00 £—+00

whence
ix = Byl
(5) Elﬂ:;o x(S$)=0 (5S¢ B.)

In particular, this implies that B, is non-unital.

If w is bounded, then by Theorem 2.3 the semigroup () is bounded
on Rez = 1, but not identically zero, and so B, fails the Beurling-Helson
property. :

Conversely, suppose that w is unbounded. Let (S#%)Rez>0 be an ana-
lytic semigroup in B, which is bounded on Rez = 1. For each £ > 0,
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the function hg(z) = x¢(S%) is holomorphic on Rez > 0 and satisfies
he(z +w) = hg(z)he(w) there. Therefore, either he = 0, or it is of the
form he(z) = e~2¢*, for some ¢ € R. The arguments of [GW, §1 and §2
show that there are two possible cases:

CaSE 1: kg = 0 for all £ > 0. In this case, as L, is semisimple, it follows
that §% = 0.

CASE 2: he(z) = e~ (6F2)2 for all £ > 0, where b > 0 and ¢ € R. Notice
that (5) implies that actually b > 0. Hence, given f € H) and Re z > 0,

§7F(6) = e~ W) flg) = ememetléiz f(g) = e~ T f(£) (¢ > 0).

It follows that the analytic semigroup (S?) is none other than (e~®*7%),
In particular, ||S*+#¥| = e~¢||T*(1+¥)||. But the latter is bounded below by
a multiple of w(by) (the proof is similar to that of the lower bound (4)),
and by hypothesis sup, .y w(y) = co. This contradicts the fact that (S7) is
bounded on Re z = 1, and so this case cannot arise.

To summarize, we have shown that the only analytic semigroup in B,
which is bounded on Rez = 1 is identically zero. Therefore B, has the
Beurling-Helson property. m

3. Analytic semigroups of slow growth. The goal of this section is
to prove Theorem 1.1. The idea is to relax the constraint of being a weight
function in Theorem 2.3, without losing too much control over the growth
of the semigroup. The main quantitative result is as follows.

THEOREM 3.1. There is o Banach algebra A with the Beurling-Helson

property such that, given an unbounded even function ¢ : R — R, MCTEAsing
on [0,00), and satisfying

15 )
0) > g I{d):==~ —
v(0)>e and IW) W~L1+t2dt<oo,
there evisis an analytic semigroup (%) in A with
1

Y iy
4f(¢)3¢(10g+ ,yHlogﬂw)) < e < ply)  (yeR).

Proof. As our algebra A, we take the £'-direct sum (with multiplication
defined coordinatewise) of the Banach algebras B, of Theorem 2.4, where w
ranges over all weights satisfying I{w) < co and sup, e w(y) = co. As each
B, has the Beurling-Helson property, so too does A.

_ Let © be the set of even weight functions increasing on [0, 00). Define
¥ :R—Rby

J(t) =sup{w(t) :we N, w <y} (t e R).

icm
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It is easily checked that Q,Z ig itself in Q, and that T (1:[;) < I{p) < co. Further,
we claim that

~ )
(6) vy 2y (1og+ Ui+ log(21(5))

and in particular, that z/j is unbounded. Assuming this for the moment, let
(T%)Re z>0 be the analytic semigroup furnished by Theorem 2.3, and set

(Rez > 0).

) (v e R),

aﬁ = I('l,l‘))_sz
Then (@ )Rrez>0 I8 an analytic semigroup in B ot and hence in A, satisfying

1 - v
WVJ(U) < flat ¥ < B(y)

Combining this with the estimate (6) yields the inequality stated in the
theorem.
It remains to justify the claim (6). Let s > 0 and define

w(t) = min(e"/*, (s)) (¢ € R).
Tt is readily checked that w & 2. Also
[ <s=w(t) e <p(0) <o), [t 2 s=wlt) <p(s) <¥lh),

80 w < 4. Therefore also w < 15 In particular, we have

(y e ®).

(7) 1 (slog(s)) > wislogB(s)) = ¥(s)-
Now
Iy) 2 "}1; S 11/1?2 dt > % S 11’&_'(—532 dt = %z/)(s) arctan{1/s).
|t|Za s

If s > 1 then arctan(l/s) > =/4s and so we have 1(s) < 21(?0)3. On the
other hand, if 0 < s < 1 then 4(s) < 9(1) < 2I(3b). Therefore, in all cases,

log(s) < log* s +log(21(¥))-
Substituting into (7), we obtain
(8) (s(log™ s + log(21(4)))) = (s)
Now let y € R, and choose s > 0 so that
s(log™ 5+ log(21(4))) = fyl.

Then certainly s < |y|, and so also

(s = 0).

N |l _
* = Tog” [yl + log(21(%))
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Substituting into (8), and using the fact that both 1 and o are even func-
tions, we get

_ Y
Y(y) 2 ¥(s) > ¢(10g+ ly| + 10g(21(¢)))’

which proves (6). =
Finally, we can prove the qualitative theorem stated in the introduction.

Proof of Theorem 1.1. Let A be the Banach algebra of Theorem 3.1. It
kas the Beurling-Helson property. Let ¢ : R — I8 be a function satisfying

Hm ¢y) =c0 and

|y|—o0

Define 4y : R — R by
P(t) = gmin( inf w(y), 6+ [t*%)  (t e R).
lul>]|

inf o(y) =6 > 0.
nfely)=4>0

Then ) satisfles the hypotheses of Theorem 3.1, s0 there exists an analytic
semigroup (b*)pez>o in A such that

L L L4iy
4I(¢)3¢(log+ ly! -|_1ng](¢)) <l ) [ <¢@) (yeR).

In particular, since limy,;.., o ¥(y) = oo, it follows that

lim [ = oo,
lyl—oo

Also, since 1 (y) < (e/8)w(y) for all y, we have
p e
= ey Y :
649 < Soly) (e R

Thus, taking a® = (§/e)*b*, we obtain an analytic semigroup in A satisfying
lim [lo'**[ =00 and [la"*||<p(y) (yeR). =

lyl—oo

REMARKS. (1) The condition infyer ¢(y) > 0 in Theorem 1.1 is nee-
essary. Indeed, suppose, if possible, that (¢*) is an analytic semigroup (in
any Banach algebra) such that iz .o [|@'*%|| = 0o but infyep ||a* || =
0. Then there exists yo &€ R with o®% = 0. It follows that o®T# =
a* 1ot = 0 for all z > 1. By the identity principle, o® = 0, which is a
contradiction.

(2) The algebra A constructed above is not separable. We do not know
whether there exists a separable Banach algebra satisfying the conclusions
of Theorem 1.1. Of course, given any countable family & of functions p a3 in
Theorem 1.1, the closed subalgebra Ay of A generated by the corresponding
analytic semigroups (a®) is separable. The problem is that, whatever the
choice of @, there is always another function ¢, tending to infinity at infinity
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such that wo < @ for no ¢ € &, and it is then unclear whether Ag contains
an analytic semigroup corresponding to ¢y.

4. Analytic semigroups of rapid growth. We now turn to the proof
of Theorem 1.2. It is based upon the construction given in the follow-
ing proposition. Here and in what follows, given a Banach algebra B, we
write ®”B for the nth projective tensor power of B.

PROPOSITION 4.1. Let B be a Banach algebra. Let A be the £*-direct
sum of the Banach algebros Q"B (n > 1), with multiplication defined co-
ordinatewise. Then, given an analytic semigroup (b*)Re:>o0 in B, and an
entire function f 1 C — C with f{0) = 0, there exists an analytic semigroup
(6% )Rez>0 in A satisfying

b+ 2 ()

Proof. For Rez > 0, define

(y € R).

[
e N,
a® = (jen* (0" ®@ -+ R )1,

where (¢,,)n31 are the Taylor coefficients of the entire function f. Note that

S llenl*(t7 @ - @bl = 3 leal ™10,

n2l nxl
and the right-hand side converges locally uniformly for Rez > 0 l?ecause
cn|t/™ — 0. Thus a* € A (Rez > 0), and the map z — ¢* Is continuous.
Tndeed, it is even analytic, by the same argument as in Proposition 2.2. Thus
(0%)Rez>0 is an analytic semigroup in A. Finally, for z = 1 + 4y we have

la ) = 3 feal 67+ 2 [ calle )" = 1B (v ER). =
nzl n=1

Proof of Theorem 1.2. We apply the preceding proposition to a particular
case.

For B, we take L*(IR). Note that @"L'(R) = L*(R") forl ea:h n, so the
algebra A of the proposition is just the fodivect sum of {LH{R™) : n > 1}.
In particular, since cach L'(R™) has the Beurling-Helson property [GW,
Theorem 2.4], so too does A. Also, A is clearly separable.

For (b%) we take the Gauss semigroup:

1 8—~t2/4z
drrz
By I8, Theorem 2.15], {b*)re x>0 18 an analytic segxigroup in L' (R), and

o+l = (1+4H)Y¢ (v ER).

b (t) = (teR, Rez > 0).

;
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Suppose now that ¢ : R — R is a locally hounded function. We claim
that there exists an entire function f : € -+ C with non-negative Taylor
coefficients such that

FO)=0 and FA+1)Y) >p) (WeR).

If so, then by Proposition 4.1, there exists an analytic semigroup (a®) in A
such that

a2 2 1 U™ 2 A+ )Y > ly) (g€ R),
as desired.

It remains to construct f. First, since v is locally bounded, we can use a
partition-of-unity argument to build a continuous function ¥ : R — R such
that

$(t) > max(p(t), p(~t)) +1 (tE€R).

Then, by Carleman’s theorem [C], there exists an entire function g such that

g(0) =0 and |g(s)—9¥(vs1-1)I<1 (seR, [s|=1).
Finally, we let f be the entire function obtained from g by replacing the

Taylor coefficients with their absolute values. Then f bas the properties
required since f(0) =0 and

FO+Y 2100+ )Y 2 9 - 1> ey) (Y ER).
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