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A characterization of commutative
Fréchet algebras with all ideals closed

by
W. ZELAZKO (Warszawa)

Abstract. Let A be a commutative unital Fréchet algebra, 1.e. a completely metrizable
topologieal algebra. Our main result states that all ideals in A are closed if and only if A
is a noetherian algebra.

A topological algebra is a real or complex algebra A which is a topological
vector space (t.v.s.) and the multiplication (xz,y) — zy is jointly continuous
from A x 4 to A. In terms of neighbourhoods of zero this means that for
each such neighbourhood U there is a neighbourhood V with

(1) VicU.

A unital topological algebra A is called a Q-algebra if the set {group)
G{A) of all its invertible elements is open. It is known ([6], Lemama 1.6.4,
pp. 43-44) that A4 is a Q-algebra if and only if its unit element ¢ has a
neighbourhood consisting of invertible elements.

A Fréchet algebra or F-algebro is a topological algebra which is a Fréchet
(i.e. completely metrizable) t.v.s. The topology of an F-space X can be given
by means of an F-norm, Le. a map z — |jz]| from X to the non-negative
real numbers guch that

G) |z 20 forall z € X, and ||z] =0 if z =0,

(i) le + yl| £ il + lyll. 2,y € X,

(iti) the map (A, z) = | Az| is jointly continuous, A € K (K =R or C),
e X,

For furtber information on F-spaces and F-norms the reader is referred
to [2] and [8].

A topological algebra is called multiplicatively convez (briefly m-convex)
if its topology can be given by means of a family of submultiplicative (alge-
bra) seminorms.
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If A is a commutative complex unital m-convex F-algebra, then the max-
imal ideal space MM(A), i.e. the set of all its continuous non-zero multiplica-
tive linear functionals provided with the Gelfand topology, is non-void. The
elements of 9t(4) can be identified with the closed maximal ideals of A.
Such an algebra is a Q-algebra if and only if M(A) is compact (cf. [6] or
[11]), or if and only if all maximal ideals in A4 are closed (see [1]). For further
information on topological algebras, in particular on m-convex algebras, the
reader is referred to [6], [7] and [10].

In this paper we are concerned with the question of when a commutative
unital algebra has all ideals closed. The starting point of the present work is
a result due to Carboni and Larotonda [3]. They have constructed a family
of commutative complex m-convex unital F-algebras A with the following
properties:

(a) All ideals in A are principal, i.e. of the form I = 24, z € I,

(b) A is an integral domain,

(c} the maximal ideal space D A) is compact.

Subsequently I have shown that if an m-convex F-algebra satisfies
(a)—(c), then all its ideals are closed. In my talk during the 1999 Banach
Algebras Conference (Claremont, CA) I posed the conjecture that a commu-
tative complex m-convex unital F-algebra has all ideals closed if and only if
it is noetherian (I was told by Jaroslav Zemanek that the question of when
a topological algebra has all ideals closed was also discussed during the con-
ference Théorie des Opérateurs et Algébres de Banach, Rabat, April 12-14,
1999). Subsequently I have been able to prove this conjecture. Here I give a
much more general result without the assumption of local convexity. The re-
sult also holds for the real scalars. Some results in this direction are already
known. Grauert and Remmert [5] showed that a commutative noetherian
Banach algebra is necessarily finite-dimensional. Ferreira and Tomassini [4]
studied the noetherian m-convex algebras and showed, among other results,
that a noetherian commutative complex unital m-convex Fréchet algebra
has all ideals closed (Theorem 2.6 of [4]).

Recall that a commutative unital algebra A is said to be noetherian if
every proper ideal I of A is finitely generated, i.e. it is of the form

(2) T=zA+... +2,4, zel

The following result generalizes a result given in [4] for multiplicatively
convex complex Fréchet algebras. The proof given here should be compared
with the proof of Proposition 17 in [1] stating that a commutative Fréchet
algebra has all maximal ideals closed if and only if it is a Q-algebra (many
thanks to Mati Abel for calling my attention to that paper)

PROPOSITION 1. Let A be o commutative unital real or complez F.glgebra
which is noetherian. Then A is o Q-algebra.
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Proof. Assume that A is not a Q-algebra. By assumption, there is a
sequence (z;) of non-invertible elements with lim; z; = e, the unit element
of A. First we show that there is a subsequence zy, = z;, such that

(3) ||z, — ]| < 2% for all k,
and
(4) luiy - o] < 27"+, 0<r <k,
where

) _ | Zegr..zy fork >y .
(5) Uy, ——{e for 1= k. 0<r<k.

First we choose 4 so that z) = »;, satisfies (3). Then (4) is also satisfied for
k= r = 0 since in this case it coincides with (3). Suppose now that we have

chosen zj,...,2p, with 2, = z;,, 8o that (3) and (4) hold respectively for
k<mnandfor 0 <r <k <n—1 Weshall be done if we find 4,,..1 so that
(6) iy, — M <2700, 0<r <

But such an 4,1 must exist since limz; = e and we have only a finite
nwmber of inequalities in (6). Thus (4) holds for £ = n+ 1, as does (3)
which is obtained by setting r = n in (6). The existence of the sequence (zx)
follows.

Fix now an index r. Relations (4) imply that for r < p < ¢ we have

[f? = Pl < o) =l -+ s =
<2t 4 49me <0
Thus (ui”)iz,q is a Cauchy sequence for each fixed r and so the limits

u =limul”,  r=10,1,2,...,
%

exist, Moreover, (5) implies ugf ) = Zptl - .zqugc‘ﬂ for g > p, and so
(M) u? = zpaq czu®, g>p.
Observe now that

s (") =
(8) 111{nu e.

Indeed, we have zp4.) = uff,ﬂl and so for any p > r -+ 1 we have, by (4),

r r () T
il = 2] = [ = ul < Ny — Tl o+ gy =2

< 2-—(7’+2) + o+ o—r < 2"”(7""1)_
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Passing with p to infinity we obtain [|u{" — z.41]] < 2~ (r+1) which together
with (3) gives

) — el < ) = zopall + [zrs1 — o] <277,
and (8) follows.

Since the elements 2 are non-invertible, formula (7) implies that so are
all u(™), so that each I, = u(® A is a proper ideal in A. Formula (7) also
implies
(9) In CIny
and consequently I = (J, /n is a proper ideal in_A. For every z in A we
have zu™ € I, and so, by (8), z = lim,zul” € T. Thus I = A, i.e. s a
dense ideal in A. Since A is noetherian, there are y1,...,yx € A such that
T=1A+. .. +ypd. Since all y; are in I, there is also a {smallest) index ng
such that y1,-- -,y € In,. Consequently,

(10) I= Inm
which implies I, = I,,; for all n > ng. In particular I,,,+1 = Ip,. Thus there
isav e Awith

(11) ulrotl) — y(noly,

for all n

By (7) we have u() = z,, 1 u(m0+Y) which together with (11) gives w(mo+1)
= Znyp1ul™ Dy, or

(12) ulmet (e — 2, 10) = 0.

Since, by (10), Iny+1 is dense in A, there exists a sequence (v;) C A with
e = lim; u("0+1)y;. Multiplying both sides of (12) by v; and letting i tend to
infinity, we obtain e = 2z,,11v, i.e. 2,41 is invertible, which is the desired
contradiction.

LeMMa 2. Let A be a commutative, real or complex F-algebra with all
ideals closed. Then A is noetherian.

Proof Let I be a proper idedl in A and choose a non-zero z; € I so
that ) = 1A C I. If I = I we are done. If not, there is an @y € I\ Iy
and so Iy = Iy + 234 is a subideal of I. Again either I, = I and in this
case we are done, or the process can be continued. If it does not terminate,
we obtain a sequence [y C I, C ... C I of closed ideals with all imbeddings
proper. Setting J = [J;5; i we obtain a proper ideal in A (J ¢ I) which is
not closed as the union of an increasing sequence of closed subspaces, which
is impossible. Thus I = I, for some n and the conclusion follows.

Observe that the one-sided version of the above lemma also holds true.

LeMMA 3. Let A be o commulative real or complez topological alge-
bra. Then for each polynomial p in n variables with p(0,, .,0) =0, and
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each neighbourhood U of zero in A, there is a neighbourhood V such that
#; €V, 4= 1,...,n, implies p(z1,...,2,) € U.

Proof. Let p = gt + ...+ ¢i, where ¢; is a monomial of order n; with
scalar coeflicient ¢;;, 1 < ny < n. Find a neighbourhood V3 of the origin so
that Vi + ...+ V1 C U (with k copies of V1) and a neighbourhood V' which
satisfios V™ & ¢ 'V} for all 4; this can be done by (1). It is now clear that
V satisfies the conclusion of the lemma.

The next lernma is due to Grauert and Rermmert ([5], Chapter I, Re-
mark 2 in the Appendix to §5); they needed it for proving that a noethe-
rian Banach algebra is necessarily finite-dimensional. They formulated it for
Banach. algebras, but the proof works in a more general context. For the
convenience of the reader we reproduce it here.

LeMMA 4. Let A be a real or complex commutative unital F-algebra which
i3 also o Q-algebra. Let I be o proper ideal tn A whose closure I is a finitely
generoted ideal. Then I is closed.

Proof. Since A is a Q-algebra, I is a proper ideal in A and, by assump-
tion, ['is of the form (2) with (z3,...,2,) € I. Then

D1y, ..y Un) = T1UL 4 oo+ Tptin

is a continuons linear map from A™ to A. Since A™ is also an F-space (with
the product topology), and @ is onto, Banach’s theorem ([2] or [8]) says
that @ is open, and so, for every neighbourhood V' of zero in A, the set
S(V) = @(V,...,V) = 3;V +... + 2,V is a neighbourhood of zero in I.

Since [ is dense in T we have

(12) I+8(Vy=1I

for each V. The elements o; are in I and so (12) implies that f(?r any neigh~
bourhood V of zero in A there are ug; in V and y; in I, 1 <4,k <, such
that 2k == Yk + 3 py Tilbk,is O

i)
(13) Yk == B ”Zmiuk‘.,ia k=1..,n

ezl
We can treat (13) as a system of lincar equations with given vk and uy, ; and
find 2y, ..., 2y by the Cramer formulas. If C' is the matrix (u,-:,j), th.en (1.3)
can be written as (s, ¥n) = Id ~C) (21, ..., Tn), where Id is the 1dent1t_y
matrix. Thus we need to kuow that the A-valued determinant of Id —C' is
invertible in A. Tt is casy to see that this determinant is of the form e — P,
where p is a polynomial in the variables u;,j satisfying p(0,...,0) = 0. Since
A is a Q-algebra, there is a neighbourhood U of zero such that e+U C G(4).
Using now Lemma 3 for U and p we obtain a neighbourhood V' s0 r:uhat the
determinant is invertible in A. The Cramer formulas imply 23 = 3 i1 Yilk,i
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for suitable vy ;, and so the elements ; are in . Thus, by (2), I C I s0 that
I=T.

We can now prove our main result.

THEOREM 5. Let A be o commutative real or complexr unital Fréchet
algebra. Then A has all ideals closed if and only if it is noetherian.

Proof If A has all ideals closed, then it is noetherian by Lemma 2. If
A is noetherian then, by Proposition 1 it is a Q-algebra, and all ideals in A
are closed by Lemma 4.

Observe that the above result is also true for a non-unital algebra. This
follows from the following, rather obvious, fact: a commutative topological
algebra has all ideals closed if and only if its unitization has all ideals closed.
Also if T is a proper ideal in A, then it is a proper ideal in the unitization
of A after the natural imbedding of A in this unitization (for details cf.
[14]). We do not know, however, whether the non-commutative versions of
Proposition 1 and Theorem 5 hold true.

Thearem 5 can be used to show that in the algebras constructed in [3]
all ideals are closed. This fact also follows from Theorem 2.6 in [4]. These
examples, and also other known examples of noetherian F-algebras (e.g. the
algebras of all power series in one or several variables, see [4]) are mul-
tiplicatively convex. Within the class of locally convex algebras no other
examgples are possible, since by Proposition 1 commutative noetherian
F-algebras are Q-algebras, and commutative locally convex F-algebras which
are Q-algebras must be multiplicatively convex (see [10]; the argument given
there works only in the complex case, but the result can also be obtained
in the case of a real algebra, see [13]). Noetherian F-algebras which are not
locally convex can be obtained by considering p-homogeneous seminorms,
0 < p < 1, instead of homogeneous seminorms in the constructions given
in [3]. In this way one can obtain multiplicatively pseudoconvex noetherian
F-algebras which are not locally convex. The definition of an m-pseudo-
convex algebra is analogous to that of an m-convex algebra: the topology
of such an algebra can be given by means of a family of p-homogeneous
submultiplicative seminorms, 0 < p < 1, where the value of p depends upon
the seminorm. When extending the construction of [3] to the locally pseu-
doconvex case we consider the same value of p for all seminorms (for more
details see [14]). -

We now show that the metrizability and completeness assumptions are
essential in Proposition 1 and Theorem 5. The following example shows
that there can exist a non-noetherian complete m-convex Q-algebra with all
ideals closed. We do not know, however, whether a commutative complete
noetherian topological algebra must have all ideals closed.
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ExaMPLE 6. Let X be an infinite-dimensional vector space equipped with
a trivial (zero) multiplication and with the maximal locally convex topology
71, given by all seminorms on X. It is known ([9], Example on p. 56) that
X is a complete locally convex space with all linear subspaces closed, and
since all seminorms are submultiplicative, it is a complete m-convex algebra.
Let A be the unitization of this algebra. It is again complete and m-convex,
it is also a Q-algebra since all elements of the formm Ae + z, where X is a
non-zero scalar and z € X, have inverses A™2(\e — z). Clearly all ideals of
A are closed (it is eagy to see that the ideals of A coincide with the linear
subspaces of X). Since non-invertible elements in A coineide with elements
of X, every proper principal ideal in A is of the form zA = K=z, where K is
the field of scalars and = € X, so it is one-dimensional. Thus every finitely
generated ideal is finite-dimensional and, in particular, X is an ideal which
is not finitely generated. Thus A is not noetherian and has all ideals closed.

The following example shows that it is possible to have a commutative
complete noetherian topelogical algebra which is not a Q-algebra and has all
ideals closed. Thus Proposition 1 does not extend to the non-metrizable case.

ExAMPLE 7. Let A be the (real or complex) algebra of all polynomials
in one variable; it is clearly noetherian. Equipping this algebra with the
topology T:<, we obtain a complete noetherian non-Q-algebra with all ideals
closed.

Finally we show that it is possible to have a noetherian (incomplete)
normed commutative topological Q-algebra with a non-closed ideal. Thus
Theorem 5 does not hold true for an incomplete algebra, even if it is a
Q-algebra.

ExampLe 8. Let A be one of the algebras constructed in [3]. Its maximal
ideal space is the closed unit disc A C C and it consists of fuctions continuous
in A and holomorphic in its interior, and contains all polynomials. If we
equip it with the supremum norm | - |, we obtain an incomplete normed
algebra which is noetherian {cf. condition (a) above) and a Q-algebra. The
latter follows from. the fact that an element z of A is invertible if it does not
vanish on A, 50 that |e — ]o < 1 implies the invertibility of . Now it is
easy to see that the ideal (¢ — 2z)%A is dense in (e — 2)4 in the supremum
norm (here e(¢) = 1 and z({) = ¢ for ¢ € A); for details cf. [14].
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