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Invariant operators and pluriharmonic functions
on symmetric irreducible Siegel domains

by
EWA DAMEK and ANDRZEJ HULANICKI (Wroctaw)

Abstract. Let D be a symmetric irreducible Siegel domain. Pluriharmonic functions
satisfying a certain rather weak growth condition are characterized by r + 2 operators
(r + 1 in the tube case), r being the rank of the underlying symmetric cone.

0. Introduction. Let D be a symmetric Siegel domain. There exists a
solvable Lie group § which acts simply transitively as a group of biholo-
morphisms on D. In [DHP] and [DHMP] we studied the class of S-invariant
real elliptic degenerate second order operators on D which annihilate holo-
morphic functions and, consequently, their real and imaginary parts: the
pluriharmonic functions. Such operators will be called admissible. A well
known example of an operator in this class is the Laplace—Beltrami opera-
tor corresponding to the Bergman metric.

Our particular interest in second order, degenerate elliptic operators is
caused by the fact that for such an operator there is a very well under-
stood potential theory. Indeed, the theory of harmonic functions with re-
spect to an S-invariant operator satisfying the Hérmander condition was
studied in [DH], [DHP]. The origin of this research goes back to H. Fursten-
berg, Y. Guivarc’h and A. Raugi who developed a probabilistic approach to
harmonic functions on groups. We adapted their methods to lefi-invariant
operators on certain solvable groups (a generalization of the VA subgroups
in the Iwasawa decomposition) ([D], [DH]). Together with R. Penuney we
applied these methods to groups acting on Siegel domains [DHP]. The basic
result of the theory is the description of bounded L-harmonic functions as
Poisson integrals on a certain nilpotent subgroup N{L) of 5.
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102 E. Damek and A. Hulanicki

For an admissible I on a Siegel domain the boundary N (L) always con-
tains a group N($) which acts simply transitively on the Shilov bound-
ary. Also, there is a simple algebraic description of operators I for which
N(L) = N(®). The most important consequence of all these facts is the
existence of a number of real (Poisson) kernels on the Shilov boundary (sim-
ilar to the Poisson-Szegd kernel) which reproduce bounded pluriharmonic
functions from their boundary values. However, this class cannot be charac-
terized as the space of zeros of a single admissible operator, except for the
easiest example of the upper half-plane. The cperator exhibited by Forelli
[F] many years ago does not give rise to any interesting potential theory.

Hawing all that in mind we may very well ask the following questions:

1. Can pluriharmonic functions be described by systems of admissible
operators and, more generally, is there any reasonable description of the
zeros of such a system?

2. What happens if we impose growth conditions on functions, other
than boundedness?

In this paper we study the zeros of a particular system of admissible
operators on symmetric irreducible Siegel domaing with a particular growth
condition.

The group § = N(&)Sy is a semidirect product of a step two nilpotent
Lie group N(®) and a group Sp. The action of N(&) on D extends to a
simply transitive action on the Bergman-Shilov boundary 8P of D. The
group Sp is a linear triangular group which acts simply transitively on the
corresponding symmetric cone £2. Identifying functions on P with those on
S = N{(®)Sp we consider three types of growth conditions:

(H?) sup | [F((¢,2)8)]? d¢ d < oo,
*€%0 N (@)

(H3) § § 17((¢2)8)P d¢ dz dmp(s) < oo
K N(®)

for every compact K C Sy (where my is the right Haar measure), and
(H3) | § 1P 2) - i) () d dudu < oo
2 N (&)

for a positive continuous function % on 2 = S - e.

‘The admissible operators are made of basic building blocks Az (see
[DHEMFP]) that are the unique S-invariant operators such that in complex
coordinates 21, ...,z around a fixed point p, we have

(0.1) A f(p) = 0,05, f(p).

Every admissible L is of the form
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m
L= 2 a,jkAjk
J:k=1

with ik = Gk

When shifted to the group S, the operators A, are expressed in terms
of the Lie algebra & of S (see Theorem (1.18)) and the role played by various
Ajr is by no means the same. Making use of some algebra, we were able
to prove that given an elliptic admissible I on an irreducible domain there
are two more operators £,H (or one more for the tube case) such that if
F satisfies (H?) and LF = LF = HF = 0 then F is the real part of a
holomorphic (H?) function [DHMP]. In the proof we heavily exploited the
fact that functions F annihilated by an elliptic admissible operator L which
satisfy (H?) are integrals against the Poisson kernel PZ of an L? function
on the boundary ([DH], [DHP]).

In this paper we study the L-harmonic functions satisfying (H3). This
seems to be a natural gemeralization of (H?), because, on the one hand,
(HE) fits in well with the use of the partial group Fourier transform along
N(2), and on the other hand, the situation becomes sufficiently complicated
to be interesting. In particular, the Poisson kernel PL is of no use here. The
main motivation to look at (Hg), (Hj) comes from [RV], where such spaces
are used to study holomorphic discrete series of the corresponding semi-
gimple Lie group. It seems to be an interesting problem which (preferably
very small) systems of admissible operators are needed to yield plurihar-
monicity provided (Hg), (Hj) hold, and what the role of various Ay, is in
that.

It turns out that for tube domaing we can find r+ 1 admissible operators
A1, ..., Ar, Lg such that if AyF = ... = A.F = LgF = 0 and F satisfies
(H2), then F is pluriharmonic, but its conjugate function does not have to
satisfy (HZ) (Theorem (4.14)) unlike for the (H?) condition. The operators
Ay, ..., A, are single basic building blocks {0.1) closely related to the »-
dimensional Abelian group acting on the nilradical of S (see (1.19) and
(3.2)). Tt secems that they play the same role as H= 4; 4+ ...+ A, and the
Poisson kernel did together for the (H?) case. This role is not completely
clear to the authors and should be further investigated. ,

In general, the condition (HZ) does not suffice to prove that the partial
Fourier transform of F must be supported by 12 U —{2, but (Hi) with ap-
propriate 1 does. Moreover, the function conjugate to F then satisfies (A, i)
as well (Theorem (4.24)).

For a Siegel domain of type two we consider only condition (H7) and we
prove that there are r + 2 admissible operators 4,,..., 4,, Ly, £ such that
if AyF = ...= A.F = LyF = LF = 0 and F satisfies (H) then it is the
real part of a holomorphic function satisfying (H7) (Theorem (5.3)).
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_ The conditions we consider here are of different nature from those stud-
ied earlier in order to characterize pluriharmonic functions. Namely, we do
not agsume anything about the behaviour of the functions at the Shilov
boundary. All the assumptions made previously ([L.1], [L2], [BBG], [DHMP])
included at least existence of boundary values and in [L1], [1.2], [BBG] some
more conditions were imposed.

It is worth mentioning that the simplifying role of the Poisson kernel
was not well understood at the very beginning of the work [DHMP]. In the
present paper we use some ideas on which these first calculations were based.
Some other inspirations came during the visits of the first author at Kiel,
Nancy and Metz. She is grateful to Jean Philippe Anker, Didier Arnal, Jean
Louis Clerc, Jean Ludwig and Detlef Miiller for their warm hospitality.

1. Preliminaries. Assume that ¥ is an algebra and a Fuclidean space
with scalar product (-, -). If for all elements z,y and z in V we have

zy=yz, z(z’y) =2 (zy), (oy,%) = {y,2z),

then V is a Euclidean Jordan algebra. Every such V is in a unique way a
direct sum of simple Euclidean algebras. In this paper V is always simple.
Let & be the unit element of V. Let

2 =int{z?:x €V}

be the associated symmetric cone ([FK], Theorem IIL.2.1). Every symmetric
cone in a Euclidean vector space is of this form ({FK], Theorem I11.3.1).

The most representative exemple is the space of symmetric » x r matrices,
the cone being the set of positive definite matrices.

We start with some facts about Jordan algebras which we need later.
For further material we refer to [FK]. We fix a Jordan frame {c1,..., ¢},
i.e. a system of orthogonal idempotents

C? = Ci, Gicy = 0 if4 % j,

which is complete, i.e. cy+...+¢. = e and none of ¢y, . .., ¢, can be written
as the sum of two non-zero idempotents. All the Jordan frames in V have
the same length r called the rank of V.

Let
1<igj<r

be the Peirce decomposition of V (JFK], Theorem IV.2.1). This means that V
is the orthogonal direct sum (1.1), and furthermore the following properties
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hold:
Vij - Vig C Vi + V5,
) Vi Vi CVie ik,

Vie ' Vi C Vi ifk <,
Vi V= {0} i {i,5} n{k,1} = 0.

Moreover, all the spaces V;, i < 4, have the same dimension and for each
j=1,...,r we have V}; = Re;.

Let G be the connected component of the group G{(12) of all transfor-
mations in GL{V') which leave 2 invariant. Its Lie algebra will be denoted
by G. An element X € § acts on V in the usual way: Xz = é‘!:t- exptX - li=g.
It has a convenient description in terms of the Jordan algebra V. The linear
transformation of V' given by multiplication by z is denoted by L(z), i.e.

L{z)y = zy.
For every € V, we have L(z) € ¢. The elements C1,...,¢r provide a

simultaneous diagonalization of the Abelian subalgebra A of G consisting of
elements

H = L(a), where a= i:ajcj € @VQ,
Namely = l
(1.3) Ho = Lia)s = Ay(H)z, w <V,
with Ay (H) = 3(a; + a;). For H = L(a) € A and i < § we define
ai(H) = 3{a; —ai), Ny ={X€G:[H X]=ay(H)X, Vgea}.
Then, for 4 < 7,
Nig ={zoci:z€Vy}, Nj={zo¢:zeVy),
where z o 1= § L{z) + [L(2), L(c;)] ([FK], Proposition V1.3.3). Moreover,

(1.4) (20¢;))* =20¢; forze Vij.
Let
(1.5) 50=69M3‘€BAE:NEBA.
1<y

Then &y is a subalgebra of G. There is an orthonormal basis of V corre-
spouding to the Peirce decomposition such that in this basis the elements
of A are diagonal and the elements of A are upper triangular with zeros on
the diagonal. We also consider

56“ == @J\fjiEBA,

<]
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which consists of the adjoints of elements in Sy with respect to (-,-}. The
group Sp = exp Sy acts simply transitively on 2 {[FX], Chap. VI).

Let V& = V + ¢V be the complexification of V. We extend the action of
G(#2) to VT,

In addition to VT suppose that we are given a complex vector space Z.
Let & : Zx 2 — VT be a Hermitian symmetric bilinear mapping. We assume
that

B((,¢) € 2, (eZ, 9(¢¢)=0 imples (=0
The Siegel domain associated with these data is defined ag
D={{,2)e ZxV*:32-&((, () e 2}

There is an algebraic representation ¢ : G({£2) 3 g — o(g) € GL{Z) such
that

(1.6) 9%((, w) = 8(o(g)¢, o(g)w},
and the transformation {{,z) — (c(g)¢,g#) is a biholomorphic automor-
phism. of D (see [KW]). The elements { € £,z €V and g€ G(2) act on D
in the following way:

¢ (wyz) = (¢ +w,z+ 28w, () +iP((, ()},
(1.7) o (w,z) = (w,z+ ),

g (w,z) = (c(g)w, gz).
The first two actions generate a two-step nilpotent (or Abelian if Z = 0)
group N{®) of biholomorphic automorphisms of D:

(1.8) (6 2)(w,y) = (( +w,z+ ¥+ 288((,w)).

All three actions (g restricted to Sy) generate a solvable Lie group S =
N(®)5, the group N(F) being a normal subgroup of 5. Since the represen-
tation ¢ is algebraic, the action of o(.A) is diagonalizable over R,

(1.9) Z=(PZ;, with o(H) = A (H)c, ¢ € 2,
i=1
where Ay,..., Ar is the dual basis to e1,. .., ¢.. Moreover, all the spaces Z;

have the same dimension. (The standard proof of (1.9) is e.g. in [DHMP].)
Therefore, the Lie algebra & of § has the decomposition

S=N(@) DS = (ézj) o (Dvs)e (Pry)en
d=1 1<y i<y

The adjoint action of A preserves all the subspaces Z;, Vi, Nij. More
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precisely, if H € A, then

(H,X] = m—)\j(zH)X for X € Z;,
(1.10) [H,X]= A_"(E_HZ;_AJ@X for X € Vi,
[, X] = 2 (H);’)“'(H)X for X € Nij.

Given A € V let

Hy(Gw) = 4(A, 2(¢, w)).-
For A € £2 the Hermitian form H} is not degenerate. If A = Z i_1 Ajcj, the
form. H decomposes nicely as

(1.11) Hy(¢,w) = ZH,\j(Qj,wj),

where ( = {4 +
[DHMPY).

Now we are going to describe a suitable orthonormal basis of G. Let {e; }
be an orthonormal basis of Vj; corresponding to the Peirce decomposition
with the identification e = ¢;. Let

XQGM.J: Z“<_], 1San1m.V;J=
Vi eNy, i<j 1< a<dimN;=dimVy,

be the left-invariant vector fields on & corresponding to ef; and 2ef; ne;,

ij
respectively This means that we identify X7}(e) with the vector ef; € Viy,

1< 7 (XE=X;),and Vg, i< j, with the transformatlon 2ef;oe; € j\/',,:, de-

fined in (1 4). Analogously, let X % be the left-invariant vector field on N (&)
corresponding to €. Let H; be the left-invariant vector field corresponding
to L{es).

In Z we choose coordinates compatible with the decomposition (1.9).
Moreover,

(1.12)  let ejq, x=1,.

ot Gy w =Wy W, Wy GG € Z; (again see e.g.

.,dim Z;, be a basis of Z; such that H,, (eja, €;p)

= 601,67
1e. for
dim Z; dim Z;
(= lialiar W= D Wiati
=1 =1
we have
(1.13)  Hy(Cw ZCgawaa
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Let (o = Zjo + tja and let A7,V be the left-invariant vector fields on

S corresponding to 0y, and 8y,,, respectively. As before, .5%-"‘, 55;‘ are the
left-invariant vector flelds on N (&) corresponding to 8, and 8, .
The basis

(1.14) ARV XS Y Xy, Hy

ijr Fdg
ig orthonormal with respect to the Riemannian form g on S which is the
image of the Bergman metric under the identification 5 3 ¢ +— 5.4e € D.
For the proof of (1.14) see e.g. [DHMP]. Also the complex structure 7 on
&, transported from D, is computed there in terms of the basis (1.14). It is
given by

X )= H.: X.;x = .,;o'l,
(115) T(X;) 3 J( i) 3 3
J(Hy) =—-X;, TS = -X;
and
(1.16) T =8, T8 =-x2

Let X be one of the vector flelds Af, X%, X, and let O, be the partial
derrivative corresponding to X at the unit element e of §, ie. O, f(e) =
X f(e) (e denotes both the unit element of the group S and of the Jordan
algebra V, but this does not lead to confusion). Extending 8, + J 8, to a

left-invariant vector field we obtain
117 Z=X+iTX.

Let Vx be the Riemannian connection corresponding to the biholomorphi-
cally invariant Riernannian metric on D.

In order to describe pluriharmonic functions we are going to use the
operators

Az =Z2Z-VzZ =X+ (TX)? - VxX - VysxJTX.

Ag is the unique left-invariant operator agreeing with (8, +.78)(8x ~ 7 0;)
at e. In [DHMP)] the following theorem is proved.

(1.18) THEOREM. Let
Aj = Axqim;,  LF = Axpiiyy, Af= Axgrivg:
Then
Aj = XJ2 +H_$ - Hj:
(1.19) L3 = (XY + (V5) - H;,
A% = (X5 + (Y5 — H;. m

In what follows we will use the terms cone operators for Aj, A and
boundery operators for LE.
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Now we present some technical lemmas concerning Jordan algebras,
which will be used later. For that we need a notion of determinant detz
of z € V. There are a number of equivalent descriptions of it (see Chapters
I and III of [FK]). One possible definition is that detz is the determinant
of L{z) restricted to the subalgebra R[z] generated by the powers of z. (For
n X n real symmetric matrices detz is the determinant of the matrix x.)
det 5 0 iff dim Rz] = » iff z is invertible in the Jordan algebra V. The set
{z : det = 5 0} is open and dense in V.

We consider the subalgebras

Pe= @D Va P'=P Vi
Lisk ii>k
Let my : V. — P, and #F : V — P* be the corresponding orthogonal
projections and let
Ap(z) = detmem, AF(z) = detn"a.
Clearly, for the Jordan algebra of real symmetric n x n matrices, A;(z),. ..
ooy Ap(2) are the principal minors of .

The sets J = {.’13 4 VlgkgrAk(m) % 0} and J' = {.‘E : vlSkSrAk(m) 75 0}
arc open dense in ¥,

Givenz € Vi; @...8 V1,0 Vijm @ ... & Vi, let
(1.20) 7(z) = exp(2zD¢;)
where, as before, zn¢; = 1L(2) + [L(z), L(c;)]. Notice that by (1.4}, 2z0¢;
€ N for z € @,y Vir, and 220¢; € N* = @, Ny for z € 7] Viy-

(1.21) Lemma [FK|. For z € J there exist

”
e P Vi, 1<isr-1L
k=j+1
and real numbers ai,...,a, # 0 such thot

w=r(). (e ( i: ﬂ-kck) )
k=1

the elements 20 and the numbers a; being unique. Similarly, forz € J' there
exigt

i—1
ze@PViy, 2<i<r,
k=1

and real numbers al,...,al # 0 such that

z=7(z)...7(2) ( Z aLc:c),
k=1
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the elements z; and the numbers a; being unique. Moreover, for every y &
N = expN, the restriction Ady|y is of the form

*
Adyly =7(z") ... 7(z7Y), where e P Vi, 1<j<r—1.
k=g
Proof. The first statement (for & € {2} is Theorem VI.3.5 of [FK]. The

generalization for x € J or # € J' is straightforward. The third statement
is Theorem V1.3.6 in the same book.

The third statement of Lemma (1.21) provides a convenient system of
coordinates in the group N = exp N. Moreover, since N™* consists of adjoints
of elements of A with respect to (-, -), the above lemma shows that every

x &€ J' is of the form
I
x = Ad;( E akck)
k=1

for some y € N and non-zero numbers ay, ..., a,. We will also write 2 as
(s
(1.22) o= AdjAd, (D ener)
k=1

with Ad, = L(3";_; |aricr), €k = sgn ag.

(1.23) LeMMmA [DHMP]. Let y;; be the Vi -component of y in the Peirce
decomposition (1.1). Then

<Zakck:A—dy Cj> =a; + % Zal‘yﬂiz' =
k

I>4

2. Regularity of the partial Fourier transform along N (®). Let
F' be a function on § such that for every compact set K ¢ 5,

(2.1) {1 1F(¢ 7)) 2 d¢ dads < .
K N{®)

In this chapter we concentrate on the partial Fourier transform of I along
N(®). We recall that N(&) is step two nilpotent. If it is Abelian all goes
through with obvious simplifications.

We start with some basic facts about Fourier analysis on N (). All what
we need has been elaborated in [OV] for the N(&) which arise in the theory
of general Siegel domains of type 11

Let { , ) be the Hermitian scalar product in which the basis (1.12) is
orthonormal. We define a Hermitian transformation My : Z — Z by

(22) HA(C:W) = (M)\Ca w)’ C:w € Z:
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and consider the set

A={)\eV:H,isnot degenerate} = {A € V : det M), + 0}.
Since for A € 2, H\(¢,¢) > 0, det My, is a non-zero polynomial of A and so
A is an open set of full measure. The set A carries the Plancherel measure
(see [OV])
(2.3) o(A)dX = |det M, |dA.
For every A € A we define a complex structure 7, which corresponds to
A and determines the representation space Hy. Let |Ms| be the positive
Hermitian transformation such that |Mj|* = M2. Then

T == 'ilM)\l_lMA.

If A € 12, then 7 = 4l =: 7, ie. it coincides with the ordinary complex
structure in Z. Now, J has a description in an appropriate basis. Namely,
there is a A-measurable choice of a basis ef, ..., e}, orthonormal with re-
spect to (-,-) such that

H;\(ej‘,eﬁ) =z O‘jé‘jk
with o, = 41. In the basis e},..., e}, Je?, ..., Jep, of Z (over R) we have
In(e}) =c;Te; and Jn(Te}) = —oje].
Let By = S H,. A direct calculation shows that
B (Jxe}, ex) = s
and so
(2.4) By(7x(,¢) >0 if ¢ F#0.

Now we are ready to define a version of a unitary irreducible represen-
tation U* (the Fock representation) associated with A € A. Let H, be the
set of all C%° functions F' on Z which are holomorphic with respect to the
complex structure Jy such that

F(a(A) e r/BBAI) € [2(Z, dz),

where dz = dz1dy; . . . dZmdym and the coordinates z; = ©; +iy; are defined
with respect to the basis (1.12). In the basis 3, ..., ¢}, we write ¢ as

$= Ge;

Then, by construction of the basis ej, d¢ = p(A)dz, the appropriate scalar
product in H, and the representation Uy are defined by

(Fu, Fa)x = | FL(QO)Fa(Q)e™ ™69 d¢
z

and _ . -
(2.5) UM¢, ) F(w) = e 2l e/t p(y, - )
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with w¢ = By (Jaw, ) +iBa(w, {), [¢|* = (C. The orthonormal basis of H,,
which changes measurably with A is as follows.

Given a multi-index o = (&1, ..., &) let
e} /2
_T
~ar 116
where §; = (G if oy = Land §j = ¢, if o5 = ~1, &' = aql...cm),

lef = 23—1 aj. Then every £2 is holomorphic with respect to the com-

plex structure 7, and the family {¢2} forms a (, )x-orthonormal basis.
Indeed,

(géagé)A = S fégge_“BA(JAC,C) dC
Z
il +181)/2

ﬁ“—f——SHC%CﬂT e Ei 1l g,
Given s € § let

Fe(,z) = F((C: $)S)
Since Fy € L*(N(®)) (see (2.13)), Up, is defined for almost every A and it
is a Hilbert—Schmidt operator. Let

(2.6) ﬁ(’\v @, B, 5) = (Uéggalafﬁ.\)'
By the Plancherel formula we have

(2.7) VIFO @, 8,)Pe(n) dr < [ IIUR, se(r) dr = | Fi3a.
v v

We see that fﬁ()\, o, B, s) is a measurable function of both variables A, s and
by (2.7) we have an analog of (2.1) for the Fourier transform, i.e.

(2.8) S S \ﬁ()\,a,,@, s)|zg(/\) dAds < oo for every compact K < Sp.
KV

We are going to prove that for almost every A, F(), q, 3, s) is smooth as a
function of 5. Then we look at the differential opera,tors (1.19) on. the Fourier
transform side.

Let ¥1,...,Y, be a bas1s of &, and let I = (I1,...,1,) be a multi-
index and Y‘lr = YIl . Notice that for almost every A, and every
o, B8, YT F()\ a, 3, s) has a well defined meaning as a distribution on Sy. For

smoothness of Y/ F F(A «, 8, s) we start by proving that the derivatives of I/
with respect to s exist in L2(N(®)). Let

IF(C)llzz = | |F((¢ 2)s)]? dC da

N(2)
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(2.9) LEMMA. Let F be harmonic with respect to a real, elliptic, second
order, left-invariant operator on S and suppose F satisfies condition (2.1).
Then

TRy tYY~YIF(.s
(2.10) lim| Y B sexpty) G _yyrp, 3| =0
t—0 t
and for every compoct K C S,
YIF(, tYY—YIF( s
(211)  lm | (,sexpt¥) 09 _yyipe sl ds=o,
t—>0K t L2

where Y is one of Y1,...,Yn.
Proof. Since

YIF((¢, 2)sexptY) —
t

YIF((¢,)s) _ %iYYIF((c,m)seXPTY) dr,
o}

it suffices to estimate the L2-norm of
i

(2.12) % [ Yy F((¢,@)sexprY) — YYTF(({C,2)s)| dr
o

T

ﬁHYzYIF( ¢,m)s expuY) du) dr.

ﬁ-li—‘

Let B be a ball around e in S. By the “left-invariant” Harnack inequality,
for ¢ sufficiently small, we have

(213)  |YYIF((¢, w)sexpuY)| < e { |[F(( 2)s(Gr2a)w)| dCy doa duw.

B
Therefore,
“YZYIF(',SGXPUY)”ZLz )
<o’ | (SLF((C,w)s(Cl,ml)w)Ld(ldmldw) d¢ dw
N(g) B
<er?|Bl | VIF((E )8 ma)w)? dr dey dw d de
N(#) B
§cr2!B1§ S IF((¢,2)sw) |* d¢ de dw dy dizy.
B N(®)

If s belongs to a compact set K, the integral on the right side is bounded
by a constant depending on K. Hence

|Y2YIF(, sexpuY)|lz» < e(K)r
and so (2.10) and (2.11) are proved.
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(2.14) LEMMA. Let F be as in Lemma (2.9). For every multi-index I,
every o, 8 and every s € 5o,

(2.15) YIF( 0, 8,8) = (U rmy, Exer 30D
for almost every A. Moreover, if Y is one of Y1,..., Y, then
VIF(\ o, B, sexpty) — YIF(A a, f, 8)

(216) lm { ‘
v

t
2

- (U(AYYIF),EM,EA,@)A o{AYdA =0

and for every compact K C Sy,
15 _ IS
(217)  lim S S ’Y F(ha,B,sexptY) —YIF()\ o, (3,5)
£—0 i
KV
2
- (U()\YY-’F)sg)\aaEAﬁ)A o(A)drds = 0.

Proof. It suffices to prove that {2.15) implies (2.16) and (2.17), and to
use induction. First we notice that, by (2.15),

YIF(\ o, B,sexptY) — YIF(\ a5, s)
n ( - (U()\YYrF)EGAmGAﬁ)A

= (V0w 1F)s owp e~ (TP (v ), Ees 080
But by the Plancherel formula the L?(p(A))-norm of the right side is domi-
nated by
‘ YIFP(, sexptY) —YIF(. 5)
t e

Hence (2.16) and (2.17) follow from Lemma (2.9). Now, from (2.17) we
deduce {2.15) for Y'Y, which justifies induction. w

(2.18) LEMMA. Let F be as in (2.6) and let X be a central element of
N{(®). Then for all a, B, s,

(2.19) (Ul ry, Exa Exg)n = 2mi{A, Ady XY (U, Exar Erg)a
for a.e. A

Proof For a U function ¢ we have
(U_%tpé)\oc: Ea8)n = 2mi(X, ) (U bxa, E28)

for every A € A. Let ¢ € C°(N(F)), 0 < ¢ < 1, ¢ = 1 on a neighbourhood
B of 0 and ¢n((,z) = ¢ 0 dn-2(,2) = $(n™1¢,n"?z). Clearly 0 < ¢, <1,
¢n =1 o0n By = 6,8 and ¢n — 1. Moreover, X¢n(¢,z) = n~2(Xd)n(C, )
because 0, is an automorphism of N($). We approximate F({(¢,z)s) in

—YY*F(,s)
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L*(N(®)) by ¢nl(,2)F({(,2)s) = Fu(((,a)s) = FP((, ), which is in
Cge(N(®)). Since (X F*), = (Ad, X)FT, (2.19) holds for F7*. To conclude,
it suffices to show that (XF"), converges (in L%(N(®))) to (X F)s. This
follows from

| 1X (@) (¢ 2)8) = XF((¢,2)0) dedl

N{(®)
< J (X (uP) (¢ ) + 20X (¢, m)s)[) de
BY
and the fact that by the Harnack inequality both F, and (X F), are in
L (N(®)). w

(2.20) COROLLARY. Assume that F satisfies (2.1) and is annihilated by
an elliptic, second order, lefl-invariant operator on S. Then for all o, 8, s
and almost every A,

(A F) A\ e, B, 8) = (—4n* (N, Ad, Xj)? + HE — H)F(\ @, 8, 5),
(A% F)MM\a, B, 8) = (~dn®(h, Ads X5)2 + (V3)? — H))F(M, 0, 8,5). w
3. Fourier transform of a function annihilated by cone opera-

tors. In this section we apply the operators (1.19) to functions which satisfy
condition (2.1). We assume that

(3.1) LoF =0

for a second order, left-invariant, admissible, real elliptic differential operator
Ly on 5

(3.2) AjF=0 forj=1,...,7;

and there are strictly positive f such that

(3.3) LoF =Y +3AGF = 0.
i<y

Notice that for non-tube domains, (3.2) and (3.3) do not imply (3.1).
Formula (2.1) allows us to take the partial Fourier transform of F' along

N (&) and consider the 4A;, Ly on the Fourier transform side. By a subsequent

application of Ay, ..., A, and Ly we obtain the following theorem.

(3.4) THEOREM. Assume that F' satisfies (2.1) and (3.1)-(3.3). Then for
all o, 3,5 and almost every X,

(3,5) ]/5(}\, a,ﬁ, s) = d*()\’ o, ﬁ)e—Zﬂ'()\,s-E) + d+()\, o, ﬁ)ezw()\,s-e)_

REMARK. In the (H?) case, ie. for Poisson integrals of L-functions,
F() a, B, s) is bounded as a function of s (for A, ¢, 8 fixed). Therefore, the
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equation
™
(%)
g=1

read on the Fourier transform side implies (A;F)* =0for 7 =1,...,r, and
consequently ﬁ(/\, o,B,8) = 0if A & 20U -0 (see [DHMP}). Then (3.5)
follows from the formula for the Fourier transform of the Poisson kernel
inside £2U — 2. If only (2.1) is satisfied we have to apply 4;’s one by one
and Ly at the end to obtain (3.5). Moreover, all these do not imply that
F(\a,8,s)=0for Ag RU -1

If Z = 0, ie. in the case of a tube domain, Theorem (3.4) should be
formulated in the following way:

If F satisfies (2.1), (3.2), (3.3), then for all s and almost every X,
F()\, S) = d_ ()\)6_277()‘73'5) + d+(A)62ﬂ‘()\,H-e)'

As we shall see in Theorem (4.1), for a tube domain this implies pluri-
harmonicity. In other words, if on a tube domain F satisfies (2.1) and is
annihilated by r 4 1 operators Lo, Ay, . .., 4., then F is pluriharmonic.

Since the proof of Theorem (3.4) is long and technical we have added an
appendix with the proof of the same assertion for the case when (2 is the
cone of 2 x 2 symmetric positive definite matrices. It illustrates the main
idea. of the proof.

We fix a, 8. Let W be the set of M's such that F(\ e, 8,) € 0> (%)

and moreover,

(36) (—4n?(NAd, X)) + H? - H)F(\ e, 5,8) =0, 4=1,....r,

(3.7) Do (—4rt (0 Ad XE)2 + (VS - H)F(\ 0,8, 8) = 0,
i< f

By Corollary (2. '20) W is of full measure. Assume now that A = Ad* A

’U(J
with Ag € 30, Vj; and let f(X,s) = F(\a , 8,45 s). Then, for A € W, we

have ‘
(3.8)  (—4w(ho, Ad, X)) + H2 - H)F(A\8) =0, j=1,...,r
(3.9) > 8 (—4n2 (Mo, Ad, X2+ (Y22 - H)f (A s) = 0.

£g
Let
W;(ha,y) = 2r{do, Ady X3}, WE(ho,y) = 2w (d, Ad, X2).

It follows from Lemma (1.23) that there is a neighbourhood U7 of e in N
such that W;(Ag,9) #0forj=1,...,rand y e U.
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(3.10) THEOREM. Assume that f()\ s) satisfies (3.8). Then

(3.11) (A ya) = de My)eli= EWilawlas g e T g e A,

where § = (81,.. .,
function of y.

8}, 5- = +1. Moreover, for every &, ds{(Xo,y) 45 @ smooth
i

Proof. We proceed by induction proving that if the first & equations
(3.8) are satisfied, then

(3.12) FlA ya) = Z ds(A, yax+1 .- - a.r)ezj;l §Wilowdas e U,
§

where § = {d1,...,08,), 6; = £1 and for every 6, ds(\, yagy1...0.) is a
smooth function of ya. Assume (3.12), the first step being k& = 0. Applying
the k + 1 equations to f we obtain

Z((‘—Wk+l(AD7 ) + aik.H_) (A! yak-l—l oo G
s
for y € U, a € A. (Notice that H? — H; = a}93 .) Now if for three numbers
1, co and 1 5% 0 we have
(3.13) c1e” "+ ege™ =

for every positive a, then ¢1 = ¢g = 0. Applying this principle k& times we
obtain

))62'}=1 &HWildowle; -

(—Wis1(20,9) + 82, Jds(X yamsa - ar) = 0
for every § = (81,...,0), @« € A and y € U. Therefore, since Wi11(Ao, )
has constant sign on U/ we have

(3.14) ds(Myag+1 .. Gr) = d(5’1)(A,y@k+2 L ar)ewkﬂ()m,y)akﬂ
+ d(5,—1)(/\= Yak+2 .. .a,.)e"“WkH(/\o,y)akm(-l )
Moreover, for a4 7 k1, (3.14) is

d,ﬁ(A, ya;ﬂ+1 . a,,’_) = d(&,l)()\:yak+2 L aT)eWk+1(>\u,y)ak+1

=+ d(g,_l)()\, YOkt2 - - - O

The above system of two equations has the solution

P)E—Wk+l(’\01y)a"k:+l .

1 — W (Powy)a)
disy (A Yarys. . ar) = det (ds( X yaper - - - ap)e” VirrPob)oe

-4 Ao, ¥)ak
— (A Yy 1Oz - o ap)e” V00 wlaktty,

1 W, Ap,y)a
d(&,—l)()\:ya’k+2 oG] = g —(da{A, yak+1ak+1 Y w1 (X0,8)aK+1

— ds(A Yaht1 - ar)eWk+1(Ao}y)aL+1):
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where
det = eWrr1(0¥)(@rt1=0411) _ oWit1 (o) (ahyy —ak4a) £ 0,
which proves that ds 1), dis5—1) are smoothon U. =

The next step will be to eliminate y from ds(A,y), i.e. to prove that
ds(A, y) = ds(X), y € U, and moreover, that ds{A) # 0 only if § = (1,...,1)

oré =(-1,...,—1). To do it we use (3.9). First we introduce some notation.
Let
Po=PViy, M= P Ny, Ne=exphi,
L,i<k i<i<k
N= @Nir, N = expN.
i

Also we need some identities for derivatives of W, W5.
(3.15) LEMMA. We have

- 0 if k%4,
(3.16) ﬂ?Wk = { Wic; if ko= 'l:,
and
(3.17) Yews = w;.
Proof. We have
~ d ~
YiiWelhy) = 212 (0 Ady o 78 X) -
d -~
= 2WEE (A Ady T(ted;) Xy) Y
where 7 is as in (1.20). But, in view of Lemma VI.3.1 of [FK],

o] . €k if k& 75 i,
T(tefi)ex = { tef; + 2t°L{e — ci)L{e2)%e; if k=1.
and (3.16) follows. For (3.17) we write again

e d > d Sa
W5 y) = 21200, Ad X =2 Ad reg) X

yexp ¥y 3
By Lemma VIL.3.1 of [FK], we have -
T(tefy)ef = e +2(e— ci)(ted - ef)
=e;; +2(e— ci)%t(ci +¢5) = e + tj,
which implies (3.17).
(3.18) LEMMA. Assume that f(), ya) is given by (3.11) and additionally
satisfies (3.9). Then for the family of functions ds the following identity
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holds:
(3.19) > 98 (a; (% — 6)Wi 00, v)ds (A w) + 35057 (V.3) s (X, v)
i<jgr
o,

+ 20;8:(F2 ds (A, 1)) WE Do, y) ) eTim S Wrlowdan = g,
Proof. Since H; = a;0;, we have
(3.20)  Hj(ds(h,y)elim BWellowlai)
= a;0;W;i(ha, y)ds (X, y)eth= BT Coias
and
Ya(ds(), y)etr=1 Ska(Ao,y)ak)
= o}/ %a; A (Vgds () + W5 (ho, y)asds(, g))ekim e Come
and
(3.21)  (Yi3) (ds(A, y)eZim 4Welotlar)
= aja; (V5 ds (0, ) + 8:W; (o, v)asds (A, v)
+ 280 W5 (D0, Y)Y i§ds (1)
+ alW (Ao, )2ds(A, y))eXh=t Wi (Ao,p)an,
Putting (3.20) and (3.21) together we obtain
(~a3a: W5 (R0, 1) + (V)7 = Hy){da(,y)eibes 7o)
= (aj (6 = &)W, (00, 1)ds (A, ) + agas (¥ ds(M v)
+ 2058 (T ds (X, 1)) W5 (o, y))eZim S Lomler,
which proves (3.19). »

(3.22) TuEOREM. Let U be a neighbourhood of e in N such that W; (Ao, V)
#0forj=1,...,r,y€U. Letds, § = (81,..-,0r), &; = +1, be a system
of smooth functions defined on U which satisfy the equation

(3.23) > v5lai(i ~8)W;00.9)ds(y) + aza;t (Y2)2ds(y)
T<iEr
b

+ 20,6, (F3ds () WG (o, y) JeFhms SerlBomien — g
with v > 0. Then there is a neighbourhood U' C U such that every ds is

a constant function on U’ and moreover ds 5 0 only if § = (1,...,1) or
§=(~1,...,-1). :
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Proof The proof is by induction with respect to r. The induction step
includes also the initial case r = 2. Let
L= Z 755 (05(8; — 8:)W5 (o, 9)ds () + g0, (Vi) ds(y)
S

+ 20;8:(¥5 ds () W5 (o, ) Bt B Cowen,

I3 is defined precisely in the same way as I; but with §, = —1. Let
= 3 vl = 60We (0, 9)ds(v) + a7 (¥i5)?ds (v)
a,§,§:=1

+ 261 (V2 ds(y)) Wi (Ao, y) e Bims 5k Co e

I4 is defined in the same way as I3 with d, = —1. Therefore, (3.23) becomes
IleWr(AD:y)a'r e Ize“Wr(Aﬂiy)ar +ar(I3€Wr(A0ay)ar + Iae"wr‘()\ﬂay)ar) = 0.
Dividing both sides by
areWr('\D:y)ﬂr if W (AO; y)
ape~Wrlowlor 3 W (Xg 4) <

and letting a,, — oo, we obtain I3 = 0 or Iy = 0, respectively. Now, if
a, — 0o we conclude that Iy = 0 or Iy = 0, respectively. Hence we obtain
I3+ arly = 0 in the first case, and /1 + a,{3 = 0 in the second, which yields
Iy =1y =0o0r I; = I3 = 0, respectively.

Let ¢’ = (61,...,0p-1), §; = =1 and § = (§',1). We write N as
(3.24) . N=NN.i.
Then
(3.25) ds(y) = ds(uy’), uwe N, v € N._;.

Then we fix u and consider I; = () as an equation on the group N.

We obtain a new system of functions dg(y') = ds(uy’). We want to
conclude that ds are constant and moreover dy # 0 only if & = (1,...,1)
or ¢’ =(-1,...,-1).

‘We claim that the ds:’s satisfy equation (3.23) on a neighbourhood U'
of ein N,_; fora M) € Zrl 45 instead of Ag. The Aj is defined by

(3.26) b= ZAjcj, where X =3 Ajc.
J=1 F=1

First’ we prove that for j < r,

(3.27) Wi‘?(%:%”) = VV}?(Adu Ao, ¥) = (Ao;y )
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(with the convention We = W;). We write u = exp Y and notice that
(3.28) (ho — A% Ao, X) = (Ao, X — ¥ X} = 0.

Indeed, by (1.10), [NV, V] C D Vir = V7, which gives (3.28). On the other
hand, if j < 7 then Ady X% € Pooy =@, j<,_y Vij and s0

WA do,3') = 2m (3o, Ady X5) = 2m(Xo, Ady X3) = W5 (N0, 3/),
which is (3.27). Moreover, since }2‘; is left-invariant we have
Yds (v') = (Yde ) (wy)-
Finally, we choose neighbourhoods fj, U' of e in N and N,_1, respectively
such that UU' € U and for ¢/ € U’ we have

(3290 Y A5(as(6 — &)W (M, )de (U) + agoi (¥5) e (v)
i<j§“<7'r

+ 20,6 T s ()W (N, ) THE P08 Iox — g,
Hence, by our inductive hypothesis,
d5: (y") = d(a’,l) (uy') = d{(;fll) (u)
and dg{u) =0if & # (1,...,1) or (=1 —1). Considering I = 0 instead
of I; = 0 we obtain the same conclusion for the system ds .1
Now we make use of the fact that I3 = 0. Since &' == (1,...,
§ =(-1,...,—1) = -1, for § = (¢',1), we have

3 (8 (8 — 5:) W (Do, 0)dia 1 (w) + a7 (Vi) g ()

i<r
[+4

1)=1or

+28;(¥ 2,y ()W (A, 1))

= 3 42 (a7 (F2) A (w) + 26:(Vigda ) () Wiz (M, 9)) = 0
i<r

and

> (v

i<r
o

— 6,)We(D0,9)d(-1,1) () + a7 (Vi) 1,1y ()

+26:(V2d (1,1 (W))WE (o, 1))
= S (= 2We (A, w)d(—1,1) (1) + a7 (Vi3 a0y (u)

i<y
23

+26;(V2d(_1,1 (W))W (Mo, v))) = 0.
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The above identities hold for y = wy', u € U, v el Proceeding as before
(i.e. letting a; — oo separately), we find that for every i,

Z(Ea)zd(l,z)(“) =0, Z(Eg)zd(——l,l)(u) =0.

e o

Therefore,

> 1a¥ida n @Weo,y) =0,

Ty
(3.30) = -
> A8(We (R0, w)di—1,y (1) + F2di_ 1,1, () WE (Ao, ) = 0.
Tl
[+

Since the above equalities hold for every ' € U’, we may put ¢ = e. By
Lemma (1.23) we have

W ()\01 u) =Ar
according to the decomposition (3.24) and (3.25). We also need a more
precise formula for W (g, ). By (3.16) and the fact that N is Abelian,
Wi (o, u) = ﬁi‘Wf‘ (Ao, u) = aﬁ;wf(}\o: u).
Hence Lemma (1.23) implies that
WE (Ao, u) = Apull.
If we again take into account that N is Abelian, (3.30) becomes
Z 100, dayuud =0, uel,

i<y
o

> 0% da g = — (D48 )dan(e), wed.
ié'r‘ igr

Continuity of ds implies that d(y 1) is constant and d(—1,1y = 0. A standard
proof of that is included in Lemma (3.31) below. w

(3.31) LemMA. Let U be a neighbourhood of 0 in R* and let d be o
continuous function which satisfies

k
(3.32) Ebjaujd(u)uj = oemed, U € U,
—

with by > 0, ¢ 2 0. Then d is constant and d =0 if ¢ > 0.

Proof. We solve the equation (3.32) by the characteristic method. Let
V() = (na(t), .., 7 (t)) with 9;(2) = ueb*. Then

(3.33) Y3 (&) = byy;(t)
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with the initial condition v(0) = (u1,...,u,). By (3.32), (3.33),

2 d(8) = 32 By, s (DA4(®) = —ed(r(E).

Therefore, d{v(t)} = e~**d(y(0)). All the characteristics meet at 0, lLe.
 Him () = 0.

If ¢ = 0, then d is constant along the characteristics so by continuity of d,
d(y(0)) = d{u} = d(0). For ¢ > 0 assume that there is u = (0} such that
d(u) # 0. Then lim;—, o0 d{y(t)) = oo, which contradicts the continuity
of d. m

Now putting together Theorem (3.10), Lemma (3.18) and Theo-
rem (3.22), we are able to prove the main theorem of this section.

Proof of Theorem (3.4). Applying Theorem (3.22) to ds(y) = ds(A, ¥y} we
see that
(3.34)  F(Aya) — da(A)eZint WsOowas _ g3 (x)e~ Tima Walomles —

for y in a neighbourhcod U of ¢ € N and all @ € A. On the other hand,
the left hand side of (3.34) is defined on the whole of Sy and annihilated
there by the operators (3.8) and (3.9), i.e. by an elliptic operator which is
the sum of all of them. Therefore (3.34) holds for y € N, a € A. Since
W; (Ao, you) = Wy (A, y) and ﬁ()\,a,ﬁ,s) = f{\, yos) we obtain

B(x0,8,y0) = d- (A, @, )™ T WO 1 dy (3, 0, Ble>im WA,
But

r v r
W w)es = 2 S (AT A, Ady X) = 27 AdJL A Y X;)
i=1

J=1 F=1
= 2m(Ady, A,e) = 2m(), ya - €)
and Theoremn (3.4) is proved. w

4. Pluriharmonic functions on symmetric tube domains. In this
section we are going to characterize pluriharmonic functions which satisfy
(2.1) on a tube domain. More precisely, our goal is to prove that provided
(2.1), a real-valued function F is pluriharmonic iff (3.2) and (3.3) hold.
Clearly, only sufficiency of (3.2) and (3.3) is of interest. In view of Theorem
(3.4), (3.2) and (3.3) imply that the partial Fourier transform of F is of the
form

(4.1) FO, s) = d_(\)e™2 o) &+ d, (n)etmhee),

Therefore, we have to show that (4.1) implies pluriharmonicity. This is our
Theorem (4.10). However, we will show that (2.1), (3.2), (3.3) do not imply
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the existence of a function F’ conjugate to F' that satisfies (2.1}, (F” is called
a conjugate function to F if F' 4+ iF’ is holomorphic. Clearly two functions
conjugate to F differ by a constant.) More can be said about functions
which satisfy a stronger condition than (2.1), i.e. functions which belong to
a certain weighted L?-space on D = V + {12 (see Theorem (4.16)); some of
those spaces are of interest for the representation theory of semisimple Lie
groups ([FK], [RV]).
For a tube domain D = V + {2, (2.1) becomes

(4.2) S S |F{zs)|® dzds < co  for every compact set K < S,

KV
or, equivalently,
{4.3) S S |Fz+iu)[?dedu < co  for every compact set K C £2.

KV

‘We shall identify D with S by z =zs-ie, z € V, s € §p and functions on §
and D, respectively.

It is not difficult to see that if a holomorphic function F satisfies (4.3),
then the partial Fourier transform of F along V is of the form

F(Au) = d(A)e2md)
(see e.g. [RV]) and for every compact set K included in {2 we have

(4.4) | 1 1dPesm®® dx du < o,
KV
Conversely, if d(}A) satisfies (4.4) then
(4.5) Flz 4 iu) = S d(A)e~ 2 2rihe) gy
v

is holomorphic. (The Fourier transform in (4.5) and in all what follows is
meant in the Z*-sense.) Holomorphy of F follows from Theorem 2.10 of [RV].
This theorem characterizes holomorphic functions which belong to Hy, e
satisfy

(4.6) S S \F(z + )| 2 () dz: du < oo,
v
for a positive continuous function 4 on 2. Let

L) = e (u)du, ¥y = {1 () < oo},
]

Then Vy, is a convex set and Iy is continuous on V;;. Theorem 2.10 of [RV]
says that (4.5) gives one-one correspondence between Hy and pr(qu), the
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latter being the space of measurable functions on Vy; such that
V 1d)PT, (M) dA < oo
Vi
If (4.4) holds, then for a suitable 4,
§ Vi) Pemtmdmap(u) dAdu < oo,
v

whence we may conclude that F is holomorphie.
Let now F be a pluriharmonic function which satisfies (4.2). By Theorem
(3.4), its partial Fourier transform is of the form

(4-7) F(X, u) = d_ ()\)8*27"()\,“) +dy. (A)EQW(,\,u)
with
(4.8) {1 IFGLw)Pdrdu < oo

KV

for every compact K C {2 and
(19) d_(—3) = TN

((4.9) means nothing more than that F is real-valued).

It is natural to expect that {4.7)—(4.9) give a characterization of Fourier
transforms of such pluriharmonic functions. Indeed, we have the following
theorem:

(4.10) THEOREM. Let d_(}), dy(\) be measurable functions,

d(—N) = (0,
and let
g0 u) = d_(Ne A 4 dy (e,
Assume that for every compact set K C {2,
| § lg(aw)? drdu < oo.
KV
Then ‘
Fz +du) = S g()\,u)ezm“*“) dA
v
is pluriharmonic.
REMARK. Notice that we do not assume that each of
d_ (,\)e-—ZTr()\,u), d+(A)e2w(A,u)

satisfies (4.8) separately and, in fact, this is not true for the partial Fourier
transform of a pluriharmonic function. As an example of such a situation
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we take g defined on R -+ iRT by
1 —&T 1 21 (A
(4.11) Q‘(A, 'u,) = ‘)\'43()\)6 2r{du) __ X(b()\)ez {A, ),

where ¢ € Co(R), ¢(—A) = @(X). Therefore, we cannot treat d_(A)e= 27 )
and d..(A\)e?™A % separately and draw the conclusion immediately from the
Rossi—Vergne Theorem, but we must proceed in a more delicate way.

Let

o0
Gz +iu) = | (}ng(/\)e'z'”()\’“) - }ng(/\)e%()"“)) XA X,
—00
All the functions G' conjugate to G are of the form
o0
G!(m + iu) - S (%(ﬁ(A)e—Zw(A,u) + §¢(A)EZW(A,u))e2wiAm dax + ¢,

where the integration stands for the Fourier transform of a tempered distri-
bution. None of the G'’s satisfies condition (4.3).

Proof {of Theorem (4.10)). First we prove that for every ball B, (0) ¢ V
both

95 (M) = Lge(yd—(N)e >, g8 (A, u) = 1g¢(yd (V)P
satisfy (4.8). If so, then

FE(z +iu) = S g% (A, u)e?™ %™} dy i holomorphic,
v

F§(z + iu) = S g5 (A u)e™ M dy s antiholomorphic.
v

Moreover,
F& (z + du) = F* (z + iu).
Hence F£ + F% is pluriharmonic. Moreover,

UV IF@ + du) — (F2(x + dw) + FE (2 + )P da du
KV

= § flohvw) = (5. (0 u) — g5 (A u) PdAdu
KV

={ | 1oxwFdrdu.
¥ B.(0)

The last integral tends to zero as £ — 0, which proves that F is plurihar-
monic. .
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Now we turn to the proof that ¢=, g5 satisfy (4.8). Given u,u’ € {2,
u # v, we have
g(}\’ u)e—:m(,\,u’) i d_(_)\)e—Zw()\,u—}-u’) + d_l_()\)eiz:r()\,u—u’}’
g()\’ ul)e—_.rr(A,'u.) — dﬁ_(_)\)ew2ﬂ'()\,u+u') + d+ (A)BQW(A’H'HH‘).
Hence

g u) — g()\, u/)EQW(A,u’—u)
1 — efr{du —u} )

(4.12) di ()™ =

We are going to prove that for every ¢ > 0 the right hand side of (4.12)
restricted to BS(0) satisfies (4.8). Let e1,. .., e, be an orthonormal basis of
V and let

Ur={xeV:{e)>e/n}, U ={AeV:(\ep) <—¢/n}.

Then
(4.13) B(0) < | Wi uuy).

Jj=1
So it is enough to show that for every j,

d+ (A)EZW(A’H)lUf , d+ ()\)92”’\’“>1U7

J M
satisfy (4.8). Let n be such that for every u € K, u + By(0) C (2. Let
W =u— (1/2)e; and A € U . Then

eZ?r()\,u’_u) — e—n-)r(A,eJ-) < E—:qs-n‘/'n., e41r()\,u’_u} < 6—2'q£'rr/n'

Hence

g(/\, u) _ g()\’ u.’)EZW(A,u'—u)
1 — e4ﬂ()\,u’—~u)

_ Lol + g )
- 1 — e—2mne/n ’

which shows that

{1 a2t dd du < oo.

K UJ.+

For { € U] we choose v’ such that u' —u = (n/2)e; and proceed as before.
Finally, by (4.13),
I 1 dePet™* ¥ dxdu < oo. m
K V\B:(0)
As a corollary we obtain the main theorem of this section.
(4.14) THEOREM. Let D be a tube domain and let F' be a real-valued

function satisfying (4.2). Then F is pluriharmonic if, and only if, (3.2) and
(3.3) hold, but its conjugate function does not have to satisfy (4.2).
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Let Py be the space of pluriharmonic functions satisfying (4.6). The
example {4.11) shows that without some further assumptions on ¢ we cannot
expect that a function F belonging to Py is the real value of a holomorphic
function satisfying the same growth condition (4.6). Therefore, it is natural
to ask for which %, Py = RHy, ie. when % consists of the real parts of
functions belonging to My, or equivalently, for which ¢ there is an adjoint
F' which belongs to Py. A precise characterization of such 1 is not known,
but homogeneous ¢ (Le. P(Au) = A% (u), o > -—n) are known to have this
property. Those particular weights are of interest from the point of view of
representation theory of semisimple Lie groups (see [RV], [IFK]). We are able
to prove more. If

(4.15) Vo={2:Iu(A) <} C N

then Py = RHy (see Theorem (4.23)). More precisely, if Vi, C 2, then
suppd_ C {2, suppdy C —£2, and so d_ (A)e ™2™ d L (N)e? %) gatisfy
(4.6) separately.

(4.16) THEOREM. Let v be o positive continuous function such that
Vy C 2. Assume that

g(/\,u) = d_()\)e*z""()\#) + d_'_()\)EZﬂ'(A,u)

satisfies

(4.17) § Vgt w)ie (u) dadu < oc.
v

Then

(4.18) d-(A)=0 forae A&,

do(A)y=0 forae Nd 02
Proof. If the supports of d_ and d;. are disjoint then (4.17) implies

[ (o Pem® 0 41, ()P0 p(u) dA du < oo,
n’v

i.e. for almost every ),
(4.19) ld- (WP Lp(A) + [ (NP Tp(=)) < o0

and so Iy(A) < oo for a.e. A € suppd._. U —supp d+. This implies (4.18).
Assume now that there is an open set

(4.20) U C suppd_. Nsuppd,.
We are going to prove that then
(4.21) {2 (u) du < o0,

7]
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which suffices to conclude (4.18). Indeed, since by (4.17),

L d_)Retm O o jd, (A) 2™ + 2%d_ (M) (N)1h(w) dhdu < oo,
av
taking into account (4.21) we have (4.19) for almost every A € 2 and (4.18)
follows.

Therefore it remains to prove that (4.20) implies (4.21). Let K =
20 {u: |uf = 1} and let ey,.. ., en € U be a basis of V such that d..(e;} # 0,
dy.(e;) # 0 and

(422)  §(ld-(es)Pe™ ™ + |dy ()P + 2Rd_(e5)dF (e5))
v

= p(u) du < oo
forall j=1,...,n. Given € > 0 let
K;fa ={ueK:leju) >e}, K, ={ueckKk:(eu) <}
We claim that there is an £ > 0 such that
(4.23) Kc U K, UK;,

Assume not. Then for every n there is uy, € K such that |{e;,un)| < 1/n
for every j. Taking into account a convergent subsequence u,,,, we conclude
that 0 € K, which is not possible.

For ¢ satisfying (4.23) let

Of =Puue K, A>0} 07 ={u:iuek A >0}
Clearly, 2 C |, (Qj' U{2;) and so we have to prove that (4.20) implies that
for every j both {,+ ¥(u)du, {,— ¥(u)du are finite.

If u € 2, then (ej,u) > elu|. Therefore, if B is a ball centred at 0 and
with a sufficiently large radius then

Yidy (eg)Petm () > |2Rd_(e5)d (es)];
Hence, by (4.22),

de?

ueﬂjnBC.

[ Sld(e) 2t ™gp(u) du < o0
2} 0Be
and so
| w(u)du < oo
nFnBe

Since our assumptions on ¢ imply that {5 %(u) du < oo for every ball B,
we conclude that §,+ (1) du < oc. For {2} we proceed in the same way. =
7
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(4.24) THEOREM. Let F be a real-valued function which satisfies (4.6),
(3.2) and (3.3). Assume additionally that (4.15) holds. Then F' is not only
pluriharmonic, but also the conjugate function F' con be chosen to satisfy
(4.6). m

5. Pluriharmonic functions on symmetric Siegel domains of
type two. Let D be a symmetric Siegel domain of type two. As hefore,
we identify § with D by ((,z)s - te and the functions on § and D, respec-
tively. This means that if F is a function on D, then

(51) F((C,:’L‘)S) = F((C,m)s ’ 7‘6)

is the corresponding function on §. We use the same notation for both
functions always having in mind the identification (5.1). Given w € {2 or
8 € 5p let

Fu(g, ﬂ’:) = F((C,Iﬂ) ’ 'iu)a
FE(C:m) = F((C: .’L‘)S "":e) = F(((::w) ) (ié‘ : 6)) = FS‘E(C}w)'
Therefore, we may write
F(ha,B,u) = F(\a,B,8) = (Up €3, €3) = (Up, £, 65) with u=5- .

Assume that v is a continuous positive function on 2 that satisfies (4.15).
In particular, v is homogeneous, i.e. Y{Au) = A% {u}, @ > —n (see [RV]).
In this section we consider functions on D such that

(5.2) S S F((¢,2) - )| (u) d¢ da du < oo,

2 N(&)
Our main goal is to prove the following theorem.

(5.3) THEOREM. Let F be o real-valued function on D which satisfies
(3.2), (3.3), (5.2) and such that

(5.4) LF =" L}F=0.
j=1
(=]
Then F is the real part of a holomorphic function h such that

P 1A((¢ @) - iu)lPy(u) d¢ dz du < co.

2 N (&)

First notice that the support of the partial Fourier transform of every F
which satisfies the assumptions of Theorem (5.3) reduces to 2 U —£2.

(5.5) LEMMA. Assume that F satisfies (3.1)-(3.3) and (5.2). Then
Fae,Bu)=0 ifAeRU-—0Q.

Inveriant operators and pluriharmonic funciions 131

Proof. The conclusion follows immediately from (5.2), Theorem (3.4)
and Theorem (4.16). m

Let K be the subgroup of @ leaving e € V invariant. In the proof of
Theorem (5.3), the action of the group K on N(#) given by

k- (Cz) = (o(k)¢, k)
will be crucial. By (1.6, ((,z) — k- (¢,z) is an automorphism of N{%)
and moreover dk, restricted to Z is orthogonal with respect to ge. 'I'his
follows from the fact that the action of K on D is holomorphic and from
the identification
(C!O) — (C?O) -de = (C,ze)
Let

(5.6) L= Z((ff‘f +(I$)?).

Since P?;P‘, ﬁ;" form an orthonormal basis of Z, the action of K commutes
with £, i.e. for a function f on N($), we have

(5.7) L(f-k)y=L-k

Indeed, since k is an automorphism, f — L(f - k) defines a left-invariant
operator and, since dk, is orthogonal,

L(f - k)e) = dho(D)f(e) = L (e).
We are going to use (5.7) on the Fourier transform side. For that we need
the polar coordinates in V, i.e. coordinates which fit in very well with the
action of K.
Any X in V can be written as

r
(5.8) A=k, k€K, do=_ Mej, N ER

=1
The numbers Ai,..., A, &re unique provided A; < ... < Ap, but k is not
unigue. Let

R= {,\zi,\jcj A €R},
j=1

Rt = {)\UﬂiAjCj!)\1<...<f\r}s
j=1

M:{kEK:VAeR k:Ar'—)\}.
The k in (5.8) is determined up to its left M-coset (see [FK]).
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We are going to use coordinates {5.8) in the sense of the following inte-
gration formula:

(5.9) TeEOREM ([FK], Theorem VI.2.3). Let f be a function infegrable
on V. Then

frovdr=co | flkro)x(Ro)dkdo,
14 KxRrt
where x(Mo) = [[;cx(As — A5)% d = dim V.
Notice that the image of K x R™ via (k, Ag) = kAo is of full measure
in V. Theorem (5.9) provides the following Plancherel formula:

(5.10) | HUFPe(kr)x(Ao) dkdro = VIDR1Po(A) dA = I Fl|3a (v oy
KxRt \4

for F € L*(N(&)) o, if we take into account that o(kAo) = g(Ao),

(511)  § 1UFCIPe(h)x(o) dkddo = [|IF|Zanay,  F € L*(N(&)).
KxR+

T'his formula suggests looking at the family Hyx, rather than H,. Moreover,
this approach has the advantage that we may define a basis E,’ff‘” which
depends smoothly on kXg and has the property that

(5.12) ghakdo(¢y = g2 (o (kT)0).

Let £¢ be the orthonormal basis of H., € = ¢1 .. .+¢r, defined in Section 2.
For k € K, Ay € BT we put

(5.13) Rho(¢) = e (M Aa(k™)¢) = €0 (o (k71)0).

Then (5.12) is clearly satisfied. Moreover, since Jiy, = i when kAp € £2,
and Jyy, = —il when kXg € —£2, €8 is holomorphic with respect to the
appropriate holomorphic structure and by {1.6), (2.2) we have

(68,687 )y = § €0 (o (b w)g (o (hTjuw)e™ ™ () o o) duw

z
e 1/2 a —
- S foc(M\Afolw)gﬁ(Mﬁ)\/oz!w)e ﬂHAD(w,w)Q()‘O) dw
Z
= {£ar Ef)e-
Hence we have obtained an orthonormal basis of Hyy,.
Let
(5.14) P8¢ 7) = (UL ER, 657 s

Then by (2.5) and (5.13),
(5.15) : BN =330 o (k7).
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Hence by (5.7) and by (2.30) of [DHMP],

(5.16) LI = (L83%,) - o(k™) = =27 37l (2ley] + 4TS,
i=1

Now,

(5.17) Fk,ho 2, 8,5) = (U2 €82, 682 Y,

is well defined. Proceeding as in Section 2 but using the “new” Plancherel
formula (5.11) we are able to prove that for every o, § and almost every
(k:,)\o) c K x R+,

Bk, \o, 0,8, € C*°
and that
(—an?(kXo, Ad, X;)? + H? — Hy)F(k, Ao, 2, 8,5) =0,

g=1,...,7,
(5.18)

S a8 (—4n (kho, Ad, X2+ (Y2)? - H)F(k, Ao, B,5) = 0.
i<y
o
At this point we fix k, Ag, &, 8 such that (5.18) is satisfied. Proceeding as in
Section 3 we conclude that for every o, § and almost every k, Ao,
(5.19)  F(k, ho, 2, 8,5)
= d_(k, Mo, &, ﬁ)e”%{m”’s'e) + d+(k, Ao, o, ﬁ)ez’r(k}“"s'e).

Let
£ = {¢ € Ha: (€0, ) = O}

To conclude pluriharmonicity of F' it remains to prove that Uz'}', l&é_ =0, ie.
de(k, do,, ) =0 i as#0
We start with the following theorem.
(5.20) THEOREM. If F satisfies (3.2), (3.3), (6.2) and (5.4), then
{5.21) Ui leg = 0.
Proof. For f € L*}(N(®)) N L'(N(#)), we have

(5.22) (UEog, )= | F(Gn)PERE ) ddn = S, X, @, B)
N(&)

Let ¢n € CP(N(P)) be the sequence of functions defined in the proof of

Lemma (2.18). As before, we approximate Fi(¢,z) by

Fr(¢, @) = F7((¢,2)8) = ¢nl(Gs @) Fe(C, 2).
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Notice that (CF), = LF,.. By (5.22) and (5.16) we have

(5.28) (CFM) koo B) = | FP(C )L 3(¢ z)d( do
N(®)

= =21 3 |\l @lag] + D EFR (k, do, @, B).
=1
On the other hand
(5.24)  (LFP)"(k,Xo,, B)
= | ¢ul¢, ) LFC2)P8(¢, @) dl di + I (k, Ao, @, B),
N{&)
where

In(k:AO)a:,ﬁ) == ((E¢n)Fe)A(k, )\Oia: :6)

+23 7 (X5 n) (A7 Fe))" (K, Do, . 6)

=1
o

+ 22((?;"%)(?;’@))’\@,»\0, a, B).

But, by (1.9) and (5.4),

(5.25) LF.(¢2)= di(HjF)e(C, z)

j=1

—dZ(anF) C,m)s)]s...e—dZ(anF C’ )

§=1
Hence putting (5.23)-(5.25) together, we obtain

g=1

- dz V 0n(¢,2) (00, F)e (¢, m)BEM(C, @) dC da + I (k, ho, o, ).

F=1 N(®)
Now letting n — oo we have

(5.26) —27{:1,\ |(2\aj|+d)F(ﬂc Ao, @, B, €)

=1

= dZ ((Ba; F)e) (ks Mo, 0, 8) = 4 8, Flk, ho, 2, B, 8)sme
j=1

=1
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To obtain (5 26) we make use of the Harnack inequality. Let D =X7, V&, Hj,

D= Pd o y“ and let B be a neighbourhood of e in S. First, by the Harnack
mequahty ((‘ denotes various constants},

|DF(¢,2)| < e { IF((¢,2) (61, 21)8)) A dia ds

B
<o | IF (G ) Cuan)a) P dedaads)
B
Secondly,
| DR oRdcds < el | IF(C2) (G m)s) d do d: das ds < oo
(&) BN(#)
and

60 (¢, 2} DF(¢,z)| < |DF(C, )]
Finally, ¢n, Dé¢n, Lor are bounded independently of n and
f)qbn,frjnn —0 asn— oo

Therefore, the Plancherel formula (5.11) implies that for a subsequence np
we have

lim I (k, Ao, 2, 0) =0,

Tp—+0Q

nllinoa F\:‘P(k’ AOsavﬁ) = ?(k, ,\o,a,ﬂ,e),
nliflw(qsnp(aﬂjF)E)A(k) AQ, &, 18) = ((aajF)e)A(k, )\0, o, ﬁ)

In view of (2.15) (proved in the context of the Plancherel formula (5.11)),
we have
((a F) )A(k: A0s Of,ﬁ) = aﬂ-jﬁ(ki Ap, &, .B:S)is:e:
which proves (5.26).
Now we make use of (5.19) substituting the formula for F(k Aoy, B, 8)
into (5.26). Since

.
=y Wi(kXo,y)as,

§=1

271"(]{1)\0, 8- e)

we have
”

2 By Pk, X0, 005, lome = = (ij(k)\o,e))d_(k,,\[,,aj B)e=2rkR0.e)
j=1 =
+ (ZW.’i(k/\Da 6))d+(k, Ao, a,ﬁ)g%(kku,e)‘

§=1
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But
r r - r
ST Wylkdo,€) =213 (kXo, X;) = 2 (ko €) = 2m (Mo, €) = 27 SN
=1 =1 =1

Taking into account the supports of d— and dy, for Ag € 12U —§2 we obtain
T T
2 (3 sl 2lag| + @) ) (b, Doy, B) = 2md( 3 1M1 (ks Do, e ),
j=1 J=1

which shows that «; = 0. This proves (5.21). m

Proof of Theorem (5.8). The first step is to show that for A € 22U -0
and every s € Sg,

(5.27) Us,ler = 0.
Given s € Sy, let
(5.28) FI(¢, mhw) = F(s(C, zhw).

Since all the operators are left-invariant, F’ satisfies (3.2), (3.3) and (5.4).
Moreover,

VoL IF (G 2) - w) (s - w) dC dadu

2 N(®)

=1 | 1P ()¢, s - dsw) [P (s - w) d¢ de du
2 N($)

=deto(s) M {dets™)?§ | [F((¢,2) iu)w(u) d dz du.
2N (&)
It follows that F' satisfies (5.2) with 9, (u) == ¢(su). Notice that Iy, (A) =
Iy((s71)*A) det s71. Indeed,
S P(su)e O dy = det 51 S 1,/;(u)e—2”()"3_1“> du.
a 0

So Wy, ¢ 2. All this shows that we may apply Theorem (5.20} to F' to
conclude that

Upyleg = 0.

But, since Fy = F - Ad,-1 by (5.28), U}, can be expressed through U,
More precisely, ¢

(529) (U.g\’séu 77))\ = (U;}’ZAS * 6) 8- 77).9"’)\) ‘5: ne H)n
where
(5.30) s- (¢} = &(o(s)0).
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Let us prove (5.29). First, by (2.2), M-y = o(s)*M,o(s) and so
(5.31)  o(s*A) = |detc Mgy | = |detc o(s)|?|detc M| = detr o(s)e(A)-

Moreover, inside £210 —42 the action of 5 does not change the complex struc-
ture, i.e. Jy = Joun. Therefore, in view of (5.31}, we have

E(o{sywin(a(s)w)e Her o) o(*A) duw

(8- &85 Mer=

E(w)n(w)e~ ">} detg o (571 e(s* ) dw = (£ 7

) e b -

i.e. the action (5.30) is an isometry. In particular, it maps £ in M onto &
in Hgwx. Moreover, by (2.5),
Uls(a)c,om (@)
— e—27ri()\,.s.1:)—(fr/Z)HA(a'(s)C,w(s)t,‘}-l—erA(w,a'(a)C)&-(w _ O‘(S)C)

— e—ZTr'E(s')\,a:)—(#/Z)H,*A(Q»CH—WHS»-A(cr(s“l)w,g‘) (3 . 5)(0(3—1)1” _ Q—)
Hence '
(U():J'(S)C,s:l:)£7 W)A = (U&f,;)s -€,8M)ems
which implies (5.29) and (5.27).
To prove pluriharmonicity of F we use the Fourier inversion formula
which by (5.27) becomes

F‘LL(C’ E) = S rI‘r(U(A-HQ,—m) U%'u)g(‘)‘) dA

=

[P
| (UR& Ul mbole(N) dX

u-a

S d_(0,8, 06 F MW (Es, U ybo)e(A) dA

B

+ { Y di(0, 8,07 (€g, Ul o f0)e(A) d-

-7 B

The first integral gives a holomorphic function and the second its conjugate.

Indeed, in view of (2.5), there is a holomorphic function kg on D such that

(€5, U} my0)e™ 2™ = ho((G, 2) - iw).

2

i
= s =i

Moreover,
d.4(0, 8, Ne?™ M9 (£, Uy 1€0) = d—(0, B, Ne 2w (€5, Uiy 4y60)-
S0 it is sufficient to prove that

(532)  §301-(0.8,0)] - [(€s U bolle™ M e(A) A < co.
7B
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We estimate (5.32) by
1/2
| (Z{d_(O,,@, A)|Pe ”2'“”}) (Z (45, Ufe y0) ) e~ o(X) dA
7 B g
= HUFiufoH U mybolle™™ X g(A) d.
iz
The last integral is dominated by

(1, eoloan) " (§ et gy an)
2 7]

o 1/2
< I1Pyuls ([ o2 @0 ar)
Z
which gives (5.32). u

6. Appendix. Proof of Theorem (3.4) for the cone of 2 x 2 pos-
itive definite symmetric matrices. Let F()A,s) be the partial Fourier
transform of F along V, let A = Ad}_ Ao, Ao € Vay @ Vaz and let f(A, g) =

fﬁ()\, Y5 's). Then (), s} satisfies three equations:

(—dm? (o, Ads X;) + HE — H)) f(\, 8) =0,
(=47 (Mg, Ad, X12)? + (Yi2)? — Ha)F(A, 8) =0,
with Ag = Areg + Aaep, Ay # 0. Let

Wilho,y) = 2r{d, Ady Xj), =12,
Wiza(Ao,y) = 2m{X, Ad,, 5(:12).
Then a direct calculation shows that
(6.2) Wi(ro,w) =21+ 3rey?,  Waldo,w) =X,  Wialho,y) = Aay.
Hence 8,W; = Wiy and 8, Wig == Wa. Moreover,

i=12,

(6.1)

X5 =00, Xpp= l/zaé/zaﬂ?m’
Hy = a‘jaﬂd’ Yis=ay ok a;/zaya
and so (6.1) becomes

(6.3) : (=Wi(o, )* + 85, ) (A, 8) = 0,
(6.4) (—a1Wia(Xo, ¥)? + a7 ' 8] — 8oy ) (A, 8) = 0

Given Ap = Aqc1 4 Agca there is a neighbourhood U of 0 in N = IR such that
‘Wi(Ao,y) is either strictly positive or strictly negative for y € U, Solving

=12,
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equation {6.3) on U we get

f()\? ya’la2) =

6=43,d2
8y=ck1

for y € U and arbitrary a;,as. Moreover, ds, s, (A, y) is smooth with respect
to y € U. Now we apply (6.4) to get

(65) Y (a7 82ds(M,y) +2618,ds(A 1) Wiz (Mo, )
I

ds(A, y)ez:§=1 8;W;(Rayy)aj

+ d1ds (A, 1)Walho, y)
— bads(A, y)Wal Ao, y))eEi=1 FWiowles = 0, y e U.

But since ay, ap are arbitrary and W; (Ao, v) has constant sign on U, letting
first as — oo, then a; — oo, we conclude that

(6.6) Fds(\y) =0
and
(6.7) 2010y ds( X, ¥)Wia(Ao,y) = (82 — 1)ds (A, y)Wa(Ao, 1)-

Now, if §; = 82 we have 8,ds(X, y)y = 0, ie. ds(, ) = ds(A,0). I 61 = —8s,
then (6.6) and (6.7) become

asdﬁ()\:y) =0, aydé'()\)y)y = _'dﬁ(/\ﬂay):
hence ds must be 0. Therefore,
(6.8) F(\va) = ds 1y(NeBsmr S5O0 - d(_y _y(A)e Fim @ HiCo)

for y € U and arbitrary a. But the right hand side of (6.8) is well defined
on N A and satisfies (6.3) and’(6.4). Hence (6.8) holds for every y € N.
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Stochastic representation of reflecting diffusions
corresponding to divergence form operators

by
ANDRZEJ ROZKOSZ and LESZEK SELOMINSKI (Torud)

Abstract. We obtain a stochastic representation of a diffusion corresponding to a
uniformly elliptic divergence form operator with co-normal reflection at the boundary of
a bounded €*-domain. We also show that the diffusion is a Dirichlet process for each
starting point mside the domain.

0. Introduction and notation. Let [ be the following non-empty
bounded domain in R%:

(0.1) D={zeR?: $(z)>0} with dD={z¢ R? : (z) = 0},

where & € C2(R?) satisfies |[V®(z)| > 1 for all z € D, and let a: RE —
RY @ R? belong to the class A(A, A) of all measurable, symmetric matrix-
valued functions which satisfy the ellipticity condition

(0.2) MEP < a(2)eié; < Al€]2, =z, €eR?

for some 0 < A < A {we employ the summation convention over repeated
indices). Consider the operator
A= D;(35()DY)

and let p be a weak Neumann function for A on D (see Section 2). Using
the estimates on p proved in Gushchin [13] we first construct a family {P* :
¢ € D} of probability measures on C([0,T7; D) such that the finite-dimen-
sional distributions of P® are determined by p and then we investigate the
structure of the canonical process X under the measures P*.

More precisely, let -y, denote the co-normal vector field on 9D, ie.
vi(z) = (1/2)a" (z)n;(z) for i = 1,...,d, where n(z) = V&(z)/|VE(z)|
is the unit inward normal to 8D. We prove that X is a Dirichlet process in
the sense of Féllmer [5] under P® for every z € D and its components admit
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