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J-subspace lattices and subspace M-bases
by
W.E. LONGSTAFF and ORESTE PANATIA (Nedlands, WA)

Abstract. The class of J-lattices was defined in the second author’s thesis. A sub-
space lattice on a Banach space X which is also a J-lattice is called a J-subspace lattice,
abbreviated JSL. Every atomic Boolean subspace lattice, abbreviated ABSL, is a JSL.
Any commutative JSL on Hilbert space, as well as any JSL on finite-dimensional space,
is an ABSL. For any JSL £ both LatAlg £ and ct (on reflexive space) are JSL’s. Those
families of subspaces which arise as the set of atoms of some JSL on X are characterised
in a way similar to that previously found for ABSL’s. This leads to a definition of a sub-
space M-basis of X which extends that of a vector M-basis. New subspace M-bases arise
from old ones in several ways. In particular, if {M,}er is a subspace M-basis of X, then
(1) {(Mfy)“’},,ep is a subspace M-basis of V-VEI“(M!?)'L’ (ii) { Ky }yer is a subspace M-basis
of \\yer Ky for every family {K+}yer of subspaces satisfying (0} # Ky C My (v € I')
and (iii) if X is reflexive, then {(\g.c, M, L’?}’)‘E r is a subspace M-basis of X. (Here M} is
given by M}, = Vs Mp-)

1. Introduction. The class of J-lattices was defined in [16] and sub-
sequently discussed in [14], although some results concerning such lattices
were given earlier in [12, 13]. In any complete lattice L the operation “_”
is defined by a.. = \/{b € L :a £ b} (a € L). The set of elements o € L
satisfying ¢ # 0 and a_ # 1 is called the set of J-elements of L and is
denoted by J(L) (this notation was first used in [11]). In the study of sub-
space lattices on Banach spaces and the operator algebras that are usually
associated with them, J-elements are of special interest primarily due to
the following result.

LeMMA 1.1 ([11], see also [8]). If £ is a subspace lattice on a Banach
space, the rank one operator e* ® f belongs to Alg L if and only if f € M
and e* € (M_)* for some M € J(L).

Consequently, those subspace lattices £ for which J (£) is “large” have
Alg’s that are rich in rank one operators and deserve some attention. All
those subspace lattices which are also J-lattices fall into this category. (The
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198 W. E. Longstaff and O. Panala

definition of a J-lattice is recalled in the next section.) Such a subspace
lattice is called a J-subspace lattice, abbreviated JSL. ¥or every JSL L,
J(L) is just the set of atoms of £. Every atomic Boolean subspace lattice,
abbreviated ABSL, is a JSL. The simplest example of & JSL which is not an
ABSL is any pentagon subspace lattice P = {(0), K, L, M, X}. Here K, L
and M are subspaces of the Banach space X satisfying KV L =X, KNM =
(0) and L C M. (For a discussion of pentagon subspace lattices see [7, 10].)
It turns out (see later) that, on a Hilbert space, every commutative JSL
is an ABSL. However, most JSL's on Hilbert space are non-commutative.
It also turns out that every JSL on a finite-dimensional space is an ABSL
so most of their particular interest lies in infinite-dimensional spaces. Also,
although ABSL’s are completely determined by their atoms, JSL’s are not;
different JSL's can have the same sets of atoms.

In the memoir [1] a connection was made between ABSL’s and strong
M-bases. Indeed, the set of atoms of an ABSL seems a most reasonable
interpretation of “a strong M-basis consisting of subspaces”. A similar con-
nection is made in the present note, this time between JSL’s and M-bases.
We begin by attempting to show that the set of atoms of a JSL is a reason-
able interpretation of “an M-basis consisting of aubspaces”. Next we show
that, if £ is a JSL, so is LatAlg £ and J(£) = J(LatAlg £). If the under-
lying space is reflexive and £ is a JSL we show that £+ is also a JSL and
J(LH) = {{M_)* : M € J(L£)}. We conclude by discussing some ways by
which new subspace M-bases arise from old ones, in some cases parallelling
similar results for strong M-bases given in [1]. Briefly, amongst other things,
it is shown that if {M, } ¢ is a subspace M-basis of a Banach space X then

(1) {Ky}yer is a subspace M-basis of V,er Ky for any subspaces
{Kyyer satisfying (0) # K., & M, for every y € I',

(2) {(M})"}yer is a subspace M-basis of Voer (M5)*, where M), =
V g1y Mg for every y € I,

: (3) if X is reflexive, then {Ngzy Mp}ver is a subspace M-basis of X
with M} as in (2)).
b

2. Definitions and preliminaries. Throughout, the terms “Banach
space”, “subspace”, and “operator” will mean “real or complex Banach
space”, “closed linear subapace”, and “bounded linear operator”, respec-
tively. The symbol X will denote a Banach space and H will denote a sepa-
rable complex infinite-dimensional Hilbert space with inner product denoted
by (- | ). The symbol “c” will be reserved for strict set-inclusion. The dual
of X is denoted by X*. The set of operators acting on X is denoted by B(X).
If T € B(X) the range of T is denoted by Ran(T"). For any family £ of vec-
tors of X, span £ denotes the linear span of £ and, if £ = {f}, {f) = span€.
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If {Ly}yer is a family of subspaces of X, V. ey Ly denotes the closed linear
span of | J,¢p Ly. For any family {f,},er of elements of X, qur(f'r) is
denoted more simply as \/_ .. f,. For any subset £ C X the annihilator £+
of £ is given by £+ = {f* € X~ : f*(z) = 0 for every z € £}. For every
family {L,},er of subspaces of X we have Voer Loyt = Nyer Ly and
(MNyer L))" 2 Voyep L If f € X and e* € X* the operator e* @ f acting
on X is defined by e* ® f(z) = e*(z)f (z € X).

A family £ of subspaces of X is a subspace lattice on X if (0),X € L
and both V., .p Ly and (¢ Ly belong to £ for every family {L+},er of
elements of £. We use C(X) to denote the subspace lattice on X consisting
of all subspaces of X. For any subset F C C(X) the intersection of all those
subspace lattices containing F is called the subspace lattice generated by F.
If X is reflexive £ defined by £ = { M~ : M € L} is a subspace lattice on
X*,if L is a subspace lattice on X. On Hilbert space, a subspace lattice is
called commutative if the orthogonal projections onto each of its members
pairwise commute. For any subset F C C(X), AlgF denotes the set of
operators acting on X that leave every member of F invariant, that is,

AlgF={T € B(X): T(M) C M for every M € F}.

For any subset F C C(X), the Alg of the subspace lattice generated by F is
equal to Alg F. For any subset G C B(X), Lat G denotes the set of subspaces
of X that are invariant under each member of &, that is,

Lat G = {M e C(X): T (M) C M for every T" € G}

We have F C LatAlg F for every subset F C C(X)).

A family {f, }yer of elements of X is complete if V. p £, = X. A family
{£3}yer of elements of X~ is total if (), ker f5 = (0). A family {fy}yer
of elements of X is minimal if fy ¢ /5., fp, for every y € I'. If {fy }yer s
complete and minimal, there exists a unique family {f3}yer © X biorthog-
onal to it, that is, satisfying f2(fg) = das (o, 8 € I'). A complete min-
imal family {fy}yer with a total biorthogonal family {f]},er is called
an M-basis of X. An M-basis {fy}er of X is called a strong M-basis if
z € \{fy: f3{z) # 0} for every x € X. (It is interesting to note that it has
been shown only relatively recently that every separable Banach space has
a strong M-basis [19].)

Next we briefly summarise, for the reader’s convenience, some of the
lattice-theoretic results proved in [14, 16]. Some of these will be needed
later. First, some terminology from lattice theory (mostly taken from [17]).
A lattice L is called

(i) distributive if a A (bVe) = (a AB)V (e A c) for every a,b,c € L,
(ii) modular f a A (bV e) = (a Ab)V ¢ whenever a > ¢,
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(iii) semi-modular if, whenever a,b,c € I with a and ¢ incomparable and
afc<b<a,thereexists d € Lsuchthat aAc<d<candaA(bVd)=0b

Additionally, if L is complete, with least element 0 and greatest ele-
ment 1, then L is called

(iv) atomic if every non-zero element of L comtains an atom and is the
join of all the atoms it contains (an element a € L i an atom of L if
0 <b<aandb € L implies that b=0 or a),

(v) (uniquely) complemented if each element of L has a (respectively,
unique) complement (an element b € L is a complementofa & LifaVvb = 1
and a A b =0),

(vi) algebraic if every element of L is a join of compact elements (an
element a € L is compact if @ < \/{b: b € G} implies that a < \/{b: b € F}
for some finite subget F C G),

(vii) Boolean if it is complemented and distributive.

As usual, we observe the conventions that \/ @ = 0 and A = L.

DEwiNiTION 2.1 {[16]). An abstract complete lattice L is called a J-
lattice if

(VDVi{a:aec J(L)} =1,

(2) AMac ra e J(L)} =0,

(3) aVa_ =1 for every a € J{L),
{4) aAa_ =0 for every a € J(L).

If B is a complete atomic Boolean lattice, then J(B) is precisely the
set of atoms of B, and a_ = a’ (the Boolean complement of a) for every
}tcin;tq of B [11]. Consequently, every complete atomic Boolean lattice is a

-iattice.

In the present note we are more interested in representations of J-lattices
as subspaces lattices on Banach spaces.

DEFII:IITI'ON 2.2. A subspace lattice on a Banach space X which is also
a J- lattice is called a J-subspace lattice (abhreviated J SL) on X

LemmMa 2.1 ([14, 16]). Let L be a J -lattice. Then
(1) J{L) is the set of atoms of L,

(i) J(L)={ac L:aga), -

(}n) every non-zero element of L contains an atom,

(iv) L is complemented.

THEOREM 2.1 ([14, 16]). Let L be a complete lattice. The following are
equivalent:

(i) L is atomic and Boolean,
(i) L is distributive,
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(i) L is modular,

{iv) L is atomie,

(v) L is uniquely complemented,
(vi) L is semi-modular and algebraic.

The implications (ii)=>(i) and (iii)=-(i) of the preceding theorem show,
respectively, that every commutative JSL on Hilbert space is an ABSL, and
that every JSL on finite-dimensional space is an ABSL (respectively, because
commutative subspace lattices are distributive, and C(X) is modular if X is
finite-dimensional).

It seems appropriate to include here the following observation. Recall
that the dual L9 of a lattice L is the lattice obtained from L by “reversing
the order” of L. Precisely, the dual of I is the lattice whose elements are
those of I with partial order defined by a < b if b < a.

PROPOSITION 2.1. The dual LY of any J-lattice L is a J -lattice. More-
over, J(LY) = {a_ : a € J(L)}.

Proof. Let L be a J-lattice with least element 0 and greatest element 1.
Denote the “_* operation in L% by “5”. Let a € J(L). Then (a-)o = A{b €
L :b < a_} (where the inf is taken in L). Since a £ a.., we get (a-}g < @
But clearly b & a.. implies that @ < b. Thus a < (a-)e so (a-)eg = a. Since
a_ # 1 and (a_)g # 0, we have a.. € J(L%).

Next, let b € J(L%). Since b # 1 and \{o : a € J(L)} = 1, there exists
a € J(L) such that o £ b. Thus b < a.. Also, since bg = A{c e L :
¢ £ b} # 0, it follows that a. < b. For, if a— £ b then bg < a— Na = 0.
This shows that b = a_ for some a € J(L).

Tt follows that J(L4) = {a— : @ € J(L)} and this, together with the
fact that (a_}e = a for every a € J (L), shows that L% is a J-lattice. m

Most of our examples involve operator ranges on Hilbert space and their
properties. All of the properties needed here follow from results of [4],
especially the fact (which follows from a stronger result of J. von Neu-
mann) that if A € B(H) is a positive injective non-invertible operator, then
there exists a positive injective non-invertible operator B € B(H) such that
Ran(A) N Ran(B) = (0). :

' 8. Main results. Let X be a real or complex Banach space. We begin
by characterising those families of non-zero subspaces of X which arise as
precisely the set of atoms of a JSL on X. Those families of non-zero sub-
spaces which arise as precisely the set of atoms of an ABSL on X are, by
[1, Theorem 2.4], those which are subspace strong M-bases in the sense of
the following definition.
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DerRINITION 3.1. A family {M, }yer of non-zero subspaces of X is a
subspace strong M-basis of X if

(0 V,yer My = X,
(1) (Vyer M) N (Voey M) =\ ey My for every pair I,.J of subsets
of I.

The use of the terminology “strong M-basis” in the preceding definition
is justified by the fact that a family {f}yer of non-zero vectors of X is
a strong M-basis of X (in the usual sense) if and only if the family of
one-dimensional subspaces {{f,) }-er is a subspace strong M-basis of X 1,
Theorem 5.1]. This raises the question: What should be meant by a subspace
M-basis of X? We feel that the following is a reasonable answer and we will
offer some justification for this view.

DEFINITION 3.2. A family {M,}yer of non-zero subspaces of X is a
subspace M-basis of X if

(1) V")‘EP M’Y = X:
(i) (Voer M) NV eg My) = (0) for every pair I, J of digjoint subsets
of I
(i) Nyer M} = (0), where M, =V, Mp for every v € r.

REMARKS. 1. A family {f,},er of non-zero vectors of X is an M-basis of
X (in the usual sense) if and only if the family of one-dimensional subspaces
[{fy}}yer is a subspace M-basis of X. Indeed, as remarked in (1, p. 45],
{fy}~er is an M-basis of X if and only if conditions (i) and (ii) of the
preceding definition are satisfied by {{fy)}yer. Also, if {f,}yer is an M-
basis then {f,)’ = Vg.,(fs) = ker f] for every v € I, so condition (iif)
is just the totality condition on the biorthogonal family {f2}er. However,
condition (iii} need not follow automatically from conditions (i) and (ii) in
general {see Example 3.1 below).

2. Throughout the following, the terms “subspace strong M-basis” and
“subspace M-basis” will be abbreviated to “strong M-basis” and “M-basis”,
respectively, wherever no confusion can arise.

3. If {M,}yer is a strong M-basis of X, then, for every v € I', the
Boolean complement of M, in the (unique) ABSL having {M.,},er as its
set of atoms is M, = \/ﬁ#y Mpg. Thus N,op M} = (Vyep My)' = X' = (0),
by De Morgan’s Laws. It is now clear that every strong M-basis of X is an
M-basis of X. (That conditions (i) and (ii) of Definition 3.1 together imply
condition (iii) of Definition 3.2 is proved more directly in {1, Theorem 2.1]

where it is shown that MaealVoer, My) = V{My v € Nyeq Ia} for every
family {1 }aca of subsets of I'.)
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4. Uplike strong M-bases, M-bases are stable under “slicing” and “select-
ing”. Let {M,}er be a family of non-zero subspaces of X and let {K,}yer
be a family of subspaces satisfying (0) # K, C My for every v € I'. If
{M,},er is a strong M-basis of X, then {K,}.er need not be a strong M-
basis of V. ey K. This is shown by the example given in [1, Theorem 6.4]. In
it I has minimal cardinality, namely 3. However, if {M,}er is an M-basis
of X, then the “slices” {K,},er are an M-basis of \/_.p K. This follows
easily by noting that V. o, Ky & V1 My for every subset I C I', and that
Kl = Vg, Kp C M for every v € I'. In particular, if {M,} er is an
M-basis of X and vectors {f,},er are selected as follows: 0 # fy e M,
for every v € I', then {f,}yer is an M-basis of V_cp /5 (Other ways by
which new M-bases arise from old ones will be discussed later.) Selecting
vectors like this from the elements of a subspace strong M-basis need not
produce vectors which are a strong M-basis of their closed linear span. An
example showing this is given in [18] (see also [1, p. 71]). A better example,
on separable Hilbert space, is given in [2] (see also [3]). In the latter, each
element of the subspace strong M-basis, from which the vectors are selected,
is two-dimensional.

ExAMPLE 3.1. Let A, B,C € B(H) be positive injective cperators whose
ranges pairwise intersect in (0). (Such operators exist [4]. Indeed, given A,
first choose B such that Ran(A) NRan(B) = (0). Then choose C' such that
(Ran{A) + Ran(B)) N Ran(C) = (0).) Define subspaces of H 4) by

M; = {(Az,0,0,z) : x € H},

My = {{0,Bz,0,z):z € H},

Mz ={(0,0,Cz,z):z € H}.
Then M! = MyVMy = 0)@HOHS H, My = MV M3 = Hoa(O)sHoH
and M4 = MyVv My = Ho H@ (0)& H. Clearly My vV My V My = H® and
MaNM! = (0) (n = 1,2,3). However, MiNMpNnMz= (0)&(0)B(0)H #(0).

PROPOSITION 3.1. The set of atoms of a JSL on X is a subspace M-basis
of X.

Proof. Let £ be a JSL on X and let {M, }1er be its set of atoms. Then
J(L) = {My}yer and Vo p My = X. Let I and J be disjoint subsets of I".

Suppose that
(\/ M.,)m( V Mn,) £ (0).
~eJ

~el
Then there exists an atom, M, say, such that

Mag(\/My)ﬂ(\/Mﬂ,).

el yEeF
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Since INJ = #l, we may suppose that o & I. Since distinet atoms of £ are
incomparable, M, C M, for every v € I. Thus M, C V., ., M, € M,_
and this contradicts M, € M, _. Hence

(V)| \/JMﬁ) = (0).

Finally, if 8 5 v, then My C M, _ so M = Vﬁ%v My © M, _. Since
MNyer My_=(0), it follows that () ¢ M =(0). This completes the proof. w

The example immediately below shows that it is not true that a subspace
lattice is a JSL if its atoms are an M-basis of X.

ExaMPLE 3.2. Let A, B € B(H) be positive injective operators satisfying
Ran(A) NRan(B)=(0) [4]. Define subspaces of H® by M; = (0)& (0) & H,
My = {(Az,Bz,z): 2 e H}, Ki =H® (0)® H and Ky = () ® H & H,
These subspaces are the non-trivial elements of a subspace lattice £ on H(®)
whose partial order diagram is given in Figure 1. Since My VM, = H®) and
My N Mg = (0), {M, M} is an M-basis of H®). However, J(£) = {M;} so
L is not a JSL.

H

Fig. 1

PROPOSITION 3.2. The subspace lattice generated by a subspace M-bosis
of X is a JSL on X. If the subspace M-basis {M,} er generates the subspace
lattice £, then { M. }cr is the set of atoms of £ and M, = Vgoy Mg = My _
for every y € I' (where M., _ is calculated in L).

Proof Let {M,}yer be a subspace M-basis of X and let £ be the
subspace lattice it generates. Recall that M, is defined by M, =V sy M
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First we show that each M, is an atom of £. Suppose that N € £
and (0) € N C M,. Choose a vector f € M, f ¢ N. Let e* € (M)*.
Then e* @ f € Alg{Mp : 8 € I'} = AlgL, so (e* @ f)(N) C N. Since
f € N, we have ¢* € N1, This shows that (M) CNtsoNC M,. Since
N C MINM, = (0), we get N = (0).

Next, let L € J(L). Since Vier My = X and L_ # X, we have
L C M, for some v € I'. But M, is an atom of £ so L = M,. Hence
JL) S {My:yel}.

Finally, let -y € I" and let h € M, and ¢* € (M,;)J~ be non-zero vectors.
Then g* ® h € Alg L so, by Lemma 1.1, there is an element, My say, of
J(L) such that h € My and g* € (Mg_)". Since M., and M are atoms of
L and M, N Mp # (0), we have M, = Mg. Thus J(£) = {M,, : y € I'}.
The above also shows that (M})* C (M,_)*, and so M,_ C M/, for every
v € I'. Clearly M), € M., (since M, ¢ Mz if 8 # 7) so Ml =M,_.Ttis
now clear that £ is a JSL having {M,},cr as its set of atoms. =

Combining the preceding two propositions gives the following character-
isation of the families of non-zero subspaces of X which arise as the set of
atoms of a JSL on X.

THEOREM 3.1. Let {M,},cr be a family of non-zero subspaces of a Ba-
nach space X. There exists a JSL on X having {M,},er as precisely its set
of atoms if and only if {M,} er is a subspace M-basis of X.

REMARK. If £ is a JSL on X having {M,},cr as its set of atoms,
then, since distinct atoms are incomparable, M! C M, _ for every v € I'.
Propositions 3.1 and 3.2 show that we have equality here if £ is generated
by {M,} er. We need not have equality in general, as consideration of any
pentagon subspace lattice soon shows.

Next we show that LatAlg £ and £ (on reflexive space) are JSL's if £
is. Actually, we prove a little more than this. In the following proposition,
to avoid confusion, the “_” operation in the subspace lattice L is denoted
by “a” so that Mg = \V{K € L: M € K} for every M € L.

PROPOSITION 3.3. Let L be a subspace lattice on X and let R denote
the set of rank one operators of Alg L. Let £ be any subspace lattice on X
satisfying £ C £ C Lat'R (where we take Lat R = C(X) if R =0). Then

(i) M_ = My, for every M € L,

(i) if M € J(L), every element N € L satisfying (0) £ N C M belongs
to J(L),

(i) if N € J(L), then N C M for some element M € J(L),

(iv) #f £ is a JSL on X so is L, and then J(L) = J(L).
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Proof. (i) Let M € L. Since (0)-. = (0)g = (0), we may suppose that
M # (0). From the definitions it is clear that M. C Mg. Let K € £
satisfy M ¢ K. Choose a vector f € M, f & K. Let e* € (M_)*. Then
e*® f e AlgL so e*® f(K) C K. Since f ¢ K, we have e* € K*. Hence
(M_)- C Kt so K € M_. Tt follows that Mg C M_ so M_ = Mg.

(ii) Let M € J(L) and let N € L satisfy (0) # N C M. Then N C
Mg = M_# X,80 Ng # X and N € J(L).

(iti) Let N € J(L). Put M = ({{L € £L: N C L}. Then M € £ and
N C M. Since N # (0), we have M 3 (0). Also, if J € £ and M ¢ J,
then N € Jso J C Ng. Thus M. € Ng. Since Ng # X, it follows that
M_ # X. Hence M € J(L).

(iv) Suppose that £ is a JSL on X. By (i) above, J(£) € J(£). Let
N € J(L). By (iil) above, N C M; for some M; € J(L). Since {M_ :
MeJL)}=N{Ms: Me TJ(L)} =(0), and N £ (0), we have My & N
for some My € J(L). Hence My € N C M;. But My is an atom of £ so
My = M. Hence N = My € J(L). It follows that J(£) = (L) and this,
together with (i), in turn shows that £ is a JSL on X. =

The preceding proposition, of course, applies to the cases where L=
LatAlg £ or LatR. A purely lattice-theoretic proof for the latter case is
given in [14].

ProrosITION 3.4, If £ is o JSL on a reflezive Banach space X, then
£t is o JSL on X* and J(L£L) = {(M_)+: M e J(L)}.

Proof. Let £ be a JSL on the reflexive Banach space X. The map L
L+ is a (lattice) isomorphism from the dual of £ onto £ . By Proposition 2.1
the dual of a J-lattice is a J-lattice, so £+ is a JSL on X*. Again by
Proposition 2.1, the set of J-elements of the dual of £ is {M_ : M € J(L)}
so J(LYy={(M.)": M e J(L)}. m

In [6] the authors give an example of an M-basis of one-dimeunsional
subspaces of 7 for which the subspace lattice £ it generates (which is a JSL
by Proposition 3.2) does not equal Lat R, where R denotes the set of rank
one operators of AlgL (unlike the situation for strong M-bases [L1]). For
their example it can be shown that £ = LatAlg £. Now pentagon subspace
lattices are JSL’s and there exist pentagons P satisfying P # LatAlg 7 [10,
15]. But pentagons are not generated by their atoms. In Example 3.3 below
we exhibit a JSL £ generated by its atoms and satisfying £ # LatAlg £ (so
satisfying £ # LatR). Its set of atoms, of minimal cardinality 3 for this
property, is a simpler example than that given by [1, Theorem 6.4] of an
M-basis which is not a strong M-basis.
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ExAMPLE 3.3. Let A € B(H) be a positive injective non-invertible op-
erator. Let N be a non-zero subspace of H satisfying Ran(4) NN = (0).
Define subspaces of H®) by

M, ={(0,z,Az) : z € H},
M, ={0)& N+ & (0),
Ms = {(Az,z,0):x € H}.
Then {My, My, M3} is an M-basis of H®), For, M{-NM:;- = H & (0)& (0) so

MiVMsy = (0)&H @ H. Similatly, MovM; = HOH®(0), so MivVMav My =
HG). Also, MiVM; = {(2,y,2) : ¢ + z = Ay}. It follows that

M, N (Mz V Mz) = My (M VM3) =MzN (M]_ v M) = (0),
and
(Ml N Mz) M (Mz \ Mg) n (M]_ \ M3) = (O)

However, { M, Mz, My} is not a strong M-basis of H® since (M V M) N
(MyV Ma) = (0) ® H @ (0) % M.

Let £ be the JSL generated by {M;, Mz, Ma}. A partial order diagram
of £ is given in Figure 2 (in which L = (0) & H & (0)).

H(3)

(@)
Fig. 2

Now L # LatAlg C if and only if L1 s LatAlg L. We show that the latter
is true if V is chosen appropriately. _

Let Ny be a non-zero subspace of H satisfying Ran(AY/2) N Ng = (0),
and let yg € Ran(A'/?) with yo & Ran(4). Let N = No + (yo}. (Then
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Ran(A)NN = (0).) Now

Mi = {(y,—Az,z) : 2,y € H},
My=H®N®H,
Mg = {(z, ~Az,y) : z,y € H}.

Tt is not difficult to show that Alg £+ = Alg{Mi, Ms-, M3} is the set of
operators on H®) of the form

X+BA B 0
0 W 0
60 € X+CA

where B,C, W, X € B(H)} and WA = AX,W(N) & N. Consider the sub-
space K = H @ (yo) @ H. Clearly M2 ¢ K+ C L so K ¢ L. However,
K € LatAlg L1, For if W € B(H) satisfies WA = AX for some X € B(H),
and W(N) C N, then, by a result of C. Foiag [5], W leaves Ran(Al/?)
invariant so leaves Ran(A'/?) N N = {y,) invariant.

We conclude by discussing some ways by which new M-bases arise from
old ones. (Analogous results in this vein for strong M-bases are discussed
in {1].) We have already remarked how “slicing” and “selecting” produce
new M-bases from old ones. Note that, by Propositions 3.1, 3.2, and 3.4, if
{M,}yer is an M-basis of a reflexive Banach gpace X, then {(M&)"'}qep
is an M-basis of X*. (If {M,},er generates the JSL £, then {(M})*} er
need not generate £1. The JSL shown in Figure 2 shows this.) The fol-
lowing proposition gives a more general result. But first note that, ap-
plying this result once more, and identifying (Mg)*-t with M} using the
canonical mapping of X onto X, we find that {N,} er is also an M~
basis of X where Ny = (g, M} for every v € I' (since (({(M!)1))+
(V g (M) )L = Moz J[,)J-J-). Although M., C N, for every v &€ I', the
M-basis {M,, Ma, M; described in Example 3.3 shows that we need not
have equality.

PROPOSITION 3.5, If {M,,}q,ep 15 an M-basts of a (not necessamty reflez-
ive) Banach space X, then {(M})*}r is an M-basis of Vaer (M)t (where
M, =Vp., Mp for everyy € I‘)

Proof. Let {M,},cr be an M-basis of X. For every subset & C T,
Vaee My S Npge My 50 Vpaa (M)t © (Vee My)* Thus if I,J are
disjoint subsets of I", then

icm

J -subspace laitices and subspace M-bases 209
(Vony ) (Vogt) e (Voan) a (V)"
el veJ &I vegJ
=(V0) -0
~yel'

S0

(Vo) n(V e)t) = o
vel veJ
M)t € Mt so

< () M= (\/M) (0),

Also, for every ye I, V!B?é’)’(

MV @)t

yel' By YyerIl yer
and
MV 5" =(0)
vel' Bty

By definition, it follows that {( ,Y)J“},,Ep is an M-basis of \/, o (M. )l. .

If {fy}~yer is a (vector) M-basis of a Banach space X, then ((f,)")1 =
(fy) for every v € I', so the preceding proposition shows that {f},er is
an M basis of V., f This has already been observed in [9]. On the other
hand, if {fﬂr}qep is a strong M-basis of X, then {f}},er need not be a
strong M-basis of V_ . f’r’ gven when the latter equals X™ [9]. As for the
case of vector M—bases “coming down” from X™* to X causes no problems.

PROPOSITION 3.6. Let {M,}yer be a family, with at least two elements,
of non-zero subspaces of o (not necessarily reflexive) Banach space X. If
{(M,;,)J“}ryef‘ is an M-basis of X*, then {My}yer is an M-basis of X.

Proof. Let {(M}}!} er be an M-basis of X*. For every 8 € I', M} C

Vayer My 80 (Voer Mo)* € Mper(Mp)* = (0). Hence Vyop My = X.
Also, X* =\ p(M)* C (N,ep M})~ implies that e M = (0).
Finally, let I, J be digjoint subsets of I". Then

() ()= (el -
(V)0 (VM) =0

el yEJ
This completes the proof. m

By [1, Corollary 5.4] “strong M-basis” can be substituted for “M-basis”
in the statement of the preceding proposition, provided also that each M,

80
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is one-dimensional. The M-basis {M;, Mz, M3} described earlier in Ex-
ample 3.3 shows that, without this proviso, this substitution will lead to
s statement that is not valid. Indeed, any M-basis of a reflexive space
X, with three elements, which is not a strong M-basis, will show this be-
cause {{M{)*, (ML, (M5)*} is a strong M-basis of X*, for every M-basis
{My, My, M3} of X. For, {(M])*, (M), (M)} is an M-basis of X* by
Proposition 3.5 and all that we need additionally to verify, by symmetry, is
that
(M) V (M) F) (M) v (M3)*) = (M)
This follows from the fact that
(M0 ML) v (M0 M3) = M,

(using M,, C M, if m # n).

Some more obvious ways by which new M-bases arise from old ones are
as follows (their verification is left to the reader).

EXAMPLE 3.4. Let {M,},er be a (subspace) M-basis of X.

(1) For every non-empty subset A C I', {M,}1ca is an M-basis of
V’yGA M‘T'

(2} Let {I'\}sca be a family of pairwise disjoint non-empty subsets of I”
with [ Jygs In = I'. For each A € A put Ny = \/,fén\ M.,. Then {Ni}xea is
an M-basis of X.

(3) Let 8 : X -+ ¥ be a bicontinuous linear bijection of X onto a Banach
space Y. Then {SM,}yer is an M-basis of ¥

Combining (1) and (2) immediately above we see that if {f,}ycr is a
(vector) M-basis of X, then, with {I\}xea as in (2), {fy}+er, is an M-basis
of V,er, fy for every A € 4, and {V_ .p, fy}aea is an M-basis of X. This
procedure does not reverse. More precisely, if {Nx}xe4 is an M-basis of X
and if, for each A € 4, {fyx : v € I} is an M-basis of N,, it does not
follow that |}y 4{fy.a : 7 € I'x} is an M-basis of X. In fact, as the following
‘example shows, |y 4{fy,» : ¥ € I} need not even be minimal, even when
{Nx}xea Is a strong M-basis of X and, foreach A€ A4, {fy»:v € [} isa
strong M-basis of N,,.

ExavprLg 3.5, Let A € B(H) be a positive injective non-invertible op-
erator and let {e,}72, be an orthonormal basis of H satisfying Ran(4) N
span{e, }32; = (0). (Such an orthonormal basis exists [4].)

Define subspaces of H® by Ny ={(z, Az) : & € H} and No = {(z, —Ax) :
€ HY}. Then {Ni,Na} is a strong M-basis of H(®), It is easily verified
that {{en, Aen)}oz.; is a strong M-basis of Ny (with biorthogonal sequence
{((+A%) ey, A(1+AY) "Ye,)}22,) and {(en, —Ae,)}2, is a strong M-basis
of Ny {with biorthogonal sequence {({1 + A%) e, ~A(1+ 4%)7Le,)}2,).
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However, the family of vectors {(en, den )13, U{(en, —Ae,)}22, is not even
minimal in H?. In fact, if F,G are disjoint sets of positive integers, then

(V (e den)) v ( \/ (em—Aem)) = B®.

ngF mgl

For, let {z,y) € H® with ({z,y)|(en, Ae,)) = 0 for every n ¢ F and
({z,9) | (em, ~Aem)) = 0, for every m € G. Then z + Ay € \/ . pen and
%~ Ay € V,,cq em. Thus, subtracting gives Ay € Ran(A)Nspan{e,}52, so
y = 0. Then 2 € (V, cp ) N (Vneq &m) = (0), 50 2 = 0.
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Fractional Sobolev norms and structure
of Carnot—Carathéodory balls
for Hormander vector fields

by
DANIELE MORBIDELLI (Bologna)

Abstract. We study the notion of fractional LP-differentiability of order s £ (0, 1)
along vector fields satisfying the Hérmander condition on R™. We prove a modified version
of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to
Nagel, Stein and Wainger. This result enables us to demonstrate that different W*:¥-norms
are equivalent., We also prove a local embedding WP ¢ WY where ¢ is a suitable
exponent greater than p.

1. Introduction. It is well known that the classical theory of Sobolev
spaces plays an important role in many problems concerning partial differ-
ential equations. It has also been realized in the last years that an essential
tool in the study of second order differential operators arising from degen-
erate vecior fields on B™ is the construction of generalized Sobolev spaces
suitably related to the fields.

To motivate our discussion we recall some simple features of first order
Yobolev spaces. Given a family X1,. .., X,, of (at least Lipschitz continuous)
vector fields on B®, X; = 3 7_; a;x(2)0/0zk, a natural generalization of
the usual WBP space can be defined by means of the norm

el ppre ey = lullzeeny + | Xl zega),
*P ()

where 2 C R™ is an open set and Xvu = (Xju,..., Xyu) denotes the “degen-
erate gradient”, Xyu = 3 a;,k0ku. If we assume that the fields are smooth
and satisfy the Hormander condition (see (5)), then a Sobolev-type em-
bedding holds for the space W}gp . Namely, representing a function u as a
“convolution” by means of the fundamental solution I' of > X J?, using the
estimates of I" and XTI (see Nagel, Stein and Wainger [47] and Sénchez-
Calle {52]), together with the continuity of some “fractional integration op-
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