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Composition operators: N, to the Bloch space to &g
by

JIE XIAO (Beijing and Braunschweig)

Abstract. Let Nu, B and Qg be the weighted Nevanlinna space, the Bloch space
and the Q space, respectively. Note that B and Qg are Mdbius invariant, but My is not.
We characterize, in function-theoretic terms, when the composition operator Cyf == f o ¢
induced by an analytic self-map ¢ of the unit disk defines an operator Gy : Na — B,
B — 24, No — @p which is bounded resp. compact.

1. Introduction. Let A be the unit disk {z & C : [z| < 1} in the
complex plane, and let H{A) be the space of all analytic functions on A.
Any analytic map ¢ : A — A gives rise to an operator Cy : H(A) — H(A)
defined by Oy f = f o ¢, the composition operator induced by ¢.

One of the central problems on composition cperators is to know when
Cy4 maps between two subclasses of H({A) and in fact o relate function-
theoretic properties of ¢ to operator-theoretic properties of Cy. This problem
is addressed here for the weighted Nevanlinna, the Bloch and the & spaces
with respect to boundedness and compactness of the operator. The related
research has recently been done by various authors (see for example [JX],
[MM], [RU], [$Z], {T] and [X2]). The present paper continues their work,
but also solves two problems which remained open in [SZ].

For each a € (—1,00), let M, be the space of all functions f € H(A)
satisfying

1+a
Talf)=—— {log™ | ()1 = |21%)* dm(z) < co.
A
Here and afterwards, dm means the nsual element of the area measure on
A, and Iog""cc islogzifz>land 0if 0 <z <1,
From log™ z < log(1+2) < 1+log™ z for z > 0 we see that a fanction f €
H(A) belongs to A, if and only if
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I£llar = §log(L + | ()] (1 = [2f*)* dm(z) < oo.
A

Obviously,

max{||f + glva, 1f9llw } < HF v + llgline
for all f, g € N,. Consequently, A, is not only a vector space but even an
algebra. Further, by setting

dol(f,9) = |If — glin,

for f,g € Na, we obtain a translation invariant metric on N More is
true: || - ||y, is an F-norm, and under this norm, N, is an F-space, i.e. a
complete metrizable topological vector space (cf. [J]).

The Bloch space B consists of all functions f & H{A) obeying

kflls = (0} + S;lg(l — 2| (2)] < oo
Il - |ls is a norm and makes B a Banach space.

Given w € A, let
w—z

Pulz) = 1-wz

be a Mébius transformation which exchanges w and 0. Stroethoff’s ideas in
the proof of Theorems 4.1 and 4.2 in [Str] yield that f &€ H(A) lies in B if
and only if

sup T (Cp., f — flw)) < co.
wed

That is to say, B is the Mdébius bounded subspace of N.
For 8 € (-1, 00), let Qg be the class of all functions f € H(A) with

”fElQ,a = U'(O)‘ + sup [S |(C¢ow)l(z)|2(1 _ £z|2),@ dm(z)] 1/2 < o0,
wed b5

Observe that if 8 € (~1,0), 8 =0,8=1and g ¢ (1,00), then @y = C,
D (the classical Dirichlet space), BMOA and B, respectively (cf. [NX], [Ba],
[AXZ], [AL], [X1]). Of course, Qg is the Mobius bounded subspace of the
weighted Dirichlet space (see also [ANZ], [ASX], [EX]). The spaces Ny, B
and Qg are linked by the inclusions Ny D B D Qp. Notice that B and Qg
are M&bius invariant, but N, is not.

We are going to work with the composition operators sending “big”
spaces to “small” spaces since the converse is clear. In fact, Cy : B — N,
and Cy : Qp — N, are always compact (cf. [X2, Proposition 4.3]), while G :
Qs — B is compact if and only if limyg(zy-1 (1—]2[*)|¢'(2)|/(1—|¢(2)}*) = 0
(cf. [MM, Theorem 2] and [SZ, Thecrem 6.4]).

The main results of this paper are the next three theorems. The first
concerns boundedness and compactness of Cy : N, — B.
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1.1. THEOREM. Let o € (—1,00) and let ¢ : A — A be analytic. Then
the following are equivalent:

(i) Cy : Ny — B exists as o bounded operator.
(ii) Cp : Ny — B exists as a compact operator.
(iii) For all ¢> 0,

(L= (2 c } _
o0 g O e ) =0
Before giving the second assertion on boundedness and compactness of
Cy: B — Qp, we explain the necessary notation.
Arcs in the unit circle 8A are sets of the form T = {z € 8A : 61 <
argz < 02} where 81,6, € [0,2r) and 6; < f3. The length of an arc IcoeA
will be denoted by |I|. The Carleson boz based on an arc [ is the set

S(I):{zeﬁ.\:l~IIl <zl < 1, iel}.

o = Iz|
Also for an 7 € (0,1) and an analytic self-map ¢ of A, put (2 = {lz £A:
|¢(2)| > r}. The characteristic function of a set E C A is denoted by 1p.

1.2. THEOREM. Let 8 € (0,00) and let ¢p: A — A be analytic. Then
(i) C4 : B — Qg exists as a bounded operator if and only if

¢ (AR
SO A SM L L amtn <20

(ii) Cy : B~ Qg exists as a compact operator if and only if € Qp and

11282 4 2
(1.3) lim sup (7]7% § [(1 2% |‘2(z)|] 1a,(z) dm(z) = 0.
r~1lrcaa s 1~ [¢(2)|

Note that (i) of Theorem 1.2 is essentially known (cf. [SZ, Theorem 1.5])
and is listed here only for the sake of completeness. However, (ii) is new
and is just what Smith-Zhao did not figure out. Moreover, if & > 1 then
(1.3) is equivalent to Lims¢:y-1(L — |2[*)i¢' (2)|/(1 = ¢(2)[*) = O (cf. [MM,
Theorem 2]).

The third theorem deals with boundedness and compactness of Cy :
Na —+ Qg. This requires the Mobius invariant version of the generalized
Nevanlinna counting function (cf. [T, Definition 2.2]). More precisely, for
B € (0,00) and an analytic map ¢ : 4 — 4, let

v=z[1“1 w(v)lz]ﬁ’ Zéqﬁ(ﬂ),
N(B,m,2,6) = { o= 1 AN

1.3. THEOREM. Let a € (=1,00), B € (0,00) and let ¢ : A — A be
analytic. Then the following ore equivalent:
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(i) Cy : No — Qp exists as o bounded operator.
(i) Cy : Ny — Qp ewists as a compact operator.
(iil) ¢ € Qg and for all ¢ > 0,
|I!—2(a+3]

(1.4) sup su

St 1o exp(c]IETe) | N(8,w, 2 ¢)dm(z) < 0.

S{)

Comparing Theorem 1.3 with Theorem 1.1 we find that (1.4}<(1.1)
when 3 > 1.

We devote Section 2 to the proof of Theorem 1.1 and its consequences.
The proof of Theorem 1.2 and its extension are presented in Section 3. The
last section is devoted to proving Theorem 1.3 and a further discussion.

Throughout this paper, we denote positive constants by M, My, M,
Ma, ... Those constants depend only on some parameters such as o and 3
unless a special remark is made. Also, given two families & = (z{w))uen
and y = (y(w))wen of non-negative real numbers (or functions) on the given
domain £2, we write z x y if (there exist constants My, My > 0 such that)
Miz(w) < y(w) < Maz(w) for all w € £2.

2. Oy : No — B. The space H(A) is a Fréchet space with respect to the
compact-open topology, that is, the topology of uniform convergence on
compact subsets of A; in fact, H{A) is even a Fréchet algebra. By Mon-
tel’s theorem, bounded sets in H(A) are relatively compact; accordingly,
bounded sequences in H(A) admit convergent subsequences. Convergence
in this space will be referred to as locally uniform (Lu.) convergence.

Recall that A, is a linear subspace (even a subalgebra) of H(.A4). Note
that A, is a topological vector space with respect to the F-norm || || a7, - This
is in marked contrast to the situation for the classical Nevanlinna class which
is not a topological vector space [SS]. Under || - ||, the topology of M, is
stronger than that of locally uniform convergence. This is a simple conse-
quence of the following estimate:

Mol flnv :
(2.1) log(1+f(2)]) < e feNa,
where My > 0 is a constant depending only on a.
As in [Str], N, has B as its M&bius bounded subspace.

2.1. PROPOSITION. Let a € (—1,00) and f € H{A). Then the following
are equivalent:
(i) f belongs to B.
(11) suPyea Ta(Co, f — flw)) < co.
(i) supyea |Co, f — flw)lln, < 0.
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Proof. It suffices to show (i)« (iii), for (i)<>(ii) can be verified in a
similar manner to proving Theorems 4.1 and 4.2 of [Str].
Observe that if f is a Bloch function with || fi|g > 0 then for z € 4,
flls, 1+ 2]

(O 2) — )] < 5P 108 7

It follows that for each £ > 0,
2(a+1)t
Malt] = malz € A:|Cy, f(z) ~ flw)| >t} < Myexp s )
Let now f be a Bloch function. Without loss of generality, we may assume
that || f||g > 0. There is a constant M3 > 0 depending only on « such that for

each w € A,

o0

(2.2) G f — Fw)n = §

0

Mg [t]
1+t

dt < Ma| fls,

which proves (iii).

Suppose conversely that (iii} is true. Let r € (0,1). If z € A is such
that |, (2)| < r then, by (2.1} and since ¢,, is an analytic automorphism
of A with ! = v,

M| Coy f — Flw)llne
(2.) tog(1+ 1£(2) — f(w))) < DLl —SE0IG

An application of (3.1) in [Str] shows that f is a Bloch function. The proof
is complete.

Note that B has a closed subspace, the little Bloch space Bp of all func-
tions f & B obeying

Jom (1 - 2|7 (=) = 0.

It is well known that the polynomials are dense in By under | - ||5. Further-
more, we have

2.2. COROLLARY. Let a € (—1,00) and f & H(A). Then the following
are equivalent:

(i) f belongs to By.

(if) limjgy| sy Ta (07 (Cop, f — F(w))) = 0 for every o > 0.

() Hnjogjot [|Copy f = f(W)lar, = 0.

Proof. As in Proposition 2.1, it is enough to verify (i)<(ili). Suppose
that f belongs to By. By density, given any € € (0, 1), there is a polynomial
P such that || f — P||s < e. Consequently, by (2.2),

1Cp. (f = P) = (f - P)(w)in. < Mallf — Plls < Mae.
This implies (iii), owing to limjy|—1 [|Ci, P — P(w)]|lx, = 0.
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The converse follows easily from (2.3) and from Theorem 3.2 of [Str].

A subset E of N, is called bounded if it is bounded for the defining F-
norm |- ||x,. Given a Banach space ¥, we say that a linear map T": Noe—=Y
is bounded if T(E) C Y is bounded for every bounded subset E of N In ad-
dition, we say that T is compact if T(E) C Y is relatively compact for every
bounded set E C N,. A useful tool is the following compactness criterion
which follows readily from Proposition 2.3 of [JX] and Lemma 2.10 of [T].

2.3. LEMMA. Let o € (—~1,00) and Y be a Banach subspace of H(A)
with norm || - ||ly. Then Cp : Ny — Y is compact if and only if for every
s > 0 and every sequence {fn} which satisfies | fo|ly, < 8 and converges to
0 Lu., imy—o |[Cofally = 0.

2.4. Proof of Theorem 1.1. Tt suffices to check two implications: (i)=(iii)
and {(iii)=>(id).

(i)=>(iii). Let (i) hold. For any ¢ > 0 and w = ¢(z0) (where 20 € A is
fixed), consider the test function

Since log(1+z) < 1+ log™ z for z > 0,

Ifolbve < T2 + VDo 1w~ =) dm(z)

7 1~ |wf? Ite
L —_— — 1 Y-
f1ia +c;(|1m@_2\2) (1 — [2[*)* dm(z) < Ms,

where M3 > 0 does not depend on w and it comes from Lemma 4.2.2 of [Z)].
Because Cy : Ny — B is bounded and

) _ 202+ 2)eB(l — [w|?)?e L—fwf? \***

ful?) == —wapata P |° m) ]

there is a constant My > 0 depending only on ¢ and o such that
My 2 (1— |21 fu(6(2))] - [¢'(2)]
1 — |22V _ 2\ 2-+a _ 2 2+
i I EIA PP [c 1 juf ’
|1 —we(z)[2(3+e)rt (1 -wg(2))?

This estimmate leads to

o Al )] : Ma(1 — ig(z0) )
es) ST e el < e
which forces (iii) to hold.
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(iii)=>(ii). Assume that (iif) is valid for all ¢ > 0. Note that if f € Ny
then by (2.1) and Cauchy’s formula,

2 _
(2.6) (1-2P)if'(2)] < - F(z+271 1 — 12D ldg]
aa
42 My fllw,

< B e L P

o [ (1= [ozpre ]
To demonstrate that Cy : Ny — B is compact, we choose, for s > 0, any
sequence { fn} in N, such that || fallx, < sand fn — 0Llu. on A. Then for
each § € (0,1),

sup (1~ [2)|(Cofa) (2] < sup (I~[@(2))fnl¢()] =0, n— oo
l6(2)]<6 l6(2)1<

On the other hand, from (2.6) and (iii) it turns out that whenever § — 1,

sup (1~ [2")|(Cafn)(2)]
l$(=)1>6

QR Mes
S S e N S P D

Combining the above estimates we see that ||Cyfn|ls — 0 as n — oo. Hence,
(ii) follows from Lemma 2.3. The proof is complete.

There is an analogue of Theorem 1.1 for the little Bloch space Bp:

92.5. COROLLARY. Let & € (—1,00) andlet ¢ : A — A be anal'ytic. Then
the following are eguivalent:

(i) Cp : No — Bo exists as o bounded operator.
(ii) Cy : No — Bo ewists as a compact operator.
(iii) For all ¢ > 0,

- R e _
21) T le(P eXP[(i—lrﬁ(z)lz)z*“}“

Proof. It suffices to demonstrate (iii)=>(ii) and (i)=+{iii). The first im-
plication follows casily from the proof of the corresponding case of Theorem
1.1. The second will be verified by contradiction. Suppose that Cy : Na — Bo
is bounded. So ¢ € By. Now, if (2.7) is not true for all ¢ > 0, then there are
co, £p and a sequence {z,} tending to A such that

(1= |22 () o
T fle)l? 7 [(1 - |¢(zn>i2>2+a} = o

Since ¢ € Bg, (2.8) indicates that {z,} has a subsequence {zn,} with
|¢(z,,)| — 1. Also since Cy : N — B is bounded, one has (1.1) (for all

(2.8)
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¢ > 0), which, in particular, produces the following limit:
(L~ |20, %) ¢/ (2ns)| 2o
exp 0
1 — |é(zn,)|? (1= |o(2n,)[?)?+
It is evident that (2.9) contradicts (2.8). We are done.

(2.9)

3. C4 : B — Qp. In this section we prove Theorem 1.2. The proof will
borrow a technique from [BCM, Theorem 3.1]. Before proceeding, we need
an inverse inequality for B due to Ramey and Ullrich [RU, Proposition 5.4].

3.1. LEMMA. There are two functions fi, fo € B such that
(3.1) inf (L= [z (A=) + 1 f2(2)) 2 1.

For 8 & {0,00) we say that a positive Borel measure di on A is a §-
Curleson measure provided supzcpa p(S(I))/|71? < oo. This definition was
introduced by [ASX, Theorem 2.2] to characterize the @g space.

3.2. LEMMA. Let 3 € (0,00) and let [ € H(A) with
duss(2) = [/ (2) (1 — |22 dm(2).
Then f € Qg if and only if dusp is a B-Carleson measure. Moreover,

1/2
(3.2) [ fllas = 17O)] + Li‘%% W] .

3.3. Proof of Theorem 1.2. From now on, Bx stands for the unit ball of
a given Banach space (X, || - |x)-

(i) follows obviousty from Lemmas 3.1 and 3.2. The key is to infer (ii).

Sufficiency of (ii). Let ¢ € Qp and let (1.3} hold. We have to show that
if {f»} C Bg converges to 0 L.u. on A then {{|Cyf.]|o,} converges to 0. For
each r € (0,1) set 2, = A\ 2. So {f/(¢)} tends to 0 uniformly on £2,.

Hence by Lernma 3.2, for every ¢ > 0 there is an integer N > 1 such that
forn > N,

sup, 7177 s§1) (Cofa) @)L = 21215 (2) dmiz) < eM g%,

On the other hand, from (1.3) and the growth of the derivatives of B-
functions one derives that for every ¢ > 0 there exists a § € (0,1) such
that for r € [4,1),

sup, g S(SI) (Cafn) ()1 — |2*) 10, (2) dm(z) <.

Combining the previous inequalities with Lemma 3.2, we obtain ||Cyfnlie,
—+ 0.
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Necessity of (ii). This part is more difficult. Let Cy : B — Qp be com-
pact. It is clear that ¢ € Qg. So, we must show (1.3). Since {z"} is norm
bounded in B and it converges to 0 L.u. on A, we have |[¢"|jg, — 0. Apply-
ing Lemma 3.2, we find that for every € > 0, there is an integer N > 1 such
that for n > N,

n? sup [II77 | [¢(2)"" 2|6/ () 2(1 — 12[*)P dm(2) <&
Ica 1)

thus for each r € (0,1),
NZ2N=2 qup (1|78 S |6 (2)2(1 — |2|%)P 10, (2) dm(2) < e.
1cea

S(I)
Taking r > N~YN-1) we get
(3.3) sup 7|77 | |¢/(2))*(1 = 2" 1a, (2) dm(z) < .
1caa

5(1)

Keeping (3.3) in mind, we show that for every f € Bz and for every
e > 0, there is a & = &(f, &) such that for r € [§, 1),
(3‘4) T(f7 (b,ﬁ,'f”)

= sup |I|7° S HCaHY (2L — |2*)P1a, () dm{z) < &.
Ic8A s

As a matter of fact, if we let fy(z) = f(¢z) for f € Bg and £ € (0,1), then
fi — flu. on Aast— 1. Since Cy : B— Qg is compact, | frod— fod| g,
— 0 as t — L. Furthermore, Lemma 3.2 yields that for every ¢ > 0 there is
at € (0,1) such that

sup |17 § [(Cofe) (2) = (Co Y (2)P(L = |21*) dm(2) <e.
e8a s
Accordingly, by (3.3),
T(f,¢,8,7) < 26 +2 sup [I|7? | [(Cofs) ()*(L = 2L, (2) dm(z)
Ic8A i)
< 26+ 2||fi)1%, sup 11175 | 16/ (2)P(1 = [21%)P1q.(2) dm(2)
IcoA S

< 26(1+ |I£115)-

Since Cj sends Bp to a relatively compact subset of Qp, there exists, for
every £ > 0, a finite collection of functions fi,..., fn in Bg such that for
each f € Bg thereisa k € {1,..., N} with

sup |1]% | |(Cof)(2) ~ (Cof) (2)P(1 — |2*)P dmfz) < e.
Icéa (1) |
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Now (3.4) is used to deduce that for § = max;<x<n 6(fr,€) and r € [§; 1),
sup |11 § |(Cofe) (2)(1 = [21) 10, (2) dm(z) <&

Icesa s(D)

thus

(35)  sup sup (177 | 1(Cef)(2)21 = 2)La, (2) d(z) < 4e.
Feby ICAA st

An application of Lemma 3.1 to (3.5) implies (1.3). This concludes the proof.

The space Qg, like B, has a closed subspace Qg which consists of those
f € Qg satisfying

S FICe, ) ()P (1 = 22)? dm(z) = 0.
A

It is known that Qg0 = C, VMOA and By whenever § € (—1,0], 8 =1

and f € (1,00), respectively (cf. [NX], [AL]). Moreover, the Qg o-version of

Lemma 3.2 states that f € Qg o if and only if duy g is a vanishing §-Carleson

measure, ie. limzg ps,8(S(I))/|7|? = 0 uniformly for all Carleson boxes

S(I) {cf. [ASX, Theorem 2.2]).

The purpose of mentioning Qg is to solve ancther problem in [SZ]:
“Whenis Cp : By — Qg or Qg compact?” The method of treating Theorem
1.2 can be adapted to provide an answer to this question.

For convenience, let A, = {z € A:|z| > r} where r € (0,1). We have

3.4, COROLLARY. Let 8 € (0,00) and let ¢ : A — A be analytic. Then

(i) Cp : Bo — Qp erists as o compact aperator if and only if ¢ € Qp
and (1.3) holds.

(i) Cp : By — Qp,o ewists as o compact operator if and only if ¢ € Qg
and

(3.6) lim
—

sup |7]7° | [(1"|z|2)ﬁ/2|¢’(z)|
lrcaa

EN e

Proof. (i} Sufficiency. It follows from Theorem 1.2(ii).

Necessity. Suppose that Cy : Bg — Qg is compact. Then ¢ € Qg follows
right away. Note that if f € Bg then ||fillz < || fls < 1. Now for a fixed
t € (0,1), put By = {fi : f € Bg}. Then B} is a subset of Bg,. By
compactness of Cy, Cy(Bg, ) is a relatively compact subset of Q4. The proof
of Theorem 1.2(ii) actually shows that for every £ > 0 there isa § € (0,1)
(independent of £) such that for r € [4,1),

Sup i S(SI) [(Cofe) ()1 = 2110, (2) dm(2) <e.

]ZIAT (2)dm(z) = 0.
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This estimate and Lemma 3.1 result in

s { [N~ =P
oAl S(SI) { 1= g

and so (3.6) follows, by Fatou’s lemma.

(il) Sufficiency. Let ¢ € Qp and let ¢ satisfy (3.6). Suppose that {fn} C
B, is a sequence which converges to 0 Lu. on A. To prove that Cy : Bp —
Qp,0 is compact, it suffices to verify that limn_,e0 ||Co fall@s = 0. For each
r & (0,1) put Ay = A\ A,. Since A, is a compact subset of A, {f5(¢)}
tends to 0 uniformly on A,. From ¢ € Qp and Lemma 3.2 it is seen that

tim sup 1|77 | [(Cofn) (2)P(1 —|2i%)P1 5, (2) dm(2) = O.
n—meCaA S(I)

:]21{21_(2) dm(z) < 2e,

This limit, together with {3.6), gives limno [|Cyfrllos, = 0.

Necessity. Let Cy : By — Qpo be compact. It is trivial to deduce that
¢ € Qp and Cy{Bg,) is a relatively compact subset of Qg,o. Given an e > 0,
for every f € Bp, there are finitely many functions g € @g,0 such that

sup 11177 | 1(Cuf)(2) — gh(2)P(1 — |21%)? dm(z) <e,
I1ce4a st
where we have used Lemma, 3.2. Consequently, for all r € (0, 1),
sup 1178 { 1(Cof)(2) — g ()1 — 1214, () dm(z) < e.
IC8a st
Since gy € Qg 0, there is § € (0,1) such that for r € 6,1),
sup [7]77 | |gi(2)P(L = [2*)PLa, (2) dm(z) <e,
1céa st
which implies
sup sup |17 | [(Csf) ()21 - 12|2)P1 4 (2) dm(z) < 2.
felg, ICBA sU)

A careful inspection of the above argument for the necessity of (i) shows
that (3.6) follows immediately from another application of Lemma 3.1 and
Fatow’s lemma to the last inequality. The proof is complete.

We close this section by an observation on the condition (1.3). It is clear
that (1.3) holds if

QN
(3.7 ; [i—_ljéélﬁ:l dm(z) < oo.

Shapiro-Taylor [ST, Proposition 2.4] showed that (3.7) forces Cg : D D
to be a Hilbert-Schmidt operator. Tjani [T, Proposition 3.9} pointed out
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that (3.7) ensures that Gy : B — D is compact. Since D C Qg C B, our
conditions (1.3) and ¢ € Qg fill up the gap between D and B in the sense
of the Hilbert—Schmidt property and compactness.

4. Cy : Ny ~ Qp. In this final section we show Theorem 1.3. A dyadic
division of A, quite different from the one used for Thecrem 1.1, will be
involved to control Theorem 1.3.

4.1. The dyadic division. Following [AS] and [L], we divide A into dyadic
boxes. Let I denote the family of dyadic arcs in 84, that is, the family of
all arcs of the form
{z €84 :2rk/? <argz < 2r(1+k)/2'}, k=0,1,...,2'~1,1=0,1,...
Given an arc I C 04, let H(I) dencte the half of S{I) which is closest to
the origin, namely,

HI)={zeSI):1-I|/(2r) < |z| <1 |I|/(4m)}.

Note that the H(I)'s for [ € T are pairwise disjoint and cover A. Fix any
enumeration {H; : j = 1,2,...} of these sets and select a point a; in each
H;. Almost any point would work, but in order to simplify some parts later
on let us agree that a; is the “center” of H; in the sense that |a;| and
arg a; bisect the interval of absolute values and the interval of arguments,
respectively, of points in Hj. If H; = H(I) then |I| <1 — |a4|.

4.2. Proof of Theorem 1.3. It is enough to verify the implications (i)=>
(ii)=-(ii). Put dmg,y,e(z) = N(B,w, z, #}dm(z). With this choice, we estab-
lish

1/2
(A1) ICufllay = ISGO)+ sup | § 177 dmgus(=)] -
w A
(1)=-(iii). Suppose that Cy : Ny — Qg is bounded. Then clearly ¢ is a
member of Qg. In order to show that dmg..,¢ satisfies (1.4), fix 6 € [0, 27)
and u = [1 — (2x)"!}I]]e*. Consider, for any ¢ > 0, the test function
C(l _ |u|2)m—2-—cx
(1-wz)m ’
where m is the smallest integer greater than 2 + . Then
) emT{l = [P el - fufyriee
0t = g P | T {Cag |
Since log(l + z} < 1 +log™ « for z > 0,
(1= Ju)m 272 (1 ~ 21%)*
|1 — Tzlm™

9u{2) = exp [

¥
4.2 <
( ) “g’ﬂt”Na et 1 a C;

dm(z) < M,
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Once again, this constant M > 0 is independent of u and it is determined by
Lemma 4.2.2 of [Z]. Let I be the arc centered at €. Then there is § € (0, 1)
such that for |I| < 4,

sup |1 —%z| < Mi|l|,
ze38(I)

. =AY 1) ki
zElgfI) Re[(1 — uz)}™] > M |I|™,
and hence
Mo |T|—(3+a)
()] = 2RI

2€5( 1') exp(My|I|2+2)

where My > 0 and M, > 0 rely upon § and o only, but also give
em. M, — cMy

2(27r)m—2—o:M{n+1 ! 4= (2m)m—2-apf2m’

My =

By (4.1) and since log™ z < log(1 + ) on [0, oa),

M3mgw,e(5U))
[P+ exp(2My| T[> +e)”

Appealing to the closed graph theorem, (4.3) and (4.2), one obtains (1.4)
at once. On the other hand, if |I| > §, then (4.1) and ¢ € Qg easily imply
(1.4) too.

(iii)=>(ii}. Assume now that ¢ € Qg and dmg w4 is such that (1.4) is
valid for all ¢ > 0. For every s > 0 we choose a sequence { f,} in N, so that
|folle < s and {fn} converges to 0 L.u. on A. With the help of the dyadic
division of 4, for fn € Ny let af € H; (closure of H;) be a point where | 2|
attains its maximum on H;. If l is the integer such that H; is contained in
Ari={zeA:1-2"1 < |z] <1274} then the set

(4-3) ICsgullly, 2

Sj={z€d:1-27" <izf <1 - 27D arg 2 — argaf| < 271}

contains a disc A; with center o} and radins comparable to 2-%. Note that
S; intersects at most 6 of the sets Hj, and that 1 — |2/? = 27! whenever
z € 9;. Using these observations, (2.6) and the submean value property of
|f.|, we find that to every £ € (0,1) there corresponds an r € (0,1) such
that for all f, and all w € 4,

S |f?{!|2 dm'ﬁ_w,¢

An
<Y sup  |fn (2P mp e (Hy N A)
3 zEHyNA,
g2 My Zm, ~ |a?)* exp[—eMa (1 — |a;?)**e]
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< E2(1+Q}MT Z Efr’z(z)lz(l " |z|2)2 exp[—-CMB(l — |z|2)2+0¢] dm(z)

59
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K. J. Wirths and H. Wulan for their interesting comments on previcus
versions of the paper. Finally, thanks are due to the referee for his/her

[ £4(2)](1 = [21%)]? expl—eMa(1 — [2]*)*F] dm(z)

S
i A
562(1+Q)M72§
i H;

)

< g2+ pgy S exp|—(cMg — 427 Mps) {1 — |2|2)2%%] drn(2).
4
Since {1.4) holds for all ¢ > 0, it follows from picking ¢ > 42T My /Mg in
the above estimates that

(4.4) {1722 drmg e < €207 Mg,
Ay

Also since ¢ € Qp and f, ~ 0 uniformly on /:‘.dr, to the above ¢ and r there
corresponds an integer N > 0 such that for n =2 N,

(45) § 170f? dmp s < lléla,-
A,
Putting (4.1), (4.4) and (4.5) together produces that |CyfallQ, — 0 as

7~ O0.
To end this section, we present a Qg g-version of Theorem 1.3.

4.3, COROLLARY. Let o € {—1,00), B € (0,00) and let ¢ : A — A be
analytic. Then the following are equivalent:

(i) Cp: Na — Qg0 exists as a bounded operator.
(i) Cp: No — Qp,o exists as a compact operator.
(iii) ¢ € Qpo and (1.4) holds for all ¢ > 0.

Proof. It suffices to show (iii)=>(il) because (ii)=>(i) is trivial and
(i)=>(iii) follows from Theorem 1.3. So let (iii) be true. Since the poly-
nomials are dense in N, and in Qg (this is easily verified via the triangle
inequality), if f € Ay then for every ¢ > 0 there is a polynomial P such that
|f — Plix. < e. Observe that (iii) asserts boundedness of Cq :Na — Q5.
So, there is a constant M > 0 such that ||Cyf — C3P| @, < eM. Also since
b € Qg,o, it follows from the Qg o-version of Lemma 3.2 that ¢" € Qg o for
every integer n > 0. As a result, CyP € Qg . The triangle inequality and
the density of the polynomials in Qg vield Cpf € Qp,0. In other words,
C, maps N, into Qg o. Furthermore, the last part of the proof of Theorem
1.3 shows that Cy : Ny — Qg0 is compact, that is, (i) holds.
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A geometrical solution of a problem on wavelets

by
ANTOINE AYACHE (Toulouse}

Abstract. We prove the existence of nonseparable, orthonormal, compactly supported
wavelet hases for L2(R?) of arbitrarily high regularity by using some basic techniques of
algebraic and differential geometry. We even obtain a much stronger result: “most” of
the orthonormal compactly supported wavelet bases for LB(RE), of any regularity, are
nonseparable.

1. Introduction. A wavelet basis for L*(R?) is an orthonormal basis of
the type {2424 (2g —~ k) |i=1,...,2¢ — 1, j € Zand k € Z%}. It can
generally be obtained from a sequence {V;};ez of closed subsets of L2 (R?)
called a multiresolution analysis because it has the following properties:

(a) ﬂjezw = {0} and U_-,'ezV;i = L*(R?),

(b) V? - V.'H'l for all jy

(c) there exists a function ¢(z), called the scaling function, that belongs
to V and such that {@(z — k) | & € Z%} is an orthonormal basis for Vp
[Le, D, M].

The wavelets that this paper deals with are both compactly supported
and generated by multiresolution analyses.

We will say that a wavelet basis is separable if the functions ay; may be
written as products of monodimensional scaling functions and monodimen-
sional wavelets.

There exists a one-to-one correspondence between the wavelet bases for
L2(R?) and the filter banks that satisfy Cohen-Lawton’s condition. More
precisely, the Fourier transforms of the functions ¢ and ¥1,...,p4_1 are
given by

(1.1) #(6) = [] Mo(27*¢),
k=1
(1.2) Bi(8) = M{(272)@(2716),
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