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Subspaces of the Bourgain—Delbaen space
by
RICHARD HAYDON (Oxford)

Abstract. It is shown that every infinite-dimensional closed subspace of the Bour-
gain-Delbaen space X, ; has a subspace isomorphic to some @,

Introduction. In 1980, Bourgain and Delbaen [5, 4] introduced some
separable £> spaces with surprising properties: all have the Radon-Niko-
dym property, and so certainly do not have subspaces isomorphic to ¢p;
some of them (the spaces of “Class X”) have the Schur property; the others
(*Class )”) have dual spaces isomorphic to £'. Despite their importance,
these spaces were not much studied subsequently, and it became habitual to
remark that they were “not well-understood”. There has been some renewed
interest recently, partly because these spaces are interesting test-cases for
questions about uniform homeomorphisms [9, 6] and smooth surjections
[2, 7). Alspach [1] has investigated their Szlenk index. This paper is an
attempt to understand a bit better the subspace structure of the spaces
of Class Y, that is to say, in Bourgain’s notation, the spaces Xop with
b<1/2 < a < land a+b > L. Bourgain and Delbaen showed that every
infinite-dimensional subspace of such a space has an infinite-dimensional
reflexive subspace; however, they did not characterize which reflexive spaces
oceur as subspaces of X, p; Bourgain [4, p. 46] raised the question of whether
Xap has a subspace with no unconditional basic sequence. The main result
of the present paper answers these questions by showing that each infinite-
dimensional subspace of X, has a subspace iscmorphic to £7. The p in.
question is determined by 1/p+ 1/p" = 1 where o b =1,

Our notation and terminology are mostly gtandard. In particular, we
follow modern practice by saying that vectors z1, Tz, ... aré successive linear
combinations (or blocks) of a sequence (yy) if there are integers ) < ny <
ma < g < mg < ... and scalars a, cva . .. such that @x = F75,, @;y;.
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276 R. Haydon

The unconditional sequence spaces U, ;. Closely associated with the
Bourgain-Delbaen spaces are some spaces with unconditional basis, which
we shall denote by U, . In this section we shall study these spaces, eventually
showing that they are just £7-spaces with equivalent norms. The norm || - ||, ;
is defined by a recursion similar to (but simpler than!) the one that leads
to the Tsirelson space [8]. We fix real numbers a,b with a,b6 <1, a4+ b > 1,
For a vector z € R%, or a finitely-supported vector z &€ R™ | we define
(recursively)

Iz 4,5 = max{[lzllco, max(al|zTio,nllab + bl Tgs1,00)llap)}-

That is to say that the norm ||(zp,21,...,24)|,, of a vector in Ré+!
is whichever is greater of max;|z;] and max(al/(zo,y,... Z)lgp +
bl(zig1s-- -5 @a)llz ). It is an elementary exercise to see that this is indeed
an unambiguous definition. We then define U, 4 to be the completion of R
with respect to this norm. It should be noted that in the definition of the
space U, p we do not need to suppose that b < 1/2 (a condition essential
for the Bourgain-Delbaen construction). However, it will be convenient in
all that follows to assume that b < a. The symmetry of the definition of the
norm || - ||, , means that the main result of this section, Theorem 1, remains
true when a < b, though with a replacing b in the final estimates.

The recursive calculation of norms in the space U, ; leads naturally to
the construction of a finite dyadic tree of intervals of natural numbers, and
it will be useful to have a standard notation for such trees. We write &' =
Unen10,1}" for the set of all finite strings of 0's and 1’s, including the
empty string (). In our intended application, a “0” in a string o will always
be associated with a move to the left and a “1” with a move to the right.
We shall accordingly denote the number of 0’s and the number of 1’s in a
string o by I{o) and r(c) respectively. For 0,7 € X we write ¢ < 7 and
say that o precedes r if ¢ is an initial segment of 7. Bach element ¢ of Y
has two immediate successors, which we may denote by ¢0 and ol. By an
admissible subtree of X' we shall mean a non-empty, finite subset T of X%
having the property that, whenever ¢ € T", all predecessors of ¢ are also in
T and, of the two immediate successors of o, either both are in T, or else

neither is. Those o with no successors in 2° form the set max 7 of maximal
elements of 1.

A dyadic tree of intervals is a family I(o) of non-empty intervals in N,
indexed by some admissible subtree 7, with the property that whenever o €
Y is non-maximal, the interval I(o) is the disjoint union of its subintervals
I{o0) and I(ol), with I{c0) lying to the left of I(¢1). We note that the
intervals i(7) corresponding to 7 € max 1 form a partition of the original
interval I().
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If 7 is a finitely supported vector in RN and I{¢) (¢ & T) is any dyadic
tree of intervals, it is clear from the recursive definition of the norm that

lelgs > Y, @l la.

TEmax T

Moreover, for a suitably chosen tree, we have

“mHa,b': Z al(r)br{ﬂnmrl(f)ucn-

TEmax

Notice that in the case where ||zliap = ||z o this latter equality holds for
the trivial tree ¥ = {()}.

We shall now proceed to establish the inequality ||z],, < =, <
C|\l,, for an arbitrary finitely-supported vector 2 in R™M | thus showir’lg
that || - |, 5 is equivalent to the £F-norm, where 1/p+1/p =1=0af + 5.

A few najve remarks will perhaps help to clarify the calculations that
follow. The inequality |||, , < ||z||, is easy to establish by induction on
the size of the support of . Indeed, lzll,p is equal either to [|z|leo or to
all@ o,k llab + bll& 1,00y [lap; and this latter quantity is at most

(@ + 07 VP (20, 15 b + 12Tk s00) IR
< (|t io i + 12k ooy 187 = Nl

by Holder's inequality and our inductive hypothesis. There are, .of course,
some vectors for which ||z||,, = l|lz|l,; they may be characterized using
the condition for equality to occur in Hélder's inequality. Indeec.l, they are
exactly those vectors where a norm calculation of the kind described above
leads to a dyadic tree of intervals with the property that the ratio || [7¢,0) lip :
21101y |lp i precisely aP' =1 b'=1 for every non-maximal ¢, and such that
ll T 7y f|p = ||&Tr(z) oo for each maximal 7. .

If we are thinking of || - ||, as an approximation to | - I, them, c:,very ‘gllme
that we are obliged to split an interval other than in the ratio o” -l pp ot
with regpect to the £P-norm., we introduce an underestimatg. Th.e proof we
give proceeds by constructing a certain dyadic tree and keeping flalrly careful
accounts of the accumulated underestimation. It will be convenient to write
o =af and f = b so that o + 3 = 1. As already remarked, we lose no
generality in supposing that a > b.

Lemma 1. Let y € RMN) pe g non-zero vector, with support contained in
the finite interval J. Assume that y satisfies

iz, < 2wz,
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We may choose a natural number k, not an end-point of the interval J, and
a natural number I (equal either to k or to k — 1) in such a way that

1 ka|‘°]
Yll, < exp [—%—- ally
EI ||p 5pp; Hyui [ ” r[D,I]

P +b\|yﬁ;+1,m)|\p]-

That is to say, either

1 |uel?
||yi£p5exp[ e

e B ol + Ol o)
7 sl + T

or

Iyl < exp |y Wi ;
Y], < exp @H?Jni [a”yr[o,k}“p*‘ ||Z'Jf[k+1,m)“p]-

Notice that in either case k is an end-point of the subinterval J N[0, k] or
J Nk, co) which contains it.

Proof. It will simplify notation to suppose that the interval J is [1,n].
We choose k to be the unique natural number that satisfies

k—1 k
o lwilP < allylh <> Il

Our assumption implies that [fy[|5, < Blly|[}, and hence that [y [P < B|ly[|} <

ol

allylly and 37250 w5 [P = Hlylly ~ |val” > (1=B)lyll; = aliy[l7. Thus k cannot
be either of the end points 1, n of the supporting interval .J. By choosing |
to be either k — 1 or &k, we may arrange that

!
1
> il = ellyl?] < Sluel”.
F==1

So if we write w = y[[o,” and 2z = Y[141,00), We have
lwlif = (@+a)lul},  llellf = (8 —e)llylE,
where [e] < 3(|yxl/liy]l,)F. We can now calculate as follows:
aljwll, + bllzl, = [ale +6)H7 + b(8 — )7y,

= [o{1 +2/a)"/P + (1~ &/8)" ¥y,

Of course, for small values of g,

a(l +e/a)tP + B(1 —&/B)P = exp [—-—1—-, (}- + l)sz],
- 2pp' \a (8
and it is an elementary exercise to see that

ol +e/o) +6(1 -2/} > exp| - (L4 5)2],
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whenever |£| < 8/5. In our case, since we are assuming that |y|5, <
(28/5)||ylly. the quantity ¢ as defined above is indeed smaller than B/5.
We are thus led to the inequality

ol < ex [ (%4 )2 ol + 011,

: ! 1yk|”]
gexp{——— ajlw||, -+ Bl zjl,):
520 |91 [aifwll, -+ &llzl,]

using once again the fact that

THEOREM 1. Let a,b be real numbers satisfying a,b < 1, a+5b> 1 and
let p,p' be determined by 1/p+1/p =1 =a? +b?. The norm ||-||,, is
equivalent to the usual £F-norm.

Proof. As in the preceding lemma, we may suppose that b < o and
we retain the notation o = af", 8= b?'. We consider an arbitrary non-zero
z € RN and give a recursive definition of an admissible tree 7', a dyadic
tree of intervals (I{(o))yer, and elements i(c) of I(e), which we shall use to
estimate ||z, ,- We start by taking I{) to be any finite interval that contains
the support of . If a string 7 is already in 7" and I(r) has already been
defined we need to specify whether 7 is going to be a maximal element of
T and, if not, what the two “daughter” intervals I{70) and I(71) are going
to be.

There will be two criteria involved in deciding if 7 is maximal. First, 7
will be declared to be maximal if the following condition holds:

(A) 211y lloo = (28/8Y /7|21 1¢I5
If this condition does not hold, then of course Lemma 1 is applicable to
the vector y = x[7). We let i(7) be the unique ¢ € I(r) such that

S wP<elwlbs Do luil
FEI{rin[0,d) FeI{r)n(0,i]
Thus 4(7) is the “k” corresponding to y = zlr(r) in Lemma 1. We recall
from that lemma that 4(7) is not an end-point of J(). The second condition
for maximality is that 7 will be maximal if

|mi(a)|p
B et > 5,
®) 2 ot ol

The effect of this eriterion is to ensure that

N
Z __!"fi@_luﬁ <5
r er:(a)\lp



icm

280 R. Haydon

for every 7 in the tree. Indeed, otherwise the recursive construction would
have been terminated (by criterion (B)) at a predecessor of 7.

In the event that neither (A) nor (B) holds, we choose [ as in Lemma 1
and define the daughter intervals by I{r0) = I{+) N [0,1], I(r1) = I{z)n
[l + 1,00). We notice that ¢(7) is an end-point of one or other of these
intervals, and hence also of any interval I(v), with v > 7, which contains it.

This completes the recursive construction of T, I(¢) and i(c). The set
max T of maximal elements may be partitioned as AU B, where A is the set
of 7 for which condition (A) holds. We notice that the natural numbers (7),
defined for 7 € 1"\ A, are all distinct. Indeed, if v and T are incomparable
elements of X', then i{v) and i(r) are elements of the disjoint intervals I(v)
and I(7); on the other hand, if r < v and i(r) € I(v) then i(r) is an
end-point of I{v) while i(v) is not.

It follows from Lemma } that, whenever ¢ is a non-maximal element
of 7,

1 [:L',,; o IP
ot 2l < exp [——7 ()

——— a1y +b o .
o e et + Hletrn

We deduce from this inequality, together with the remark we made following
the intreduction of criterion (B), that

2
1 z*
”m” < 2: al(”r)br('r)exp[i _._.L_] zly(r
F 5pp’ |11 110y il ezl

rEmax Y g—<T
<V R OOty
TEmMmax T
1 B 5 1/p
<e /(") [Z gTpr(r) (_) |Ex rI(-r)Hoo+ Z al(r)br(ﬂlmﬁ(ﬂ”p
TEA 2’6 T B

B el/’(pp’) [HA + HB}:

in an obvious notation. It follows from the relationship between trees and
norm calculations that Hy < (5/(2/3))1/1"H:v||a,b. On the other hand, we may
use Holder’s inequality and the fact that a? + b*' = 1 to show that

#e < (N letinlt)” = (Slest?) ™,
TER ied
where

J=J I = {j er): Y ————‘m"""”pp > 5}.

TEB owith jeI(e) ”mrf(a’)”‘i’
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We thus have
. P
5HE < Y |zmP Y ( |zi(o| )
jed o with j€I(e) 12 2o llp
&
sSwer 3 (per)
igrd) o with jI{o) I{o}tip
= Z |30 " || I(o‘)”p Z |z5/F = Z |50
ocel Jel(a) oel

and this is at most ||z|Z, since as we noted before, the i(or) are all distinct.
We have finally obtained the following inequalities:

el < Ha+ Ha < (5/(20))' " alop + 5772l

whence

(e=VP — 57Y)||z||, < (5/(28))% |z, 5
which leads to a final estimate of the form

Iz, < b~ 77|l
with ' a constant independent of p and b (and smaller than 50).

The author would like to thank Mark Boddington for carrying out some
numerical experiments which suggested that Theorem 1 might be true. A
study of various generalizations of the spaces U, will appear in [3].

The Bourgain—Delbaen construction. In this section we shall recall
the construction of the spaces X, 3, using a notation consistent with the
original, but differing somewhat from it. As well as seeming (to the author
at least!) somewhat clearer, this notation appears to be better suited to
possible generalization. The ingredients needed in a construction of this
kind are a sequence of sets Ag, Ay,... and linear mappings that we shall
denote by u,,. The next paragraph sets out the properties that these sets
and mappings have to satisfy. _

We suppose that the sets Ag, Ay, ... are digjoint and finite, and that the
union I' = |,y An i5 infinite. For n = 0, we write I’n = Ui <n Am. For
each n > 0, we need to have a linear operator u, : £°(In) — - £ (Apt1)
and we define i, : £2°(I}) — £2°(In4a) by setting

| if v € I,
(i f)(7) = {{153‘)(7) if?): € Any1.

We define iy pn 1 £°°(I'm) — £°(I) to be the composition &m,n = ip-1 ©
in-5©...01m and note that, for m < n < p and f € £2°(I'n), we have

('l‘m,p.f) Fagr = @m,nf'
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It follows that we may well-define a linear mapping jm : £2° () — R by
getting

(JnF)(8) = (imnf)() (6 € ).
We now make the further assumption that the mappings i, have been de-
fined in such a way that the norms of all the compositions %, » are bounded
by some constant A. This tells us that the mappings j., take values in £°°(I"}
and that, for each m, the operator j,, is an isomorphism from £*°(I;,,) onto
a finite-dimensional subspace X, = im j,, of £°(I") with

A1 < Ngm 7l < A F-

Finally, we take X to be the closure in £°°(I") of the union of the increas-
ing sequence of subspaces X,,. Since the subspaces X, are A-isomorphic to
£°(I'y), the space X is a separable £3°-space, whose properties are de-
termined (in a way that is not always straightforward to decide) by the
operators t,. The tricky part of the construction lies in finding u,’s which
are such that the norm conditicn on the 4., ,’s is satisfied.

However the u,, are defined, the space X obtained in this way has some
useful structure. Each of the subspaces X, is the range of a projection
Sn, defined by S,z = ju(e[p)). If we set Py = Sp and P, = S, — Sy
(for n > 1), then the subspaces M,, = im P, form a finite-dirmensional
decomposition of X. When, later on in the paper, we refer to the support
of a vector z € X, we shall be thinking in terms of this f.d.d. Thus, if
=  #m With z, € My, then supp(z) will mean the set of m for which
Zm # 0. Similarly, we shall say that the vectors x1, x5, ... are successive if
there exist natural numbers my < ny < mp < 1y < m3 < ... such that
supp &z C [mg, ng]. There is a relationship between this notion of support
and the more obvious one where we are thinking of the vector = as a function
on I'; namely, suppz N [0,n] = @ & =z = 0. It is also worth noting
that, since the spaces M, = {j.{z) : € £°(I}) and 2l = 0} are
A-isomorphic to £%°(A,) and so have uniformly bounded basis constant, the
space X has a basis. Such basis vectors occur as the w., in Proposition 2
below (though the fact that they form a basis is not crucial there).

We now pass fo the details of the Bourgain-Delbaen construction, Let

., b be real constants with 0 < b < 1/2 < a < 1 and a+b > 1. We shall show
how to construct the space X, ; by defining (recursively) the sets A, and
the mappings u,. We start by taking Ag to be a set with just one element,
say Ag = {0}. Now we define

Anga={n+1} x ] {k} x I} x I % {£1}.
0<k<n
So an element of A, is a 5-tuple of the form

6= (n:k>£n P :El)

icm
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This notation replaces the explicit enumeration that appears in [4] and [5].
It will be convenient to have names for the five coordinates of §:
n=rank(d), k=cut(d), &=base(f), n=rtop(s), =£I = sign(s).
The mapping un : £7°(I,) — £°(An+1) is defined by

(1) (B, £, 1) = af (€) & b(F(m) = (i (FT1)) ().

It is shown in [4, 5] that with the above definitions, the composite map-
pings 4m,» are indeed uniformly bounded with
imml € X = a/(1 - 20).
1t is perhaps worth repeating the original argument in our modified notation.
We assume inductively that, for some n, all the mappings ¢y, (m < n)
have norm at most A. We now consider some f € £%°({I,) and some vy =
(n~+1,k & mn, El) € Anyy. By definition,
(imnr £ (V= (Undmn F)(7)
S a}(im,n.f) (£)| + bl(zm,'nf)("?) - (ik,n((im,nf) frk))(??ﬂ
If the cut k is greater than m, then iy nf = ik n(imif) = tkn((imnf)ir,)
so that the second term above vanishes, leaving |(im,a+1/)(Y)] < allimn Sl
which is at most aX| f|| by our inductive hypothesis. If, on the other hand,
k < m, it must be that £ € Iy, C I'y, so that |Emaf)(E)] = 1FE < |IFIi-
Algo, (imnf)lp, = flp,, an element of £2°(T) satisfying || fip || < [f]|.
Applying our inductive hypothesis to the two mappings iy, and i, we
obtain _
](im,rﬂ-lf) (7)' < al(im,'nf)(g) L‘i’bl('ﬁm,nf)(ﬂ)_(?‘k,nf rl"k)("?)l Sa’“f”"}_Qb‘\Hf”
Since a = (1 — 2b)), this is at most Al}f||, as required.

The following proposition can also be found in [4].

PROPOSITION 1. Let k, m, n be natural numbers, with m < n, let = be an
element of X, and let v be an element of I' with rank(y) = n, cut(y) = k.
Then

lw(7)] < allwtp |l + bl = Szl < 1Sk + 8T - Sk)all
Proof. Since 3 € X, # has the form jp, f, for some f € £°° (I}, ), and so

2(7) = (bm,nf)(7) = (in-10 b1 (7)
= 0 (im,n-1.f) (&) + b[{irmn~1f) — (ikm-1(Flr, ) (m)
= aw(€) % b{I - Sk)z(n),
where £ = base(y) and n = top(y) as usual. The inequality is now obvious.
COROLLARY. For any m and any z € X, either |zl = |\l | or
ol = maxlallztz, | + BT - Sl
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It is apparent from the construction that for a general f € £%°(I;,) we
may need to go to I}, with n significantly larger than m, in order to find a
coordinate -y at which ., f comes close to attaining its norm. However, it is
worth remarking that if f € £°°(I},) and f is zero, except on A, (the “last”
of the sets that make up I'y,), then ||im,of|| = |If|| for all n. Thus in this
set-up the subspaces M,, that make up the finite-dimensional decomposition
of X are actually isometric to £%(4A,).

Embedding #° in subspaces of X, ;. It is implicitly shown in [4] that
certain sequences in X, admit lower U, p-estimates (and thus, as we can
now see, lower #P-estimates). These are sequences of vectors which are suc-
cessive (with respect to the f.d.d. (M,)) and which have supports sufficiently
well spread out. To make this precise we choose a function F : N — N having
the property that, for every n and every non-zero z € X,

2! gl > .

This is possible by compactness of the unit ball of the finite-dimensional
space X,. We shall say that a (finite or infinite) sequence (yi) in X is F-
admissible if there are integers my and ng, satisfying my < ng, F(ng) +k <
Mpy1, With ye € Xn,, Ve TFF(M) = 0. In terms of the £.d.d. (M,,) introduced
earlier, we are saying that yx € €B,,, cnen, Mn for all k, or equivalently
that supp(yx) C [m + 1,ng]. Evidently, if (yz) is admissible then so is any
sequence of successive linear combinations. The following lemma is related
to Lemma 3.20 of [4].

LEMmMA 2. If (yx) is an F-admissible sequence, then, for any I,

i
1
|32 v > 50wl el
k=1 6

In particular, |y < 6] Tho wal for each 1< 5 <1,

Proof. For each k let us write py, and gy for the minimum and maximum,
respectively, of the support of 4. The hypothesis of F-admigsibility implies
that py1 > F(gr) + k. We shall show that, for each subinterval I = [4, k| of
[1,1], there exists v € I'pg,) 445 Such that

|Zyz )| > S0l gl Tl

=3
‘We may suppose, by induction on the length of T and a possible re-indexing,

that I = [1,!] and that the result has already been proved for all proper
subintervals of [1,1].
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When we come to caleulate ||([lya], .- ., [lul])li, 5, there are two possibil-
ities, the first case being where this norm equals |[y3 || for some j. By the
defining property of the function F, there is some v € Irq;) with

lys (1 > 3llw; -
For & > 7, wi(v) = 0 by F-admissibility, and so

l i?ﬁ(’)’)| = ‘ ‘:M('Y)’-
i1 i=1

Now if this quantity is at least §|y;]|, we are home. Otherwise, it must be
that

I|E.% >IZya(v>¢>tw 1_\2% )| > (- 3) sl = 2l

Now we sce that there exists § € I'p(g;_s) such that

! i1 1yl
'Z’Ud(‘S)’ = |2yi(5)‘ 2 ‘2"”21/«;
i=, =1 i=1
‘We now pass to the second case, where there is some & such that

Il Nl = allCllyadls - - llyel Mo + bl Qlymsalls- - g l)lla,s

By our inductive hypothesis, there exist £ € I'p(g)+x—1 and 11 € I'p(g)+1-k—1
guch that

1
> EH%‘”-

k
o w©)] > gl el
i
2 | > F Wl i)
jesfel

If we now consider the element
Y= (F(QI) + 1=~ k,F(Qk) +k— 1157771:131)
of I'pig,ybi~t (With an appropriate choice of sign), we see that

|Lm ]walzyﬁ }+b|§::mn)|

=k+1
> gall(lwall - JwelDllas + 50l (perall,- -
= gyl - lmelDilas:

It is also shown in [4] that, for certain carefully chosen admissible se-
quences, there is an upper estimate as well. This is the way in which Bour-

el e,
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gain and Delbaen show that X, ; is not isomorphic to X, if b # b’ (and
then deduce the existence of a continuum of non-isomorphic separable £°°-
spaces). Of course we can now see that these special sequences are £°-bases.

‘We shall shortly show that from every admissible sequence we can form a
normalized sequence of successive linear combinations which is an #-basis.
Before going on to that, however, let us note that not every normalized
admissible sequence is itself an #° basis. We note that the same calculation
shows that X, ; is not an asymptotic £#-space in the sense of [10].

ProOPOSITION 2. Let F: N — N be any function. For all positive integers
m and k there erists an F-admissible sequence yy,...,yax_1 of successive
vectors in X, 5, with minsuppy; > m, such that

a2k 1 a1

I
3 lwil® =1, H 3 yj“ > kM7
i=1 i=1

Proof. We shall prove the statement by induction on k and shall show,
moreover, that the construction may be carried out in such a way that the

vector Zji;l y; attains a value of at least k'/ P at some element ¢ of I,
The construction will use some special vectors wy (v € I") which we shall
now define. For each v € I' we set n = rank(v) and let e, be the usual unit
vector in £°°(I7,} defined by e,(6) = 1 if § = + and 0 otherwise. We then
define w, = jn{e,), noting that ||w,| = 1, by the remark we made at the
end of the last section.

We now pass to the inductive proof. For k = 1 there is of course no real
problem, but in order to be sure ahout attainment of the norm, we might
as well be specific, taking y; to be w, with rank(y) sufficiently large.

Now suppose that the result is true for k. Given m there exist successive,
F-admissible vectors yy,...,y5_,, with minsuppy] > m, together with an
element £’ of I" such that

2% _1 251
!
Dol =1, 3 i) 2 K
F=1 =1
We now use our inductive hypothesis again to obtain f/,...,y;_, and &/

satisfying the same conditions, and with
minsuppy; > max{rank(£'), F(maxsuppyhe )+ 2% — 1}.

We choose n > max{rank(£”), F(maxsuppylh_,) + 2511 — 2} and take
£ e A, tobe

£ = (n,rank(¢"), &', ¢",1).
Finally, we define y1,...,ym+1_; by

icm

Subspaces of the Bourgain—Delbaen space
f—17.1

af ~1i/e J

e+ yie

Ui = ik 1
(s

(k + 1)~ Py, (§ =2kt —1).

By construction, the sequence yy,. .., ys+1_; i8 F-admissible, and

(1<j<2k-1),

(210 < j‘ < 2k+1 “2)’

2ft1 kaP 251 Eb®’ 2k |[wel
2 Ml =g 2 I+ g 2 W1+
F= = j=
s S
- k+1 T
When we evaluate at £ we obtain
21 : 2k -1
aP —1kl/p
X (6 = afrvs 2 HE)
k
b gL/ R 1
b f! '
T ; s E ey
o AR DR L1
T (k+ 1)/ (k+ 1)1/ (k+1)t/>
(@@ + )k 1 1y
2 (k-4 1)/e * (k+ 1)/ (e + 157
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COROLLARY. There exist normalized F-admissible sequences that are not

equivalent to the usuol £F-basis.

Proof. It is clear that such sequences may be constructed by normalizing
and sticking together finite sequences of the kind obtained in Proposition 2.

In view of what we have just seen it is clear that we shall have to work a
bit harder in order to find £P-bases in X, 5. We shall start with an arbitrary
normalized F-admissible sequence (y,) and then form further linear combi-
nations. As a piece of temporary terminology, we shall say that a vector x

has height h, and write h(z) = h, if = is a linear combination

n
€T = Z 2347
I=m

with h = max, |oy|. When I is a non-empty finite interval of integers, we

shall write I* for the subinterval obtained by removing the end-points of I:

thus [* = I\ {max I, minI}.
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PROPOSITION 3. There is a constant ¢ > 0, depending only on a and b,
with the following property: for any normalized F-admissible sequence (yn),
any sequence (x,) of sueccessive linear combinations, any finite interval I
and any v € [, we have

(1) |IZ:D7' — (Immmfllp‘f‘gz6p||mq,||p+||$max1”p)
el

+ 4 Z h‘(mi) + 3h(Trmax 1);
iel”

/e

moreover, for v with rank(y) > Max SUPP Tmax 1, We have

Y
(@) CI Zzi(v)‘ < (Ilmminer +2 3 6%z + |1mmm||f’) F
el iel”
+45 bz + ;n(mmm).
L3 A

In fact, the constant ¢ may be taken to be whichever is smaller of b and
~1/p'

Proof We proceed by induction on the length of the interval I, assum-
ing that (1) and (2) hold for all sequences of successive linear combinations
of the y;, and all intervals shorter than I. (Of course, the case of an in-
terval containing only one natural number is trivial.) For convenience, we
shall take I to be the interval [1,{]; let us write z for the sum ZZ=1 x;. We
consider an arbitrary v € I'; our aim is to show that

-1 -1
19 ol s (loal? +2 3 67leal +ilal?) " + 43 hws) +8hia),

=2 i=2

with
-1 1p

e 61m('r)l<(Ilw1!|p+226”llmzi|”+Ilwz\!“’) +4th1)+ hi);
i=2 i=2

in the special case where rank(y) > maxsupp ;.
We may assume that rank(y) > minsuppz;. Indeed, otherwise we have

z(y) = Z;;ll z;(7) and our inductive hypothesis may be applied. This as-
sumption about the rank of v will be useful since it will allow us to apply

Proposition 1 to vectors like ZI o

Let us now write k = cut(y); we shall deal first with the two cases
k < minsupp z2 and k > maxsupp z;_;. In the first of these cases, we may
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estimate |2(y)| as follows:

()] < llaall + | 3 )| +

< Nl + |1mz||+a[|sk(§mi) o1 - s,c)(’im,-) | (by Prop. 1)

-1
= lloall+ ol + 8
i=2

Now the interval [2,1 — 1] is one to which our inductive hypothesis is appli-

cable, so that we obtain
-2

i/p
clo(n)] < ellza +cllar | + (o2 + 23 8l + -1 )
i=3
1-2
+40) " R(z:) +3bh(sc1 1)
i=3
-2 1/p
< (2 +87 7 ([P + el +2 Y 68 s lP - [fwra |7+l
=3

-1
+4b Z h(z;),

by Hélder’s 1nequa11ty Comparing terms and recalhng that b < 1/2, we see
that this 1mplles mequa.hty (2}, provided that 2¢PF +bP < 1, or equivalently
e <27V (1 — pp YL/ = 9- 1Py,

The argument in the case & > maxsupp z;—1 is similar:

cle()| < elle] + zwm)\ |
< l|z|| + ac“Sk(Iz:Emi) 1| + bcH(I»— Sk)(zcci)
i—1
2=

< el + a(Jloal? + 23 @ lail? + lmial?)”

3=2

(by Prop. 1)

= ¢||zi|| +ac

-2
o 4&2 h(ﬂ:i) + 30.’1(&:;_1),

i=2
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} r ’ =2 I/P
< (& @ W (lallP+2 3 6l P+ el + i )

i=2
-1
+4Y " hlxs),
=22

which implies inequality (2) provided c® + af <1 or equivalently ¢ < b.

From now on, we shall assume that minsuppzz < &k = cut(y) <
maxsupp #;_;. We consider next the case where rank(~y)} > maxsupp z; and
need to establish inequality (2). An easy case is where the cut & lies between
the supports of consecutive z;’s, say maxsupp 2+ < k < minsupp 1
(where 2 < 2* < [ — 2 by what we have just proved). By our inductive hy-
pothesis, we have inequality (1) for each of the intervals [1,7*] and [i*4-1,1].
Moreover, Proposition 1 is applicable, giving

+ bc“ Z T
it

clz(y)] < cal|Spz|| + (I — Sk)z| = ac” Z s
Sa[(HSthHP-l-Z Z 61:”:31_”13_]_“%*“;,)1/? +4 Z h(mi)+3h(m,~*):|

1<ier 1<i<i*
1/p
+8[(lesmsal?+2 30 il + o)
r1<i<t
+4 3 h(a:f)+3h(ccl)]
i 41<i<l

< (lmalP+2 3 @l + )" +4 3 Alw) + Shia),

L<i<i* 1<i<l
by Holder’s inequality and the facts that a < 1, b< 1/2.
A slightly more complicated case arises if minsupp z; < k& < maxsupp x;

for some i = ¢*, say. By what we proved earlier, it must be that 1 < ¢* < [,
We now study the fine structure of the vector z;+, recalling that

Tyx = E Q.
Ny <FESngw

We may suppose that £ is somewhere between min supp y;+ and max supp y;+,
for some j*. We then set

L E :
2.,;-=

g1 <J<G

R ..
&3l T = Z @55,
Jr<jgmnge
L
z =$1+$2+~-+$i'—-1+$}i, $R=$ﬁ+$i*+1+-.-+$t~

By minimality of [ and the fact that 1 < 4* < {, inequality (1) is true for
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the vectors 2% and 2. Hence we have

/p
clla®ll < (lloaiP +2 32 6ol + a2 IF) T =4 32 Az + 3h(zk)

T<iali™ l<ici®
1/p
< (lloslP+2 32 ool + 1k IF) T+ 4 3 A + 3hlz),
Liale™ 1gi*

since h(zh) < h(zi) by the definition of the function A, and

1/p
cle < (IR IP+2 3 lalP +lal?) " +4 Y Alos) +3h{m).

it AL T
If we now write 2* = 2V + 28 =z — oY+, and apply Proposition 1, we
obtain
cla(y)| < cla*(v)| + clay-| < acl|Spa*|| + bel (T — Sk)2*|| + chiz:-)
= acla®|} -+ bellz™| + ch(z:-)
l/p
<af(lzal?+2 Y @mP+[2E ") +4 Y Alei)+3h(ze)]

1<LiC™ 1<i<i*
1/p
+b[(l=RIP +2 Y &llasll + i)
i <il
+4 Z h(ccz-)+3h(a:1)] + ch{z)
i
<P =2 X O lod? + oI + % P
AR L

+2 Y @l + )

" <igl
+4 Y h(m)+ B+ h(z)+4 Y hlx)+ 3bh(m),
Tigin il

using Hélder's inequality and the values of ¢ and & as before. Lemma 2,
applied to the admissible sequence (z5, a;y;, z5% ), implies that each of |lzk ||
and [lz] is at most 6]z | so that we can finally write

1/
clan)l < (P +2 Y @ladl? +lml?) " +4 3 i) + Shia),
i*<i<i 1<i<!

which is inequality (2) as required. (Of course, we have also used the facts
that b < 1/2and 3+c¢ < 4.)

To finish the proof, we now need to lock at |2(v)| where rank(y) <
maxsupp &; and show that inequality (1') holds. We do this by another
induction, this time on the number n; — n;_y of non-zero coefficients in the
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expression for the last vector z; as a linear combination of the y;. We set ; = B;2;, obtaining
) i i [}
* * A * _ 1/p 1/1-"
si= Y my=m-ante, o= ) @ita =T ondn | 3odal| <12( 3 1a) T+ 4 Y 1A < 16( 3 aP)
nio1<j<ng 1<i<t i=1 =1 i=1 =1
Our additional inductive hypothesis is applicable to z*, and if rank(vy) < On‘ the other hand, from Lemma 2 and Theorem 1 again, we get the lower
minsuppy,, we have z(y) = z*(v), giving the result immediately. If, on estimate : ,
the other hand, rank(y) > minsuppy,, > maxsuppz”, it is inequality (2) HZﬁz' > (s Blllay 2 d(Z |BilP v
which holds for =*. Thus we obtain g =gl Bllas = — t ’
ele()] <€ ez ()] + ¢|tn ¥ ()] where d is a strictly positive constant.
1/p
< (loslP+2 32 @lladl? + 1)
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since ¢ < 1/2 and h(z;) = max{|an,|, h(z})}. We have thus established

inequality (1) as required. Brasenose College
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Proof By a standard approximation argument, it is enough to consider Revised version September 14, 1999

the case of a subspace ¥ which is the closed linear span of a normalized
F-admissible sequence (y;). Because of the lower estimates of Lemma 2
and Theorem 1, we may construct successive linear combinations z; with
llz:fl = 1 and h{z;) very small, say 3 oo, h{z;) < 1. Now, for arbitrary I € N
and arbitrary scalars §;, we may apply the above proposition to the vectors



