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limp o0 A(T — by A) "'z, = Asz. For each 7 > ( we have
VI1Bn(s)zn — B(s)z|| ds
0 < rsup{[BE)llvox 4 € [0,7 + U = hod) 0, — 2y
+ i | B(s + hp)z—B(s)z| ds
0

for n > 1. Since B(:)z € L ([0,00); X) the last term tends to zero as
n — oo, It follows that condition (iv) of (bg) is satisfied. Theorem 3.1
therefore asserts that limon-.eo Fijt/n,2 = R(t)z, which implies in turn
that limy, o Un ji/pje = R(t)z fort >0 and z € X. m
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Localizations of partial differential operators
and surjectivity on real analytic functions

by
MICHAEL LANGENBRUCH (Oldenburg)

Abstract. Let P{D} be a partial differential operator with constant coefficients which
is surjective on the space A({?) of real analytic functions on an open set 2 C B". Then
P(D) admits shifted (generalized) elementary solutions which are real analytic on an ar-
bitrary relatively compact open set w CC 2. This implies that any localization P, g of
the principal part B, is hyperbolic w.r.t. any normal vector N of 842 which is nonchar-
acteristic for Pp, g. Under additional assumptions P, must be locally hyperbolic.

Surjectivity criteria for partial differential operators have been obtained
in most of the classical spaces of (generalized) functions in the fifties and
early sixties. However, the basic question of when

(0.1) P(D): A(£2) — A(£2) is surjective,

remained open. Here P(D) is a partial differential operator with constant
coefficients, {2 C R™ is an open set and A{f2) is the space of real analytic
functions on f2.

Piccinini [37) showed that the heat equation is not surjective on A(R?) as
was conjectured by Cattabriga—de Giorgi [12]. Then Hérmander [21] charac-
terized (0.1) for convex sets 2 by means of a Phragmén-Lindeldf condition
valid on the complex variety of P. Since then Hérmander’s method has been
adapted by several authors for further studies on this problem (Miwa [36],
Andreotti-Nacinovich [3], Zampieri [40], Braun [9]), and on the related sur-
jectivity problem on nonguasianalytic Gevrey classes (Zampieri [41], Braun—
Meise-Vogt [10, 11]). _

Specifically, (0.1) was proved to hold for operators having a locally hyper-
bolic principal part P, if 2 = R* (see Andersson [2] and Hormander [21])
or if £ is convex and additional conditions on the local propagation cones of

2000 Mathematics Subjeet Classification: 35E20, 35E05, 46F15, 35A21.
Key words and phrases: partial differential operator, real analytic function, elerentary
solution, hyperbolicity, local hyperbolicity.
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16 M. Langenbruch

P, are satisfied (Zampieri [40]). Hérmander’s method is restricted to con-
vex sets 12 by the use of Fourier theory. However, local hyperbolicity of B,
(combined with some geometrical condition on the local propagation cones
of P,,) is also sufficient, for (0.1) for certain (not necessarily convex) bounded
sets {2 as was shown by Kawai [25]. The assumption of boundedness was
removed by Kaneko [23]. Local hyperbolicity is thus a useful, but restrictive,
sufficient condition for (0.1). '

The aim of the present paper is to show that hyperbolicity of the lo-
calizations P, @ of Py, and local hyperbolicity of Py, are in fact necessary
for (0.1) in many cases. The proof is based on a new necessary condition
for (0.1) which is proved in Section 1 {see Theorem 1.3). It roughly states
that P(D) has (generalized) elementary solutions which are real analytic
on arbitrary relatively compact open subsets of 2 if (0.1) holds. The el-
ementary solutions used here are harmonic functions (in n + 1 variables)
defined outside thin strips near R™ and thus can be considered as general-
ized hyperfunctions. This basic necessary condition is the appropriate ex-
tension to the case of real analytic functions of the criterion of Langenbruch
[26] for surjective partial differential operators on nonquasianalytic Gevrey
classes.

We then state the results on extension of analyticity from Langenbruch
[30] in Section 2. These are used in Section 3 to show that the basic necessary
condition implies certain bounds of hyperbolic type on the location of zeros
of P and P,,. The consequences of these bounds are studied in the second
part of Section 3 and in Section 4.

We first consider the localizations Py, ¢ of the principal part P, of P at
a point

O eVp, :={z€R" | Pyp(z) =0, |z| =1}
Let N(8(2) dencte the set of unit normal vectors of 82. Then (0.1) im-
plies that P, g is hyperbolic w.rt. N € N(8R) if © € Vp_ and if N is
noncharacteristic for P, g.

We mention some interesting consequences of this result: if (0.1) holds
for a bounded open set {2 with C'-boundary, then any localization Py, e
is the product of real linear forms (times a complex constant). If P, is
independent of a variable (i.e. if the lineality A(P,) # {0}), we get the
following characterization:

(i) (0.1) holds for a halfspace 2y := {z € R™ | (z,N) > 0} with
noncharacteristic IV if and only if P, is hyperbolic w.r.t. N.

(ii) {0.1) holds for some open bounded set 2 with C'-boundary if and
only if P, is the product of real linear forms (times a complex constant).

The sufficiency of these conditions follows from the results of Hérmander
(21] and Zampieri {40].

icm
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In Section 4 we show that (0.1) implies that P, is locally hyperbolic
wrt. N € N(0f2) at @ € Vp_ if N is locally noncharacteristic for Py, at ©
(this assumption is a local version of a condition of Hormander [20}, see (4.7)
and Definition 4.4). This implies the following characterizations:

(i) Let N be locally noncharacteristic for Py, at any © € Vp_ . Then (0.1}
holds for the halfspace f2yy if and only if P,, is hyperbolic-elliptic w.r.t. N
(in the sense of Fehrman [14]).

(i) Assume that for any @ € Vp_ in any component of R* \ Vp,_ there
is N which is locally noncharacteristic for P, at @. Then (0.1) holds for
some open bounded set 2 with C*-boundary if and only if for any @ € Vp,_,
Pp,o is the product of real linear forms (times a complex constant) and if
P, is locally hyperbolic at @ w.r.t. any N which is noncharacteristic for
Pno-

We finally notice that for a polynomial P in three variables, N is locally
nencharacteristic for P, at @ if and only if NV is noncharacteristic for P, o
(see [31]).

The author wants to thank D. Vogt (Wuppertal) for valuable discussions
on the subject of this paper.

1. A new necessary condition. In this section we will prove a new nec-
essary condition for surjective partial differential operators on real analytic
functions which will then be evaluated in the subsequent sections of this pa-
per. The condition roughly means that there are (generalized) fundamental
solutions which are real analytic on large sets (see Theorem 1.3).

We start with some useful notations and conventions: in this paper,n € N
is always at least 2. A point in Rt is usnally written as (z,y) € R* x R.
Open euclidean balls in R* (and in R**+!) are denoted by U.(£) (and Vi(n),
respectively). Also, Ue == U,(0) and V; := V.(0) and

g li={zeR"||z|=1}.
A= 7 (0/0m,)* + (8/0y)? is the Laplace operator on B™"1. The har-
monic functions on an open set ¥V < R*™! (which are even w.r.t. y) are de-
noted by Ca(V) (and 5A(V), respectively, if (z, —y) € V for any (x,%) € V).

In the following, {2 is always an open set in R". The real analytic func-
tions on 2 are denoted by A(f). P(D) = P{D,) is always a partial differ-
ential operator in n variables of degree m with constant coefficients. Py, de-
notes the principal part of P and

Vp,, = {0 € S™ 1| Pr(8) = 0}.

To state the necessary criterion for surjectivity we need a sufficiently gen.era,l
notion of an elementary solution of P(D). In fact, the elementary solutions
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used in this paper are taken from the space
Calf2)), 2.:=0x(R\[-¢d), c=0,

which can be considered as a generalization of hy;gerfunctlons Indeed, hy-
perfunctions on {2 can be defined as B(£2) := Ca(f2)/Ca(f2 x R) (see
Bengel [4] and Hbrmander [22, Chapter IX]).

E € Ca(£2.) is canonically written as E(z,y) =
E; € Ca(£2 % e, 00[).

The appropriate notion of a (shifted) elementary solution for P(D) on {2
now is the following:

DEFINITION 1.1, Let £ € 2. E & Ca(f2,) is called a {€}-elementary
solution for P(D) on 12 if P(D)E can be extended to 2 xR as a distribution
H such that AH = (¢ o) where §¢ o) is the point evaluation in (£,0).

Ey (z, ‘y’)a |y| > ¢, with

The extension H of P(D)E is unique. {0}-elementary solutions are called
elementary solutions.

Definition 1.1 extends the notion of a distributional elementary solu-
tion. Indeed, let F' be a distributional elementary solution for P(D) (and
£:=0¢ ). There is E € D'(12 x R) such that AE = F ® §(y). Set
E := Elg,. Then E is a {0}-elementary solution in the sense of Definition
1.1 since P(D)E is extended by H := P(D)E and AH = d¢0,0) -

It is well known that there is By > 1 such that for any v > 0 there is
' > 1 such that
1D sup{|F@©)(v/B1) /al | a € Ng} < Csup{|f(n)| | m € V5}

if f € Ca(V;) is bounded on V.. With this constant B; we now introduce
the spaces of real analytic functions with fixed Cauchy estimates which are
used in this paper:

DEFINITION 1.2. Let v : £2 — 10, oo[ satisfy
(L2) v(2) Sv(e)+ |z —£)/2B)) foroée
with By from (1.1). Then

A () ={fe A(D) VK CcC R:

sup{| f* () |v(z)® /a! |z € K, a € NG} < oo}

Ay (£2) is an (F)-space. (1.2) is e.g. satisfied if v(z) = F(dist (z, £2)) for
some C'-function ¥ : |0, 0o[ — ]0, 00| such that
(1.3) 0<7V(t) <1/(2By) foranyt > 0.
The following theorem is the basic result of this paper.

THEOREM 1.3. Assume that for every g € A,(2) the equation P(D)f
= g has a solution f € A(£2). Then for any openw CC 2 there is § > ( such
that for any £ € (2, P(D) has a {¢}-elementary solution F = E: e 5,4(92’5),

icm
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Te = 2B1v(€), such that Ey can be extended as a harmonic function to
X le - (5, OO[

Proof. a) Fix w CC 2. We claim that there is & € N such that for any
g € A.(£2) the equation P(D)f = g can be solved with f € C*°(£2) such
that

(1.4) sup{|F©® (@)|/(k*a) |z € w, a € N}} < o0.

Indeed, for k € N let Fj he the (F)-space defined by Fy, = {f € C*°({2) |
f satisfies (1.4)}} with the topology induced by C*(£2) and the seminorm
(1.4) and let Ny := Fi Mker P(D). Then F := ind(F/Ng) is an (LF)-
space and P(D)™* : 4,(2) — F is defined by assumption. P{D)~! is con-
tinuous by the closed graph thecrem for (LF)-spaces (since the inclusion
of F' into C°°(2)/(C>(£2) N ker P(D)) is continuous). By Grothendieck’s
factorization theorem (Meise-Vogt [35, 24.33]) there is k € N such that
P(D)"1(A,{(2)) C Fy/Ng. This shows the claim.

b} Let G(z,y) = —|(z,y)|*""/({n — I)cn11) be the canonical even ele-
mentary solution of A on B! (since n+1 > 3). For £ € 2 let x+(y) be
the characteristic function of [T, cof. Then

(1.5) A(G(- =& Ix+) = g1 ® On, () + 92 ® Bydr (y)

where the functions g, = ——G( - £,T¢) and go = G(- — £,T¢) are con-
tained in A, () by (1.1) and (1.2). By a) there are solutions f, € C*{{2)
of P(D)f, = g, satisfying (1.4) for s = 1,2. Since A is elliptic, we can solve
the equation

(1.6) AE, = fi ® b, (y) + f2 ® Dydr (v)

in D'(2 x R). Set Ba(z,y) = Eylz,y) + Ei(z, —y) for (z,) € 2 x R and
let x be the characteristic function of R\ [T, T¢]. Then

A(P(D)By) = A(G(— ¢, )x) on xR
since A(P(D)Ey) = A(G(-~¢, )x+) by the choice of Ey and (1.5) and since

(Gx){(z, y) = (G- ) (@, )+ (G’x.| ){(x, —y). Thus thereis h € Ca(f2xR) such
that
(L7) P(D)Ey = G(-— & Jx +h.

Set £ = Egtg,r Then by (1.7), P(D)E can be extended to 2 xR by
G(~¢& )+ h Therefore B is a {¢}-elementary solution for P(D).
¢) Since fy and f, satisfy (1.4), we can solve the Cauchy problem

Afz,y) =0, @ T = fa(e), 0h(z,Te) = hlz), =Ew,
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for [y — T¢| < & := 1/(2n'/?k) by the well known formula

= o~ (A Fa(2)(y—Te)™ | o (=4a) fi(e)(y—Tp) ¥+
() o= CAPAETT 5 CAPA L TR

=0
By (1.6) and the argument from {1.5) we get
Ahxy) = AE,  onw x |T; — 8, T + 6],

£, is thus extendable as a harmonic function from w x |T¢, T + & and
w x |Tg — §,Tg[ to w x T — 8, T; + &[. This shows that B, = oo x)7e oo
can be extended as a harmonic function to w x [T; — §, co]. The theorem is
proved.

If T = 2Byv(€) < 4, then E; is real analytic on w, more precisely, Ef"‘”‘e
has a real analytic function as boundary value on w.

A similar condition to the one of Theorem 1.3 is equivalent to the sur-
Jjectivity of P{D} on nonguasianalytic classes of ultradifferentiable functions
of Roumieu type {Langenbruch [26, 28, 29]).

2. Extension of regularity. To evaluate the necessary condition from
Theorem 1.3 we will have to improve on the regularity of elementary so-
hutions provided hy that theorem. Extension theorems for analyticity and
for the complement of the analytic wave front set of zerosolutions have
been proved by many authors (usually for operators with variable coeffi-
cients). A selection of relevant papers is contained in the references (see An-
dersson (1], Bony [6, 7], Bony-Schapira [8], Grigis—Schapira—Sjdstrand (16]
Hanges (17], Hanges-Sjostrand [18], Hérmander [19], Kashiwara—Kawai [24],
Laubin [32], [33], Liess [34], Sjostrand [38]; the reader is also referred to the
literature cited there). In the present section we will state a quantitative
version of such extension theorems (Langenbruch [30, Theorem 3.4]) which
leads to better results for the surjectivity question we have in mind (see
Remark 3.5). For {2 C IR" open and ¢ > 1 let

Aco={{pe) e DN | YdeN3IC, >1VkeN:
ek P llso < Ca(kC)\* if o < & and 18] < d).

Ac.n will serve as “analytic cut-off functions” in the definition of the reg-
ularity set (as in the theory of wave front sets for distributions, see e.g.
Harmander [22, Lemma 8.4.4]). The regularify set Reg; (f) of a C*-function
f is defined as follows: for @ € 8! and & > 0 let

I,(0) = {s € R | |s/Is| ~ O] < b}.

DEFINITION 2.1. Let, 2 C R™ be open, (z,0) € £2x S** and L > 1. Let
f € C=(f2). We say that £2 x {©} C Regy(f) if and only if for any C > 1

b
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and any (¢r) € Ao, there is C; > 1 such that
[{fer)(s)] € CLL(C + DE/(1+|s])*  if s € I'y(O).

In Langenbruch [30, Definition 1.1], Regy,(f) was denoted by reg;y ()
for technical reasons.

(21) The constant C; in Definition 1.1 depends on (pg) only via the
constants Cy from the definition of Ag o

{(Langenbruch [30, (1.10)]). For the remaining part of this paper,
Nes™ ! and ©cVp,,

i.e., ® is a characteristic unit vector for P,
The localization Pn g of Pp, at @ is defined as follows: let

go '=min{k €N| 3 & N" : || = k and D’ P, (©) # 0}
be the order of the zero @ for Pp,. Now,

(2.2) Pmol):= > PE(©)/al
|el=ge

Alternatively,

(2.3) Pro(z)= liEB(Pm(@ + s3)s7 %),

where 59 is the lowest order term of the expansion of Pp, (@ + sz).
For @ = e this means that
m—ge—1

(2.4) P (@) = P o(2')2] 7% + Z Qk(ml)milc
k=0

if # = (z1,2") € R x R""! where the Q) are homogeneous polynomials and
Qr = 0 or deg{Qx) = m — k. For a polynomial @, z € C* and ¢ > 0 let

Ae.t) = (X Q@) ",

/
Quy (1) = (ZKD,N)I’Q(m)lzt%)I 2, Ne s
b

The main result on the extension of Regy (f) is the following (Langenbruch
[30, Theorem 3.4]):

THEOREM 2.2. (a)Let @ & Vp,, and Pr, o(N) # 0. There are B > 1 and
open cones K1 C Ky ¢ {z € B* | (z,N) > 0} such that KaN{z € R* |
{(z, N) < 0} = {0} and such that for the truncated cones 5; and X defined
by

8y = {z € Ko | < (&, N) <to}, S2:={z€Ks|(z,N)<ta},
and Ef Z‘-«‘:{:L‘.EKl1T<<I,N><(t1+tg)/2}
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the following holds: for any 0 <t < ta < 2ty <1 there is Bg > 1 such that
forany L > B and 0 < 7 < ty1, 4f f & C®(52), S1 x {O} C Regy(f) and
Sy % {0} C Regr(P(Dy)f), then Zr x {8} C Regp(r(f) with h(r) :=
Bo’T“_B.

(b) If there is C > 1 such that for (z,t} € R*L,
(2.5)  (P)™{(z,t) S C(Pm)y(2,t) if £€]0,1] and |z - O] £1/C,

then (a) holds for any & with |© — 8| < 1/(20) with the cones K; and the
constants B and By independent of ©.

Theorem. 2.2(a) will be used in Section 3 to show the hyperbolicity of
P, @ if P(D) is surjective on A{{2). The stronger assumption (2.5} is a local
version of a condition of Hérmander ([20], see the remarks in Section 4). (2.5)
will be used in Section 4 to deduce the local hyperbolicity of P, at ©.

We end the present section by mentioning some useful technical results:

There is By > 1 such that
(2.6) £2x {6} C Regp,,(v) forany @ € §°7!
if v € C*(42) satisfies the Cauchy estimates

[v{¥ ()| < C(Lola))!*  on £2.
There is By > 0 such that for K CC {2 and § := dist(K, 812),
(2.7 there is (p&) € Ag, /s, such that ¢ = 1 near K for each k

(see e.g. Langenbruch {30, (1.5)]).

(2.7) easily implies the existence of suitable resolutions of the identity:
there is By > 1 such that the following holds: let 2, V; and W; be open sets
such that

Vi+U. CW; and 2C UV:,
j<d
Then

d
(2.8) there are (¢x,j)r € Ap,/c,w, such that Zcpk,j =1 on 2.
J=1
Therefore, if for f € C*(|JW;) we have W; x {8} C Reg,(f) for j < 4,
then
(2.9) 2 x {@} C Regp,r/:(f)

(use also the fact that (gehs) € Acyp,v if (gr) € Ao,y and (hy) € Apy).
3. Localizations of surjective differential operators. We start the

evaluation of the basic necessary condition from Theorem 1.3 using also the
results on extension of the regularity set stated in Theorem 2.2(a). We will
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show that the existence of regular elementary solutions as in Theorem 1.3
leads to local bounds of hyperbolic type on the location of zeros of P which
imply that the Jocalizations Py, g of B, are hyperbolic. As an illustration we
finally study operators whose principal part is independent of some variable
since the result is fairly complete for such operators.

We first need a simple lemma already used in Langenbruch [30]:

LEMMA 3.1. Let 0 € 2 and let E € aA(QT) be an elementary solu-
tion for P(D) and let H be the distributional eztension of P(D)E as in
Definition 1.1. For u € Ca(R*) we have

u(0,0) = —2{ B(¢,2T) P(D)(hdyu)(—¢, 2T)
+ 8, B (&, 2T) P(D){hu) (¢, 2T) d€
+ | HEnAku)(=¢ - ddy
2x[-27,2T)
if h € D(—2) and h =1 near 0.

Proof. This is a special case of Langenbruch [30, Lemma 3.1} where v
is even w.r.t. ¥ (and where (z,y) := 0 in loc. cit.).

DEFINITION 3.2. Fore >0, zp € R® and N € §7 71 let
Ti(wo, N) ==z + {6 € B | (£, N} 2 elé]}-

Let N;(82) be the set of unit interior normals of 842, i.e. the set of all
N € §7~1 guch that there is zg € 342 such that for any £ > 0 there is § > 0
such that

Us(0) N Fe(wo, N) € QU {zo}, N(892) = Ny(82) U (—N;(842)).

Notice that 842 need not be a Cl-manifold near xzp € 842 if there is an
interior normal to 82 at zp.

THEOREM 3.3. Let v satisfy (1.2) and let
(3.1) v(€) = o(dist(¢,02)*YE)  for &£ — 802, £ 22,

for B from Theorem 2.2. Assume that for any g € A,(f2) the equation
P(D)f = g has o solution f € A(f2). Then for any © € Vp, an"i any
N & Ni{812) with P, e(N) # 0 there are v;, ;5 > 0 and C(j) 2 1 with

(3.2) limu; =0 and v; = o)
such that for any j, any £ € I, (@) with |&] = C(jf) and any z € C,
(33)  PE+zN)£0 if |2 < psle] and Imz > wylé]

Proof. Fix N € N;(812) and let zg € 842 be chosen for N as in Defini-
tion 3.2. We can assume that zq = 0 and that N = e,, and write z € C" as
(a',7,) € T x C. Fix © € Vp,, with P o{N) #0.
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1) We first use Theorem 2.2 to extend the regularity set of the regular
elementary solutions coming from Theorem 1.3: Choose K3 and K for e, by
Theorem 2.2. We can assume that K; = {z € R* | 2, > |2'|/4;}, 7 = 1,2,
for some Ay > A; > 0. By Definition 3.2 there ig a neighbourhood W of
0 such that W N Ky € 2 and 82N W n Kz = {0}. We can thus choose
0<"E.1 <E‘2 52'1?1 Slandéo > OSuchtha,tff:: {LEEEZ |E2-1 <z ng}
satisflesa
(3.4) w =K+ Us, cC 0.

We now apply Theorem 1.3 to w and & = &; := (0,1/7) and get § > 0 and
{¢;}-elementary solutions B; € Ca(f27;), Ty := 2B1v(€;), such that

(3.5) {E;)4 can be extended as a harmonic function to w x T — 4, 00|

if j is so large that §; € Q We can assume that § = do. Define S1 and S
for N = e, and for £y :=t; and 3 := (t; +¢2)/2 as in Theorem 2.2 and set
Sk = (a',3/(44)) + Sk, k = 1,2. For 2’ with |2'| = 342/(47) we have

S1o CK and dist(S) o, 8w) > 6 for large j

by (3.4). Thus, there is Ly > 1 (independent of §) by (3.5), (1.1) and (2.6}
such that for || = 342/(45) =: ;,

(3.6) S1.a x {0} CC Reg; (82E;( - ,2T})), d=0,1,

There is Ag > 1 such that dist(S;,/,&;) = 1/(Asj). Since E; is a {&;]}-
elementary solution for P(D) on 2, P(D)E; can be extended to H; €
Ca((2 xR} \ {(¢;,0)}). Thus there is A4 > 1 such that

(3.7)  Sap x {0} C Regy,,; (P(D)IE;(-,2Ty), d=0,1, for 2| =1

by (1.1) and (2.6) again. We can assume that Ly < A47. Since 0 < #; <t <
2ty < 1, we can apply Theorem 2.2 for L = Ayj and 7 = 1/(87) by (3.6)
and (3.7) and get, with A from Theorem 2.2,

(3.8)  Zijqug)er x {6} C Regy, (7B;( - ,27y)), d=0,1, for|a'| =+
where L; := A4jh(1/(87)) and Ly jep,e o= (2',3/(44)) +Z1 (5. Let

f— 7 Al 1 1
M; = {:c eR (j:c’| <k 65 t1+ g(tg —f) <ap <t + A—L(h —-1:1))
Al il Al 15 1
or (’Ya 16j<|55|<’)’j"{“—'"16j,1“6“3?<$n<t1+1(t2—t1))}

Then
M; C X:= U Lr/sg)er U K for large 4

J2f |=y;
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(by the definition of 57 and X in Theorem 2.2} and
dist(M;,0%) > A1 /(165) for large j.

Using the resolutions of the identity from (2.8) and (2.9) now implies that
there is A5 > 1 such that for large 7,

M; % {0} C Regy (01E;(-2Ty)), d=0,1, for A; = Asj*h({1/(87)).
We now set V; := M; — (0,1/7) and shift E; by (0,—1/4). Then Ej is an
elementary solution of P(D) and for A; := Agj2h(1/(85)),

(3.9) V; x {®} C Regy, (85 E;(-,2T3)), d=0,1.

ii) We now apply (3.9) and Lemma 3.1 to special harmonic functions
which are defined to substitute the Fourier transformation in R® ] for{ e C"
let (¢) be a square root of 3, ¢ and set u¢(z,y) := cosh({{)y)e"™¢) . Then
ue € Ca(R*1) and
(310)  uc(0,0) =1 and Q(D.)d%uc(z,y) = Q()Bfuc(z,y), d=0,1,
for any polynomial @ in n (z-) variables if Dy = (—i8/8x1,...,—i0/0zn).
For W; := —conv(V;) we can choose (gx) € Aag;w; by (2.7) such that
wr = 1 near 0 and

(3.11)  supp(grad{ps))
c-V;u{z e R* ||’} < v+ A1/(167), 1/(32]) <zn < 1/(16)}.
We then have for ¢ € C* with P(¢) = 0 by (3.10), Lemma 3.1 and Eeibniz’
rule
(3.12)  1=u(0,0)
= —2{{E;(¢ 2T;) P(D)(pxdyuc)(~€, 21;)
+ 8y B; (£, 215) P(D) (piuc) (—£, 2T5)} db
+  HEmAlerue) (=€, —n) dEdn
1% [—27;,2Ty]
= ~ 23" PO () {85 (6, 275) (D prdyuc) (—€, 2T5)
a0
+ B, B (£, 2Ty) (D*pruc) (¢, 2T;) } dé /ol
+ b Hiem) ucAepr + 2gradg o, i)uc) (=4, —m) € dn
2% [-2T;,2Ty]
= 23 P@()(¢)sinh({¢)2T3)(E; ( , 205)(D%es) )" () /a!
a0
— 23 PE() cosh((C)2T3)(8y B; (, 2T3){D%px) ) (O) !
a0
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+ @G ((Aapr)Y +2((grad ¢x)Y, i) () cosh(({)n) dn

[-27;,273]
< Cu(1+ €)™ exp(2751C1)

x [ sup  {{(G5E;(,205)(D%x) " el O hi) " (Re )|

d<£1,0<]al<m
+[(BFE;(,2T3)(D%0r) ¥ (1 — i ))N O}
+sup{|(H;(,m)(DPex) YN | 0 < < 2Ty, 0 < ] < 2}]
where hy = hi(2,) € A4, ;r is chosen by (2.7) such that
(3.13)  hg(zp) =1lfor 1>z, > —1/(647) and =, > —1/(327) on supp A

For large j we have {(D%p;)Velt™ ¢ ) el € Ay.s _w, by (3.13) and
(3.11) with uniform constants Cy for z € C" since {2 < 1. We therefore have,
by {2.1) and (3.9),

(3.14) sup (8B (, 275D %) ™™ M hi ) (Re )|
d<i, 0<|a|<m
< Ca(Agk/ (L + [C))* exp (T )

if Re¢ € Iy, (@) and [Im¢| < |Re{| where A; := Agj>h(1/(87)).
For the second term in (3.12) we have by (3.13) the trivial Paley-Wiener
estimate

(3.15) s O (855 (, 2T3)(D%px) ¥ (1 — hae))(¢)]

< Cyexp(—Im (o /(647) + Az[Im(’|/7)  if Im{n > 0.

Since H € Ca(R™"!\ {0}) and since dist(supp(grad, (¢x)), 0) = 1/(325) by
(3.11) we can estimate the last term in (3.12) using (1.1):

(3.16)  sup{|(H;(,n)(D%px)" )M} 10 <mp < 2Ty, 0.< [b] < 2}
< Claexp([Im ¢[)(Asoks/(1 + [¢1)*

since Ao/j +t2 < 1 for large j. Since A; > Ajpj for large § we get by (3.12)
and (3.14)-(3.16)

2e < exp 073 [ explftn ) (25 )+ o (2t %)

for large 7 if P({) =0 and if
(3.17) [l 20Cs(1), Im(u 20, Im{|< Re¢| and Re¢ € Iy, (0).
We now set & := [(1 +[(])/(eX;)] and get for large j and ¢ as in (3.17),

(3.18}) 2e <exp (1-{— [Im ¢i — |C‘ ) +e ( [Im ('] — .Ian + 87} |§|)
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if P(¢) == 0, since by (3.1,
(3.19) Ty < §T; = o(j dist(¢;, 852)*+F)
= o(j 77, 0(1/(Aeg®h(1/(87))))) = o(L/Xs).

iii) Let p; = 1/(8e);) and v; := 3865T;. Then p; — 0 and v; = o{y;)
by (3.19). Let ¢ = £+ aN =€ + ze, with £ € [,,(0), |€] = C(4) := 2C5(j)
and z € € with |z| < u;]¢| and Im 2z > »;|€]. Then & satisfies (3.17). Indeed,
if 4 < 1/2, then

IS = 1€1/2 = C5(3),
Im (] =Imz| < |z| < 1£]/2 < [§ +Rezen| = [Ren).
Further, Re{ = & + Reze, € Iy, (@) C Iy, (0) since & € I,,(0) and

|Rez| < pjl€| (e.g. by Langenbruch [30, (1.10}]. Next, ¢ does not satisfy
(3.18) since

Tm (| = [Imz| < p;|¢] < [C]/(2eA;)
and since Im ¢’ = 0 and
Im o /(645) = Im 2/ (647) 2 v;|¢1/(645) > 6T;¢| = 3T3|¢.
Therefore P({) # 0 and the theorem is proved (for N = ey,).

From Theorem 3.3 we can now easily deduce the main result of this
section:

THEOREM 3.4. Let v satisfy (1.2) and let
(3.1) v(€) = o{dist(§, 802)*TF)  for £ =80, £€ 12,

with B from Theorem 2.2. Assume that for any g € A,(£2) the eguation
P(D)f = g has a solution f € A(f2). Then Pne is hyperbolic w.r.t.
N e N(8R) if O € Vp,, and if N is noncharacteristic for Pm,o-
Proof We can assume that N = e, € N;(812) and then write z € C"
as ¢ = (', 7,) € C"* x C.
a) With v, u; and C(j) from Theorem 3.3 we have: there are 4; > 1
and J > 1 such that for § > J and any ¢ € I, (@) with [£] = C(j),

P (6,7) < Ma|P(E+iren)|  for 2uE] < 7 < duylE].

Indeed, 1et do(z) be the distance from z € R to the complex roots of
the polynomial Q. By Hoérmander [22, Lemma 11.1.4] there is ¢ 2 1 such
that for any =z € R" with Q(z) # 0,

(320)  1/C < Ag(e)do(®) = (Z 10 (z) /Q(w)w!al)dQ(m) <C.
oD
For £ and 7 as above let z := 71 + i7 with n € C and 9] < vil€|. Then
Imz > v;]¢| and || < Bujé| < pylé]  for large j
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since v; = o{p;). We thus have P({{ + iTe, -+ ne,) # 0 for |n| < vy€] and
large 4 by (3.3) and therefore dg (0) > v;|€|/A for Q(n) := P(§+i7en +nen).
By (3.20) {for n == 1) and since 7 < 4u;|£|, for large j this implies
Py (€ +iten,7) < A1|P(£ +iTen)]
Now a) follows by Taylor expansion since
ﬁ(en)(é,’?') < Azﬁ(en>(f + iTBn,Q‘J‘) < QmAQﬁ(ﬂn>(E + i’l‘en,T).

b) For £ € R", v > 0 and ( € C* we have

(3.21) Piepy(MEATIAT™ = (B3, (6,7)  and
PAAOAN™ = Pr(¢) #A—co.
Let j > J and ¢ € R* with |z| < p;/4. Then £ := M6 +z) € I},,(O) for
A > 0 since
£/l - 81 < (llz+ 8] = 01| + |z])/|z + 8] < pj.
If 1y <1, we also have
2Dj|§| <T7a= 3I/jA < 41/3']5‘.

Thus a) and (3.21) imply
(3.22)  Aovi® < (P (@ +,3u5) < 41| Pn(© + o + ivsey,)|
if 2| < pu;/4 and § > J since e, is noncharacteristic for P, .

c) For £ € R" let z := v;€. Then |2| < pu;/4 for large j since v; == o{y;)
and (3.22) implies by (2.3) that

0 < Ao/Ar < [Pr(@ + (€ + 3ten)vy)|/vf® — | Prm,a (€ + 3ien)|

since »; — 0. This implies that P, o is hyperbolic w.r.t. e, since P, g is
homogeneous and e, is noncharacteristic for P, g.

REMARK 3.5. The conclusion of Theorem 3.4 holds in particular if P(D)
is surjective on A{{2). We just define

(3.23) v(£) := min(dist (¢, 82)5FE, +)

for sufficiently small v > 0 and B from Theorem 2.2. However, the statement
of Theorem 3.4 is stronger: if the conclusion of Theorem 3.4 fails for P, then
Theorem 3.4 provides functions g with Cauchy radii given by the polynomial
bound (3.23) near the boundary such that the equation P(D)f = g cannot
be solved in A{f2). The existence of this polynomial bound is due to the
quantitative results on extension of analyticity from Langenbruch [30]. The
same remark also holds for any of the necessary conditions for surjectivity
of P(D) in A(f2) which are proved in this paper.

REMARK 3.6. The problems with solving the equation P(D)f = g al-
ready arise for simple rational functions: assume that for some © € Vp_,
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P..0 is not hyperbolic w.r.t. some N € N(942) which is noncharacteristic
for Ppo. Let v be defined by (3.23). Then there is an open set w CC 2
such that for any & € N the equations

(324) PD)f; = (=&, )", & i=mo—N/j and Ty :=2Biw(E))
cannot be solved with f; € C°°(2) such that

(3.25) sup{}f}“)(a:)l/(k‘aua\!) |z€w, a e Nj} <o for large j.

Indeed, to show the existence of regular {£;}-elementary solutions Fg,
in the proof of Theorem 1.3 we only needed the fact that for any w CC {2
there is k& € N such that (3.24) can be solved with f; satisfying (3.25). The
sequence £; was used in the proof of Theorem 3.3 to show (3.3). (3.3) implies
the conclusion of Theorem 3.4.

In the remaining part of this section we will prove several consequences of
Theorem 3.4. The conclusion is particularly strong if there are many normal
vectors:

COROLLARY 3.7. Let © € Vp_, and let
(3.26) NNV #8 for any component V of S* 1\ Vg, o-

If P(D) is surjective in A(£2), then there are {50 € R" and co € C such
thai

(3.27) Pro(z) =co | [(z.¢i6),
J=t

i.e. Pm g is a product of real linear forms (times a complex constant).

Proof By Theorem 3.4, Pn o is hyperbolic wr.t. any N € N(B.Q?.
By (3.26) and Hérmander [22, Corollary 12.4.5] this implies that P, o is
hyperbolic w.r.t. any N € 577! with Prp,o(N) # 0. The claim now follows
from de Cristoforis [13, Theorem 1.

REMARK 3.8. (a) (3.26) is clearly satisfied for any @ € Vp, if 2 is
bounded with C1-boundary since then N(82) = 571,

(b) An example of a different kind is the following: let 2 :={(z',2n) €
R~ xR | 7, > |2'|*}. Then {2 is unbounded and N{82) = {z € R | Tn # 0}
also satisfies (3.26) for any @ € Vp,,. ‘

(¢c) The statement of Corollary 3.7 is particularly strong if there is
0+ M & R"™ such that :

(3.28) Ve, o C Har = {z €R" | {z, M) = 0}.

If P(D) is surjective on A(f2) and if N{8£2) ¢ Hj, then (Pm,gy(a;)
= c(zx, M)?® for some ¢ # 0. Indeed, (3.26) is satisfied by (3.28) since
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N(82) ¢ Hp. Thus P e has the form (3.27) by Corollary 3.7 with
UJ‘Sqe He o N snt = VP,e C Hu.

COROLLARY 3.9. If Pp.g 4s not of the form (3.27) for some © € Vp,,
then there is a nonirivial open halfspace

2y :={z ek | {(z,N) >0}
such that P(D) is not surjective on A{(f2x).

Proof. By de Cristophoris [13, Theorem 1] there is a noncharacteristic
vector N for P, g such that Pn,e is not hyperbolic w.r.t. N. Then P(D)
is not surjective on A(f2x)} by Theorem 3.4.

The Laplace equation in two variables and the heat equation were the
first examples of operators not surjective on A(IR®) (Piccinini [37]). In both
cases P, is independent of some variable, that is,

(3.20)  A(Pp) := {0 e R* | Pp(z +1t60) = Pu(z) if (z,t) € R**} # {0}

@ € A(Py) is a root of order m for Py, (i.e. of maximal order) and Pp e
= P,,. The operators satisfying (3.29) are now studied in detail:

COROLLARY 3.10. Let A(Pn) # {0}. If P(D) is surjective on A(f2},
then P, is hyperbolic w.r.t. N € N(882) if N is noncharocteristic for P.

Proof. (3.29) implies that Py, = Pp,o for some @ € Vp . The claim
now follows from Theorem 3.4.

‘We mention some simple examples of operators of second order:

i) It P(z) = E:__fll 22 4+ x, (the Schrédinger operator) or P(z) =
Z?;ll 2 + iz, (the heat operator) or P(x) := 2?;11 z3 (the Laplace oper-
ator in n — 1 variables), then P(D) is not surjective on A(f2) if 2 C R™ is
open and if there is e, # N € N(812).

ii) If P(z) = 3 — E;‘;ll 3 with 3 < k < n, then P(D) is not surjective
on A(£2} if there is N € N{812) with P(N) < 0 (P is not hyperbolic w.r.t.
those N).

iii) If P(z) = E;Ll z? — E]?:d_,_l ¥ with2<d<k—-1landk <n,
then P(D) is not surjective on .f-f(Q) if N(8{2) contains a noncharacteristic
vector (P is not hyperbolic w.r.t. any vector).

Notice that the operators in ii) and iil) are surjective on A(R") by
Hoérmander {21, Theorem 6.6], Hérmander [21, Theorem 6.7] has also shown
that these operators are not surjective on A(£2) for bounded convex 2. If we
combine Corollary 3.10 with the sufficient criteria known from the literature
we can often characterize surjectivity. We first consider halfspaces:
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CoROLLARY 3.11. Let A(P,) # {0} and let N be noncharacteristic
for P. The following are equivelent:

(a) P(D) 1s surjective on A(£2) for some 2 with N € N(882).

(b} P{D) is surjective on A(§2) for 2= {z € B" | C; > {(z, N) > Ca},
—00 <(Cy < () <.

(¢) P 15 hyperbolic w.r.t. N.

Proof. (a)=-(c¢). This follows by Corollary 3.10.

(c)=(b). Since P, is byperbolic w.r.t. N by assumption this also holds
for Py, o for any @ € Vp,,. Therefore {2 satisfies the assumption of Zampieri
[40, Main Theorem] (for any & € Vp,} and (b) follows from that result.

(b)=>(a). This is trivial.

The surjectivity problem for P{D) in A({2) for convex {2 can be reduced
to the consideration of tangent halfspaces (and their complements) defined
by the inductive procedure from Andreotti-Nacinovich [3, Section 16]. In
fact, we have the following results:

(3.30) P(D) is surjective in A(f2) for convex (2 if P(D) is surjective on
A(%) and on A{R™\ X)) for any tangent halfspace X

(Zampieri [39, Lemma 2.2], see also Andreotti-Nacinovich [3, Section 16] for
bounded convex £2). :

(3.31) If P(D) is surjective in A(f2) for convex {2, then P(D) is also
surjective in A(X) for any tangent halfspace X' of 2
(Andreotti-Nacinovich 3, Section 16]).

When extending Corollary 3.11 to convex sets {2, we can also allow that
52 has characteristic normals. The relevant notion is the following:

DepinrTioN 3.12. Let {2 be convex.
(a) The generalized normals Ng(02) are defined by
N,(842) := {£N | 2 has a tangent halfspace X' = o + 25}

(b) Let N (P, 82) be the union of the closed convex hulls conv(V;) of
the components V; of "'\ Vg, containing a vector N & N,(812). Then
2 is called P-admissible if Ny(8(2) C N(Ppn, 812).

The boundary of P-admissible convex sets admits sufficiently many non-
characteristic generalized normals.

COROLLARY 3.13. Let A(Py) # {0} and let £2 be convex and P-admis-
sible. The following are equivalent:



32 M. Langenbruch

(a) P(D) is surjective on A(f2).
(b) P(D) is surjective on A({2y) for any M € N(Py,,88).
(¢} P is hyperbolic w.r.t. N € Ny(842) if N is noncharacteristic for P.

Proof. (a)=>{c). Let N € Ngy(012) and let X = zg + 2n be a tangent
halfspace of 2. Then P(D) is surjective on A(X) by (3.31) and (c) follows
for N by Corollary 3.11 applied to £2x.

(c)=+(b). For N € N,(82) let V be the component of N in 87"\ Vp, .
Since P, is hyperbolic w.r.t. N by assumption, V is convex and P, is
hyperbolic w.r.t. any M & V. The same is then true for Py e for any
© € Vp_ . Let VP be the dual cone of V. Since

—V0 R \ 2 forany M€ v,

the halfspaces €2y with M € V satisfy the assumption of Zampieri [40,
Main Theorem)] (for any © € Vp,,} and {b) follows from that result.

(b)=+(a). Since —N{Pp,81) = N(Ppn,02), (b) means that P(D) is
surjective on A(X) and on A(R™\ I) for any tangent halfspace = of {2 since
2 is P-admissible. This implies (a) by (3.30).

The boundary of P-admissible convex sets may have large characteristic
parts: let n = 3 and let P(z) := 23 — 3. Then the boundary of 2 :=
{z € R? | 21 > 0, zp > 21} consists of {0} x [0, oo[x R and the characteristic
part {z € R? | ;1 = 25 > 0}. Hence 2 is P-admissible,

For bounded open sets we get the following characterization:

CoroLLARY 3.14. Let A(Py,) # {0}. The following are eguivalent:

(a) P(D) is surjective on A(f2) for some bounded open set (2 with C!-
boundary.

(b} P(D) is surjective on A(2) if 12 is convez.

(c) P(D) is surjective on A(X) for any halfspace X

(d) P is the product of real linear forms (times a complex constant).

Proof. (a)=-(d). This follows from Corollary 3.10 and de Cristoforis
[13, Theorem 1].

(d)=(c). Pn(D) is surjective on A{X) by repeated integration. Thus,
P(D) is surjective on these spaces by Hérmander [21].

(c)=>(b}. This holds by (3.30).

REMARK 3.15. The surjectivity of P(D) in A{{2) is very sensitive to small
perturbations of the boundary: let A(P) 7 {0} and let N be noncharacter-
istic for P. Let 2= {2y UU.(0). Then P(D) is surjective on A(f2y) if and
only if F,, is hyperbolic w.r.t. N (by Corollary 3.11) while P, is a product
of real linear forms (times a complex constant) if P(D) is surjective on A({2)

(by Corollary 3.7 since N(8:2) = {z € R™ | (N, 2) # 0} and Py, e = Py, for
O € A(P,)).
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4. Local hyperbolicity. In this section we consider a situation where
any surjective partial differential operator on A{{2) must have a locally hy-
perbolic principal part. Local hyperbolicity was introduced by Andersson
(1] and farther studied by Garding [15]. The notion is defined as follows:

DEFINITION 4.1. Let @ € Vp,,.

(a) P, is called locally hyperbolic with respect to N at @ if there is 6 > 0
such that for (z,2) € R* x C,

(4.1) Pr(@ +2+2N)£0 if{(x,2)| <dandImz#0.

(b) Pr is called locally hyperbolic if for any @ € Vp_, there is N € R®
such that P, is locally hyperbolic wr.t. N at 8.

REMARK 4.2. Let P, be locally hyperbolic w.r.t. N at &. The following
are well known:

(a} Pm,e is hyperbolic wr.t. N (e.g. Hormander [22, Leruna 8.7.2]), but
the converse is not true (Kaneko [23, Example 3.1]).

(b) P, is locally hyperbolic w.r.t. any vector in the component of N in
{z € R* | Pmn,e(z) # 0}. This component is a convex open cone and the
dual cone Kg is called the local propagation cone for P, at €.

Polynomials P, such that
(4.2) P, is locally hyperbolic w.r.t. N at any © € Vp_,

were studied by Fehrman [14}. In fact, he called P, hyperbolic-elliptic
w.r.t. N if there is C' > 0 such that

(4.8) Pz +iN)# 0 if (z,t) € ™" and 0 < |t| < Clz|.

It is easy to see that (4.2) and {4.3) are equivalent. Indeed, (4.2) is clearly
necessary for {4.3), and {4.3) follows from (4.2) for any z in a neighbourhood
W C S™1 of Vp,,. Since (4.3) trivially holds for z € S»"1\ W, (4.3) holds
for x € 87! and thus for z € R” by homogeneity.

In Section 3 we generally assumed that IV € N(012) is noncharacteristic
for the localization Py, g to deduce the hyperbolicity of P, o. To obtain local
hyperbolicity at @ for Py, we need a stronger version of noncharacteristicity
which is based on the following estimate introduced by Hérmander [20] when
he studied the extension of (®-regularity for solutions of Pr,(D): assume
that there is Cp > 1 such that for any t > 1 there is C{t) > 1 such that for
(z,t) € R™,

(4.4) (P)™(2,8) < Co(P)iapy(@:8)  if 2] = C(t) and ¢ > 1.

(4.4) can be characterized by means of the localizations @ € L(Pp) of
P, at oo (see (4.6) below). L(Py) is defined as follows {Hérmander



icm

34 M. Langenbruch

[22, Definition 10.2.6]): let

1/2

() = Brnfo, 1) = (32 1PE @) 7)
For @ € Vp,, let
(4.5) Le(Pn):={Q| Jzr € R, zx — o0, zi/f|zk| — O, ~
Q = lim @y for Qx(z) = Pn{zp + )/ Pm(zk)}

L(Pn) = |J Le(Pn)
eeVe,,

(4.4) holds if and only if
(4.6) N is noncharacteristic for any Q € L(P,,).
In fact, (4.4) means that

op ((N}) = inf Em nf (P, (€, 1)/ Prn€,2) > 0

in the notation of Hérmander [20]; the necessity of (4.6) follows from [20,
Theorem 6.3] while the sufficiency follows from [20, Lemma 6.2].

By the homogeneity of Pp,, (4.4) holds if and only if there is ¢ > 1 such
that

(Pr)™ (2,1) < O(Pr)iyy (m,8)  if (z,8) € §*71 % 10,1/0).

The following condition (4.7} is therefore a local version of (4.4): let
@ & Vp, . Assume that there is C' > 1 such that

(A7) (Bn)™(2,8) < C(Pm)iyy (@) i |- 6] <1/C and 0 <t < 1/C,

To check (4.7) for a polynomial, (4.7) must be proved only for the terms of
P, of lower order. In fact, if pg is the order of the root 7 = 0 of P, (6 +7N),
then (4.7) holds if and only if there is C > 1 such that

1/2
(4.8) (X IPP@PE) T < ClPa)y o)
0<]a|<pe
iflg— 0] <1/C and 0 <t < 1/C. Tt is trivial that for 4 > 1,
(4.9) Polz,t) < P, A) < A™Pr(,t)  if (z,8) € R® x 10, 00]

{and similarly for (Pm)'(“N)). Therefore (4.7) is equivalent to the assumption
(2.5) of Theorem 2.2(b) and it will be the standard assumption in this
section. Similarly to (4.4) also (4.7) can be described by localizations at co.
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LEMMA 4.3. Let @ € Vp and N € §™1. The following are equivalent:
(a) P satisfies (4.7).

(b) Any @ € Lo(Pn) satisfies (4.4) for any (z,t) € R*T .

{¢) N is noncharacteristic for any Q € Lo{Pm).

Proof. (a)=(b). Let Q € Lg(P,,) and choose xy for Q as in (4.5). Let
t >0 and z € R*. Then

Q(z,t) — Qulz,t) = Pz + 24, 1)/ Pra(zk)

Bo(a/lok| + 23/ |ze], t/\zk])|ze™/ Pra(a)

< O(Pu) vy (/l2a] + i/ |2k, 2/ ma) e ™/ P ()
= C(Pu) 0y (& + 75, 8)/ P () — CQuavy (2, 1)

by (a) and the homogeneity of P, since z/|zx| — € and (@/|xi|,2/|zxk]) — 0.
(b)=(c). This is trivial.
(c)=>(a). If (a) is not true, then for any & € N there are 7;; € ]0,1/k] and
&, € R® with |¢&, — ©| < 1/k such that for zz := & /7,

410)  (Pu)iay (56)/ Pralen) = (Prm)iivy (6 70)/ P8, i) < 1/

Since zx — oo and x/|zk| = &r/|k| — ©, we can assume that (zx) defines
0 # Q € Lo(Py) by (4.5). Notice that the polynomials @ in (4.5) are
nermalized such that

i

@ (O = L.
Then we get

Gy (0) — (Qu)i (0) = (Pm) vy (2k)/ Prnlmi) = O
Hence N is characteristic for Q.
Lemma 4.3 and (4.68) are the motivation for the following

DEFINITION 4.4. (a) N € §7~* is called locally noncharacteristic for Prm
at © € Vp,_, if Py, satisfies (4.7). . .

(b) N € §n=1 is called locally noncharacteristic for Pp, if Py satisfies
(4.4).

Obviously, Pm,@/ﬁ.m,e € Lo(Py) (choose zj, = kO). Therefore, N is
noncharacteristic for P g if NV is locally noncharacteristic at O for Pm.' The
standard assumption of this section is thus stronger than that of Section 3
(with the exception of n < 3, see [31]). On the other hand, one cannot deduce
local hyperbolicity w.r.t. N at @ if N is not locally noncharacteristic for F,
at @: v

REMARK 4.5. If P, is locally hyperbolic w.r.t. N at @,.then N is loca}ly
noncharacteristic for Py, at @, Indeed, we can assume that N = e, and write
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£ =(£,¢6) € C1 x C. By Zampieri [40, Lemma 1.3 there is € > 1 such
that
Prn(@+2)#0 if 2| <1/C and [Imz,| > Cjlm 2.

This shows that Pp(@ +z +z+ite,) # 0if 2 ¢ R, 2 € C*, ¢t > 0
and |z < 1/(4C), t < 1/(4C) and |2| < ¢/(4C). Thus dg(0) > ¢/{4C) for
Q(E) := Pn(© +z + £ + ite,,) and (3.20) implies that for those % and ¢,

Pro(© + 3 +iten, ) < C1iBn(0 + z + iten)] < Ca(Pr)is, s (@ +x,1).
"This implies (4.8) since by (4.9),

PO+ 2,t) < CsP (0 + 2 + iten, 2t) < 2™C5 B0 (0 + 2 + iten, 1),

We now continue the evaluation of the condition in Theorem 1.3 under
the assumption of local noncharacteristicity. The following theorem is the
main result of this section:

THEOREM 4.6. Let P(D) be surjective on A(12).

(a) Pr is locally hyperbolic w.r.t. N € N(82) at © € Vr,, if IV is locally
noncharacteristic for P, at ©.

(b) Py, is locally hyperbolic if for any ©@ € Vp, thereis N € N(812) such
that N is locally noncharacteristic for Py, at ©,

Proof. (a) We can assume that N = e, € N;(842). The proof of The-
orem 3.3 shows that (3.3) holds for & € $7~1 with |@ — 8| < 1/(2C) with
vj, ttj and B independent of & by Theorem 2.2(b). By part a) of the proof

of Theorem 3.4 we get A1 > 1and J > 1 independent of @ such that for
J=zJand any £ ¢ I,,(9),

ﬁ(en)(ﬁz’f) < AP +iren)|  for 2u5)¢] < 7 < duyle] if €| = Q).

We apply this to £ = & =: @ + z with |lz| < 1/(2C) and get by part b) of
the proof of Theorem 3.4 (see (3.22))

Apvi® < (Pr)p (O +2,30;5) < 41| P(O + Bgen)|  if z] £ 1/(20).
Thus, for large 7,
(4.11) PO+ 2+ 3iven) £ 0 if |z| < 1/(20).
Since M = {(z,t) | Pn(O + z + ite,) = 0, lz] < 1/(2C), ¢ > 0} is
semialgebraic, M has only finitely many connected components {Bochnak--
Coste-Roy [5, Theorem 2.4.5]). Since 1; — 0, (4.11) therefore implies (4.1)
for Im z > 0. Since N is locally noncharacteristic for P, also at -0, (4.1)

holds for Im z > 0 at —@. Thus, (4.1} at @ also holds for Im z < 0.
(b) This directly follows from (a).

COROLLARY 4.7. Let @ € Vp_ and assume that in ony component V
of 871\ Vp, . there is N € 8™ which is locally noncharaecteristic for
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P, at ©. If P(D) is surjective in A(f2) for some bounded open set 2 with
Cl-boundary, then P, o has the form (3.27) and Py, is locally hyperbolic ot
O wrid Mif (M {e)#0forj=1,...,q0.

Proof. By Theorem 4.6, P,, is locally hyperbolic at © w.r.t. some vector
of each component V' of 71\ Vp,. o The claim thus follows from Remark
4.2 and the proof of Corollary 3.7.

COROLLARY 4.8. Let N be locally noncharacteristic for P,. The follow-
ing are equivalent:

(a} P(D) is surjective on A(f2) for some 2 with N € N(812).

(b) P(D) is surjective on A(2) for Q= {x e R* | ¢} > (z, N} > Cs},
—0<h <l <

(c) Pn(D) is hyperbolic-elliptic w.r.t. N.

Proof (a)=(c). This follows from Theorem 4.6(a) and the equivalence
of (4.2} and (4.3).

(e)=(b). By (3.30) we have to show {b) only for the halfspaces 2+n.
Since Py, is also hyperbolic-elliptic w.r.t. —IN, we only need to consider 2.
Let @ € Vp,,. Then Py, is locally hyperbolic w.r.t. N at @ by the equivalence
of (4.2) and (4.3), and the local propagation cone Kg containing —N is
contained in R* \ 2y. The assumption of Zampieri [40, Main Theorem] is
thus satisfied for 2y and P(D) is surjective on A({2y)} by that result.

To extend Corollary 4.8 to convex sets we need a local version of Defini-
tion 3.12:

DEFINITION 4.9. Let 12 be convex. For @ € Vp,_, let Nioc{Pm e, 82) be

the union of the closed convex hulls conv(Vg ;) of the components Vg ; of
S\ Vp_ . containing a vector N € N,(82) which is locally noncharac-
teristic at @ for P,. We call 2 locally P-edmissible if

(4.12) No{892) C Nioe(Prm,5,092) for any O € Vi,

COROLLARY 4.10. Let 2 be conver and locally P-admisible. The follow-
ing are equivalent:

(a) P(D) is surjective on A{f2).

(b) P(D) is surjective on A(Q2x) for each N € Moy, Mioc(Prm,a,012).

(¢) P is locally hyperbolic at any © € Vp,, w.r.i each N € N,(00)
which s locally noncharacteristic at @ for Pp,.

Proof. (a)=-(c). Let N & Ny {(002) and let & = zp + £2v be a tangent
halfspace of £2. Then P(D) is surjective on A{X) by (3.31) and (c) follows
for N by Theorem 4.6(a) applied to f2n. .

(c)=>(b). For ® and N as in {c) let V be the component ‘of N in
§%=1\ Vp,, 5. Since Py, is locally hyperbolic w.r.t. N' by assumption, V' is
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convex and the local propagation cone Kg = ~V? is contained in R™ \ 2y
for any M € V. The union of the sets V is Nioc(Pm,e,02) by definition.
The halfspaces 2;r with M € n@EV_Pm Nioo(Pm,a,012) therefore satisfy the
assumption of Zampieri [40, Main Theorem]| and (b) follows from that result.
(b)=(a). If N is in oy, Nioe(Pm,0,062) then so is —N. Since 2 is
locally P-admissible, (b) means that P(D) is surjective on A(X) and on
A(R™\ X)) for any tangent halfspace X' of §2. This implies (a) by (3.30).

COROLLARY 4.11. Assume that for any @ € Vp_ in any component V
of ™I\ Vp, o there is N which is locally noncharacteristic for Py, ot ©.
The following are equivalent:

(a) P(D) is surjective on A{2) for some bounded 2 with C*-boundary.

(b) P(D) s surjective on A($2) for any convez 2.

(¢) P(D) s surjective on A(X) for any halfspace 5.

(d) For any © € Vp,,, Pm,o has the form (3.27) and Py, is locally hy-
perbolic at @ w.rt. M if (M,{0)#0 for j=1,...,qe.

(e) There are &y,...,& € R™ such that Py, is hyperbolic-elliptic w.r.t.
M if

(4.13) (M, &) #0 fori=1,... .,k
Proof. (a)=>(d). This follows from Corollary 4.7.
(d}=(e). By a compactness argument and (d) there are £,...,&x such

that P, is locally hyperbolic at any © € Vg, w.r.t. M if M satisfies (4.13).
Thus Py, is hyperbolic-elliptic w.r.t. those M.

(e)=(c). This holds for X' = (2)r by Corollary 4.8 if M satisfies (4.13). If
(M, ;) = 0 for some j, then for any @ € Vp_, M is contained in the closure
of some component Vg of S*~1\ P, ¢ and the corresponding propagation
cone —Kg is contained in R™ \ {25. Thus, P(D) is surjective on A(f2s) by
Zampieri [39, Main Theorem].

(c)=>(b). This holds by (3.30).
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An asymptotic expansion for the distribution
of the supremum of a random walk

by
M. 8. SGIBNEV (Novosibirsk)

Abstract. Let {Sn} be a random walk drifting to —co. We cobtain an asymptotic
expansion for the distribution of the supremum of {Sn} which takes into account the
influence of the roots of the equation 1 — SR &*? F(dz) = 0, F being the underlying distri-
bution. An estimate, of considerable generality, is given for the remainder term by means
of submultiplicative weight functions. A similar problem for the stationary distribution of
an oscillating random walk is also considered. The proofs rely on two general theorems
for Laplace transforms.

1. Introduction. Let {X;}72, be a sequence of independent identically
distributed random variables with a common nonarithmetic distribution #.
Define Sy = 0, 8, = X1+ ... + Xn, n > 1. Suppose the random walk
{5,} drifts to —oco, L.e., with probability one S, — —co as n — co. We set
Moo = 8Upy,50 Sn-

Properties of the distribution of My, have been studied by many authors
for various reasons. First, the problems involving M, are of interest in. their
own right, since the supremurm is one of the underlying functionals in random
walk theory. Second, the distribution of M, appears in some applications;
for example, it coincides with the limiting distribution of the waiting time
process in the theory of queues [7, Sections XII.5 and VI.9]. The existence of
moments of the form E f{ M) was considered for various choices of the func-
tion f(z) by Kiefer and Wolfowitz [12], Tweedie [19], Janson [10}, Alsmeyer
[1], and Sgibnev [16]. Note that although Theorem 5 of Tweedie [19] con-
cerns moments of the form § f(z) w(dz) for the stationary distribution 7 of
the Markov chain Z,41 = max(Z, + Xn+1,0), it is, however, well known
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