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Varjational integrals for elliptic complexes
by
FLAVIA GIANNETTI and ANNA VERDE (Napoli)

Abstract. We discuss variational integrals which are defined on differential forms
associated with a given first order elliptic complex. This general framework provides
us with better understanding of the concepts of convexity, even in the classical setting

D"(R”',R) N D’(Rn,]ﬂn) cur] D’(RH,R'"X").

1. Introduction. This work can be regarded as a sequel to the paper
[I83] where the theory of quasiharmonic fields is developed using singular
integrals, in particular the n-dimensional Hilbert transform. The estimates
in that paper play an important role in the theory of elliptic partial differen-
tial equations, largely pertaining to the higher integrability of the gradient
for nonuniformly elliptic PDEs. The intent of this paper is to continue this
theme from a more general and unifying perspective. We believe that the
more general setting presented in our paper provides a better understand-
ing of several unanswered questions in [IS3], especially those concerning the
LP-norm of the Hilbert transform and sharp estimates for elliptic PDFEs.
Although we do not pursue these questions here they lead naturally to a
study of certain variational integrals. A principal feature of our setting is
that we look at an elliptic complex of first order differential operators

DR, U) -2 DR, V) =5 DR, W)
where U,V and W arce finite-dimensional inner product spaces.

Such complexes are viewed here, in many ways, as generalizations of the
clagsical exact sequence of the gradient and rotation operator

(11) DI(]RTL’]R) __?__}I)I(Rn’mn) ﬂ_r_l) -Df(]R'ra,]Rnxn)'

There has been some recent and related work concerning differential
forms and the exterior derivative operators [I]. The reader should also con-
sult [FM] for even more general setting as we consider here only the varia-
tional integrals which we believe have a good chance of being quasiconvex.
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80 F. Giannetti and A. Verde

Among the desirable results, we obtain, in analogy with the div-curl decom-
" position of a vector field, the Hodge type decomposition of F ¢ LP(R", V)
agsociated with a given elliptic complex, that is,

F=Pu+Qw

where u € WH? (R, U) and w € WH?(R*, W),

Guided by [I83], we define the Hilbert transform § : LP(R™, V) —
LP(R™, V) by the rule

SF = Pu— Q*w.

Of course, the value of this operator goes beyond the mere analogy with the
familiar Hilbert transform on the real line. Indeed, as shown in [IS3] for the
complex (1.1), this transform plays an essential role in the study of sharp
L?-bounds for elliptic systems of PDEs.

A central question concerning the p-norms of S leads us to the Burkhol-
der functional

EIF] = {[(p— DISF| ~ [FISF| + |FP~Y, p>2.
]Rn.

It is important to realize that this functional is convex in the so-called
singular directions. Continuing the analogy with the vectorial Calculus of
Variations we arrive at a challenging conjecture that convexity in singular
directions might imply quasiconvexity. If true, this would have far reaching
implications for the regularity theory of PDEs, quasiconformal mappings,
and much more. But we have reserved these matters for our subsequent
studies.

2. Some first order partial differential operators. This section is
dedicated to an exposition of basic differential operators to be discussed
later on. We begin with a quite general setting.

Let U and V be finite-dimensional vector spaces over the field of real
numbers. We assume that both spaces are equipped with inner products,
denoted by {, }y; and {, }y, respectively. The space of infinitely differen-
tiable functions on R™ with values in U will be denoted by C*°(R"™, U).
Other spaces, such as L?(R™, U) and Sobolev classes W1P(R™, U} will be
discussed as well,

Let £: C°(R*, U) — C*(R™, V) be a differential operator of first order
with constant coefficients. More explicitly,

i d
ﬁ—;Aka—%

where Ay, & = 1,...,n, are given linear transformations from U into V.
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The formal adjoint £* : C*(R", V) — G (R?, U) is defined by the rule
§(crvupy = | (v, Lupy
Rn Rr

for u e C*(R"*,U) and v € C®(R", V). Thus

where AL : V — U is the transpose of Ag.

Our babl(: example, which actually originated this work, is that of the
gradient operator

— 6 6 . o 12 o n T
and its adjoint

—div: C*(R*,R") — C=(R", R)
defined by

aft afm
avf=3C 4 2L =i

More generally, the cllfferentm.l

D C® (R R™) — C°(R",R™*")
L R™) B — R™ its Jacobian matrix

oK (z)

Dh — mxn,’
(z) [ B2, ] eR

Its formal adjoint D* : C°°(R™,R™*") — C°°(R",R™) is the divergence
operator on matrix fields, that is,
~D*F = (div F*, ..., div F™)
where FY, ..., F™ are the row vectors of the matrix F.
We shall also consider the so-called rofation operator

curl : O (R™, R*) — C®°(R",R"*")

assigns to a mapping h = (h?,

defined hy
art _ar ..
=R T oo s i=1,.0m,
curl f [ b5, B’ %, 9
for f = (f%,..., ™).
An interesting class of PDOs arises in the study of differential forms. We
refer to [ISS] for notation and definitions used here. The book by H. Cartan
[C] is an excellent reference for the material used here.
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For an integer [ = 0,1,...,n, we consider the space A! = AHR") of
I-covectors in [R™. Differential I-forms on R™ are simply functions defined on
R" with values in A'(R™). Now we take U = A"1(R") and V = A'(R"),
I =1,...,n. The basic PDO on forms is the exterior differentiation

d: C=(R", A7) - G (R, A
and its formal adjoint, called the Hodge codifferential:
d* COO(]RH,AL) s COO(IRTL’AE—I)’
It is also worth extending these operators to the exterior algebra A =
A(R™) = B, 4'(R?):
d,d* : C®(R", A) — C°(R*, A).
Then we have the Dirac operators, defined by
8t =d+d*: C®(R", A) —» C®(R", A),
8" =d—d*: C®(R", A) — C®(R", 4).
There are many more examples of operators in applied PDEs which fit well
the theme of this paper, but we shall not discuss them here.

3. Short elliptic complexes. Let U,V and W be finite-dimensional
inner product spaces. We consider a sequence of differential operators of first
order in n independent variables with constant coefficients

(3.1) D'(R*,U) 25 D'(R?, V) -2 DI(R™, W),

Note that spaces of Schwartz distributions are being used here.
More precisely, if u € D'(R*, U) and v € D'(R*, V), then

Pu g’**amk’ Qu ;Bkaxk

where 4; € L(U,V), and By € L(V,W) for k = 1,...,n. The symbols
P ="P({) and Q = Q(£) are linear functions of & = (&,...,&,) € R* with
values in L(U, V) and in L(V, W), respectively. They are explicitly given

by
T T
=3 &An Q)= &B
k=1 k=1
The complex (3.1) is said to be elliptic if the sequence of symbols
(3.2) vl v 2w

is ezact, Le. ImP(&) = ker Q(&) for all £ # 0. The dual sequence consists of
the formal adjoint operators

DR, U) e, v) & DR, W,
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L
Z kamk zm;BkB_&?k.

k==
Since U,V and W have inner products, the dual spaces U*, V* and W*
are identified with U,V and W, respectively. The dual complex is elliptic
if the original complex is.

Given an elliptic complex we have the associated Laplace-Beltrami op-
erator

—A=PP"+Q"Q: D'(R", V) — D'(R", V).
Its symbol is a quadratic form with values in L(V, V),

A(g) = (Zf ) (kafi*) + (Z§j3;) o (Z&Bk)
i=1 i=1 k=1
= Y En(A AL+ By By)
k=1
= ﬁjfk(AjAz-i-AkA;f—l-B;Bk + B B;).
k=1

To abbreviate, we denote by Cj, : 'V — 'V the operators in the latter
expression, so that

&)= Y &€Csk-

Jik=1

Now consider an arbitrary vector field F = (f1,..., f*) € L*(R", V).

We can solve the Potsson equation
Ap=F

for ¢ whose socond derivatives are L*-integrable on R™. As a matter of fact,
these derivatives can he expressed in terms of F' by using singular integrals.
To enable explicit calculation of those integrals we assume, without loss of
generality, that both ¢ and F' belong to C§°(R™, V). The calculation goes
as follows.

Let & and F denote the Fourier transforms of ¢ and F. Then

( i Ejékcjh)s'ﬁ: F
=1

and hence @(¢) = A™L(E)F(£). It follows from the idextities (8%¢p/dz:Hz;)"

= §;€; {0 that
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8o \" PP

. =££A F
(33) (ro) = 86:87@

In order to go further we need the following uniform bound:
(34) &g AT(E)<c orequivalently [ATHE)| < ¢l
The proof is based on looking at Cramer’s formula for the inverse matrix:

a1 ()| = [2UAG el e

det A(8)| ~ det A(£) = [€P°

Now, having (3.4), we can take the Fourier inverse of (3.3) to get
B -
= (&£, 47 HEF)Y,
In this way, we arrive at the convolution operator for the second order
derivatives of

821,9
S = (6 A7)

= | Kij(e —y)Fly} dy
Rﬂ

where Ki;(z) : V — V are Calderén-Zygmund type singular integrands.
The LP-theory yields
&

(3.5) }

Bmiamj p
Next observe that for every vector v € V, we have
(A&, v) Zm AjAjv,v)+ Y E6u(BYBY, v)
3k
= Z@-ak (Akv, 430) + (Byv, Byw)]
J.k
2 2
+ ’ ZEij?)‘ =
J

- |Z£jA;f'u
J

It is important to realize that equality cccurs if and only if v == 0. Indeed,
{P*(&)v=0and Q(¢£)v =0} & {v € ker Q(¢) and v € ket P*(£)}.

By ellipticity of the complex (3.1), ker Q(£) = ImP(£). It is well known in
algebra that Im P(£) is orthogonal to ker P*(£), therefore the vector v, being
orthogonal to itself, is zero.

Summarizing, the operator A(£) : V — V is positive for f £ 0.

<l Fllp forl <p<co.

P (€)]? + Q| > 0.

4. Hodge decomposition and Hilbert transform. Consider a vector
field ¥ € LP(R", V). The Poisson equation F = A¢ for v € W2P(R", V),
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1 < p < 00, yields a decomposition of F"
(4.1) F=Pu+ Quw

where u = P*p € WHP(R*,U) and w = Qp € WL2(R*, W). In view of
(3.5) we have the estimate

Vully + [Vally < el Flp.

Lemma 4.1 (orthogonality property). For @ € WYP(R™, U) and 8 <

WH4(RY W), 1/p+1/q =1, the vector fields P € IP(R*, V) and Q*8 €
Lq(IR”‘ V) are orthogonal.

Proof. Using the equality Im P = ker Q, we have
§(Pa, 08 ={(QPa,8) = 0

whenever o € W2P(R™, U) and 8 € Wh9(R", W) with 1/p+1/g=1.
Since W*P(R", U) is dense in Wh#(R", U), the lemma follows by approxi-
mation. m

By this lemma, we are able to prove the uniqueness of the components
Pu and Q*w in the decomposition (4.1} with v € W»P(R",U) and w €
WhP(R™, W). Indeed, consider a decomposition of the zero vector field,
say 0 = Pa + Q*F, where o € WHP(R",U) and 8 € WLP(R™, V), s0
Pa = —@Q"F. Take an arbitrary $ € L4(R", V), where g is Holder conjugate
to p. By applying the decomposition (4.1) we can write @ = Pa + Q*b
for some (not necessarily unique) & € Wh4(R*, U) and b € WhH4(R*, W).
Hence

| (P, ®) = | (Pa,Pa) + | (Pa, O*)
mn ]Rn R’n
= | {Pa,Pa) =~ [ (¢"8.Pa) =0
]Iﬁﬂ Rn

Therefore Pa == 0 and @*F = 0, as desired.

THEOREM 4.2. Fach vector field F € LP(R™, V), 1 < p < o0, admits a
unigue decomposition

(4.2) F = Pu+ Q*w

with u &€ WHe(R*, U) and w € WHP(R", W), In symbols,
LP(R™, V) = PWLP(R™, U) & Q*WHP (R, W).

We also have a uniform bound for the components:

(4.3) [Pully + [ wlp < CollFllp-

REMARK. Let us emphagize explicitly that u,w need not be unique, only
their images Pu and @"w are unigue,
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It is also possible to develop a theory of Hodge decomposition on domains
2 C R™. But this requires some regularity of {2 if one wants to go beyond
L?-theory. The interested reader caun consult [GT] and the references given
there.

In the case of the elliptic complex D'(R", A) 4 p (R, A) 4 p {R™, A)
formula (4.2) provides us with the familiar decomposition of a differential
form as a sum of an exact and coexact form (no harmonic fields in R™).
Becanse of this analogy we call (4.2} the Hodge decomposition associated
with the given elliptic complex.

Associated with the Hodge decomposition (4.2) is a singular integral
operator

S: IP(R*, V) — LP(R™, V),
acting on a function F = Pu + @*w by the rule
SF =Pu— Q"w.
Thus & acts as identity on the range of the operator P and minus identity
on the kernel of P*. It is self-adjoint. Indeed, if F = Pu+ @*w and G =
Po+ O3, then

{(SF,G) = | (Pu—~ Q"w,Pa+ Q"B

l<p <o,

= [ (Pu, Pa) ~ (Q*w, 2*B)]
i

= | (Put Qw,Pa— 078 = | (F,5G)
R R

as claimed. Since § is an involution, that is, 5 o § = Id, it then follows that
S is an isometry in L2(R", V),
VISP = {(sF,sF)= [ (F,F)= | [F
R Rn Re K™
A fundamental question of interest in the LP-theory of PDEs concerns
the sharp constant in the inequality

(4.4) I5F]lp < 4pllFllpy 1< p<oo.
As in the div-curl setting {IS3] we conjecture that

1
4.5 A, = -1, ——>.
(43 p=max{p—1, 1|

We now refer to Burkholder’s work [Bu] and the subsequent developments

[BM-S], [A], [I] to recall that inequality (4.4) with constant (4.5) would
follow if one proves that

(4.6) EF) = {[A,|SF| = |F|SF| + [F[P~* > 0.
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A reason for preferring (4.6) to the inequality (4.4) is that the functional £ is
convex in the so-called singular directions (see Section 7 for the definition).
The proof of this fact is much the same as in [[], so it is left to the reader. In

light of the conjecture (4.5) it may very well be that £ is also quasiconvex
and, consequently, inequality (4.6) would follow.

5. Elliptic couples. Following the definitions in [S3] we study a dra-
matic extension of the notion of div-curl couples.
An elliptic couple i3 a pair
F =[A, B] = [Pa, Q*f]

where & € ng’f(ﬂ,U) and g € W”’(Q,W). Here 2 is any domain in R™,

loc
n = 2. Furthermore, we introduce the norm

(6.2) |F (@) = |A(z)]? + | B(z)|?
and the Jacobian
J{@,F) = {Az), B(z))v = (Pa, Q*B)

for € £2. On analogy with the complex Cauchy—Riemann operators, we
introduce the so-called & components of F:

Fr=1(A+B) and f‘:%(A—B)
Thus
%|fl2=|f+\2+i.7:“|2 and J(z,F) = |F*? - |F |2

6. Poincaré type inequalities. In what follows we shall exploit the
following inequalities which allow us to improve regularity of some distribu-
tions without affecting their image under the operator @ or P*.

LEMMA 6.1. For each distribution F € D'(R™, V) with QF € L*(R™, W),
there exists Fy € ker @ such that F' — Fy € WY2(R™, V) and we have a
ungform bound

| £ = Follr,2 < C||QF 2.
Wa shall argue similarly for the dual statement:
LeMMA 0.2, For each distribution FeD'(R™, V) with P*F € L*(R", W),

there exists Fy such that P*Fy =0 and F — Fy € WH2(R™, V) and we have
& uniform bound

(6.1) [1F ~ Fo1,2 < C[P"Fllz.
Proof of Lerama 6.1. By Hodge decomposition
F=PP'o+ Q" Qp.
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Consider Fy = F—Q*Qy. Then QFy =0 and F—Fy = Q"Qyp € L*(R™, V).
Hence Q(F — Iy) = QF € L*. Computing the Fourier transforms we find
that Q(&)B(£) € L? and P*(£)&(€) € L?, where we have set & = F — F.
Let us observe the following inequality:
12yl + [P (€| = colé] - [y
with a positive constant co. In fact, suppose that [£| = 1, |y|] = 1 (by
homogeneity), If Q(£)y = 0 and P*(£)y = 0, then y € ker @(&) M ker P*(£).
This implies that y = 0, contradicting the assumption that y Is a unit vector.
Applying the above inequality to ®(£) we have

colé] - 18(&)] < Q)] + P (EF(E)]
This implies |¢|&(¢) € L2. Hence ¢ € Wh2(R", V) and
[2l]1,2 < c2(n) | QF|2- =

Let us mention that [?-variants of the above inequalities are also avail-
able.

7. Variational integrals and convexity concepts. This section is
concerned with variational integrals defined on elliptic couples. The integrals
in question take the form

A = { f(X,Y) for F=[X,Y] € P(®",V x V).
]R’ﬂ.
We assume here that the integrand f : V x'V -— R is at least continuous. For
the duration of this paper, Wy (12, V) will denote the space of Lipschitz
(V-valued) functions with compact support in 2 C R®,

Here are three basic definitions adopted from the Calculus of Variations

(see for example [D]).

DermrTioN 7.1, f is sald to be gquasiconvez if for any constant vectors
A B €V we have
| [f(A+Pa,B+Q"8)— f(A,B)]dz >0
B
whenever o € W™ (R, V) and 8 € W™ (R™, W).
The next notion seems to be an excellent extension of rank-one convexity.

DEFINITION 7.2. We say that f is conver in singular directions if the
real-variable function

t— f(A+tX, B +1Y)
is convex whenever 4, B,X,¥ € V and X is orthogonal to ¥ in V.

Finally, we notice that the only null Lagrangians in this setting are Pa,
Q"3 and the Jacobian {Pa, @*3), hence the following definition:
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DEFINITION 7.3. f is said to be polyconvez if it can be expressed as
f(X’Y) e g(X1 Y, (X:Y))
where g: 'V x V x R —» R is convex.

In the recent years a fairly large amount of work has heen done trying
$0 understand all possible connections hetween these notions of convexity.
We will be able to recover, in this generality, most of the results which are
known for P =V and @ = curl.

It is not difficult to see that polyconvexity implies quasiconvexity. In-
deed, given A, B € V and arbitrary functions o € WL {(D,U) and 8 €
W™ (D, W), supported in a bounded domain D, we can use Jensen’s in-
equality to obtain

ﬁ | [f(A+Pa,B+Q*8)~ f(A, B) du
i

= [[9(4 +Pa, B+ Q*5,(A+Pa, B+ Q*B)) — g(4, B, (4, B))] dz
D

29[ {(4+Pa,B+Q'6,(A+Pa, B+Q"8)| - 9(4, B, (4, B))
D

=g(A+ {Pa, B+ 08, (4 B) + }(4,0°8) + {(Pa, B) + | (Pa, @°5) )
D D D D D
- g(4, B, (A: B)) =0,

the first four integral averages vanish by the Divergence Theorem, the latter
vanishes due to I?-orthogonality of Pe and @*3 (cf. Lemma 4.1). Thus f
is quasiconvex.

It is more or less clear that without additional hypotheses about the
elliptic complex the further analogy with the classical setting will fail. Our
next result addresses this issue.

THEOREM 7.1. Suppose that the elliptic complex (3.1) satisfies the con-
dition

(7.1) | kerQ(¢) = V.
gl=1

Then every quasiconves function is conves in singular directions.
For the proof we need to show the inequality
FOB + (L= N)P) < AF(@) + (1= Nf(P)

whenever 0 < A < 1 and ¢ —~¥ = [X,Y] with X orthogonal to ¥ in V. We
shall argue with the aid of the following
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LEMMA 7.2. There ezist u € Wh(R*, U) and w € WH*(R*, W) and
a partition R* = QU Q' into disjoint measurable subsels such that

(7.2) [Pu, @ w] = [(1 — Alxe — Axa (@ - P),
. |20 Bp| .
(7.3) P |Br| A

and therefore

[N Baj _

(7.4) lim =1-A

R—oa |BR|
Proof. We begin with the following periodic function on the real line:
e [Nt IS+
h=hit) _{(l—t),\ FAFI<t< 1+,
where { = 0,+1,42, ... Thus
ey J 1= HfI<E< A+
(7:5) h(t)’{—,\ AT I<t<1+1
Next, by the hypothesis (7.1), X € ker @(&) for some unit vector £, which we
fix for the rest of this proof. By exactness of the sequence (3.2), X € ImP(£),
say X = P{£)U for some U € U. Since Y is orthogonal to X, by basic
algebra, we infer that ¥ € Im Q*(£), say ¥ = Q*(§)W for some W &€ W.
Now we are in a position to define
u(z) = h((z, &)U € WH=(R*, U},
w(z) = h{{z, &)W € Whe(R*, W).
The partition in question is in fact a Jamination of R™ given by

2= D {z 1< (@& <A+1}

[=—o00c

(7.6) e
2= | {p:r+i<(z 8 <141}
I=—00

‘We then compute

Pu= R ((x,§))PEU = W' ({z, )X,
Q" w = h'({z,£))Q(OW = W ((=, )Y

Hence [Pu, @*w] = W({z,£))[# — ¥ and formula (7.2) is immediate from
(7.5) and (7.6). The density relations (7.3) and (7.4) follow by simple geo-
metric considerations, completing the proof of the lemma. =

Proof of Theorem 7.1. Consider concentric balls By ¢ Bgry and a cut-off
function n € C§°(Bgy1) such that 0<n <1, p=1 on B and |Vn(z)|<2
in R™. The functions o = nu and 8 = nw are Lipschitz with support in Bgy1,
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and therefore can be used as test functions in the definition of quasiconvexity.
Accordingly,
1Bl f(M@+ (1-0&) < | fOAG+ (1 - NP+ F)
Bri1
where F = [Pa, @*0) is an elliptic couple. We split the integral over three

subdomains:
o= 1+ 1+
B_ﬁ.-‘»]_ 2NBr 2'NBpr B}H.]_—BR
It is important to observe that
P (1~ A)&-¥) on 2N Bg,
— AP~ ¥) on {2 N Bp,
and
“FHL"”(R") < 00,
Hence, we obtain
|Bri1|f(AP 4 (1 = M) < |20 Bg|f(P) + 2" 0 Bg|f(¥) + c|Br+1 — Br|
where ¢ is a constant independent of R. Finally, dividing by | Br| and letting
R go to infinity, we get the desired inequality
FOAB 4+ (1= M) < Af(P) + (1~ A f(¥)
by the density relations (7.3) and (7.4). =

8. Quasiharmonic fields associated with an elliptic complex.
We denote by EP(2,V x V), 1 < p < oo, the LP-space of elliptic couples
[Pa, @*8], with « € WHP(2,U) and 8 € WHP(£2, W). This space is a
closed subspace of L?(£2,'V x V). The proof goes as follows:

Let Pay; — A in LP(2,V) and @*F; — B in LP(2, V). We want to
show that

A=Pa forsome e Wh(2,U),

B = Q*8 for some 8 € WhP(2, W),
Let 5 be the WP (£2)-solution of the Poisson equation

Paj = Apj.
Then
1V20illp < e Peyllp < ©

with a constant ¢, independent of j. We may assume that p; converges to a
function ¢, weakly in WP (£2). Then the functions Pa; = PP*p; + Q" Qw;
converge to 4 = PP~ @ -+ Q*Qip, weakly in LP(£2, V). It remains to prove
that @*Qy = 0: we then have A = Pa with o = P*yp, as desired.



icm

92 F. Gianpnetti and A. Verde

Consider an arbitrary & € L9(f2,V), and decompose it as
W =PP"g + " Qo

with some ¥y € Wg’q(Q,V). By density, for each € > 0, there exists ¢ €
C& (€2, V) such that

1% — tbollwaa <&

Then
T = (PP + Q Q) +PP* (¢ — 1) + @ Qv — ¢n)-
Therefore,
2,0 0p) = [{PP*(¥ —w0), 2 Qo) + § (2" Q0 ~ 40), 2* Q).
o) 2 n

The first integral vanishes, while the second one can be made as small as we
wish by choosing & small enough. Hence

(P, Q*Qu) =0 for every ¥ € L2, V),
which means that @*Qyp = 0.
The remainder of this section is reserved to some definitions. For F =
[Pa, @*3] € £2(2,R® x R™) we can introduce the norm
|7 (@) = (IPal? + QB2

Then the following, rather obvious, relation can be viewed as an analogue
of the Hadamard inequality for determinants:

2J(z, F) < |F(=)]*.
DerFINITION 8.1, An elliptic couple F = [Pa, @* ] is called K -quasihar-
monic with 1 < K = K(z) < o if
(8.1) |F(2)* < K(2)J (=, F)
where K(z) = K(z) +1/K(z) > 2.
Precisely, the inequality (8.1) yields

_ K{z)~1
F < ==L __Ft
7 (@) < BT @)
where the + components of F are defined by the rules

F~=3Pa-Q*8) and Ft=1(Pa-+@*p).

9. H'-theory of the Jacobian. One special feature of the Jacobian
we shall use here is its higher regularity, already recognized by H. Wente
[W] and developed by 8. Miiller [M] (see also [IS1], [IV1,2]). The book of
E. Stein [St2] is particularly useful here.
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THEOREM 9.1. Let F € L*(12,V x V) be an elliptic couple. Then J{z, F)
€ Hlloc(ﬂ)'

We only sketch the proof as it is similar to one in [CLMS].

Proof. Fix an arbitrary subdomain 2’ compactly contained in (2, and

fix an arbitrary n € C§5°(2) which is equal to 1 on {2’. For each test function
w € C§°(12'), we shall estimate the integral

| o(2)7 (2, F)de = [ (¢Pa, @*8) = | (¢Pno, 0*nB)

f n B
(n equals 1 on the support of ¢).

We uge the Hodge decomposition in the entire space B to write
@Pna=Po + Q*F'.
Observe that the component Q*3 can be expressed as a singular inte-
gral of pPna, say Q*3 = B(pPna). The singular integral operator B :
LP(R™, V) — LP(R™ V), projection onto Q*WHP(R™, W) C LP(R™, V), is
bounded for all 1 < p < oc. It is also important to observe that B vanishes
on the subspace PWP (R, U). Therefore, we can look at Q"' as the image
of Pna under the commutator of B with the multiplication by ¢:
Q'8 = (By — ¢B)(Pna).

Next, we apply the celebrated commutator result of R. Coifman, R. Roch-
berg and G. Weiss [CRW] which implies that

1982 < C(n)|lellBmo [P (ne) 2.
Since Po’ is orthogonal to @*nG, by Hélder’s inequality we obtain
| (2} (2, Fyde = | (Pa/,Q™n8") + [ (Q°F', Q*nB)
Rn I em
<8212 81l
< C(n)llellsmollPrell2]| @182
< efn,n)llelBmolIF 3.
In conclusion,
| w(z)J (2, F)de < Cln,m)|ellemol| F 13-
7]

In view of the BMO-H* duality it follows that J(z, F) € H,.(£2). We also
have the local bounds

(|7 (&, F)| ey < Car |1 FI5- m

Further, if J{z, ) > 0, by Theorem 2 of E. Stein [St1] we find that it
belongs to the Zygmund class L log Lioc((2).
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For later use we record the inequality
91 7@ Py € CollI (@, Fllw@) < CarllF|3.

The study of Jacobians in Hardy spaces was originated in [CLMS] and then
pursued in [IV2].

10. Limit theorermns. Just as in the theory of quasiconformal mappings,
constructions of quasiharmonic fields rely on limiting processes. At this point
of development it is of interest to know that such fields are closed under weak
convergence. The following theorem addresses this issue.

TrEOREM 10.1. Let F, be o sequence of quasiharmonic fields converging
to F weakly in L2(02,V x V) and suppose that the distortion functions
K. converge to K weakly in L1(). Then F is a quastharmonic field of
distortion K.

We will need the following two lemmas.

LEmMMA 10.2 (lower semicontinuity of the norm). For every n € L% (02),
1 >0 and F,, converging to F weakly in L2(12,V x V}, we have

(10.1) § n(@IF(@)) de < lmint | (=)o) do.
0 n
Proof. We have
{n@)(|Ful@)| - |F(@) ) dz = \(n(F, — F), F/LF) de
2 ”

where we have defined F/|F| = 0 at the points where |F| = 0. Since
nF/|F| € L°(2) and F, converges to F weakly in L(£2, V x V), inequality
{10.1) follows. w

Our next prerequisite is the weak continuity property of the Jacobian.
"The proof presented here relies on the additional assumption that the elliptic
complex can be prolonged either from the left or from the right, say

DR, U) L o/, V) - D (e, W) B DR, 7).

Assuming ellipticity of this longer complex we can apply the Poincaré in-
equality (6.1) to conclude that

Lemma 10.3. For each distribution S D'(R™, W) with Q*G< L2(R"™, V)
there exists 3° € ker Q* such that

18 ~ B%lwraee jwy < CHQ* Bl 120, v

For notational convenience we denote by L °(f2) the space of functions
in L*°({2) with compact support.
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LemvMma 10.4. (weak continuity of the Jacobian). Under the assumptions
of Theorem 10.1, for every A € LS(2) we have

(10.2) | Ma)J(z, 7) dz = Jim | @) (z, 7)) da.
7] 7

Proof. Let 7, = [Pa, 2*F.], where Pa, — Pa and Q*F, — O*8,
weakly in L2(£2, W). The field @*8, is not affected if we subtract from 3, a
function in ker @*. With the aid of Lemma 10.3 we can modify the sequence
{B.} to ensure that it stays bounded in WH2(£2, W) (details being left to the
reader). Therefore, we can extract a subsequence {£,,} converging strongly
in L#(£2, W) to 3. With these preliminary adjustments we proceed to the
proof of (10.2).

First assume that X\ € C§°(12). Integration by parts yields

V M@)J (2, F) du = | \(Pa, @*8) dz = | (QXPa, ) dz

£2 4 02
= [(VA@ Pa,B)dz = Jim V(Vae Pay,, B, ) ds
4 n

= lim V Me) T (z, 7o, ) dee
— OO n

as Pay, converges weakly in L2(£2) to Po and 3, converges strongly in
L*(2, W) to 5.

Notice that the Hmit function does not depend on the subsequence we
have extracted. Therefore, we also have the convergence in D'{((2) of the
entire sequence

lim { Ma)J (@, 7)) de = | M=) (@, F) da.

v—00
2

To get rid of the redundant assumption that A € C§°(£2) we now fix
any A € L°({2) supported in a compact subdomain, say 2/ C 2 . We then
approximate A a.e. by a sequence A\; € Cg°(42) of functions supported in 2/
such that [[A;|| < | Ale. We can write

| D@5 - T, 7)) de| < [ M) = X5(a)] - T(e, 7] da
L 2
+ VIA@) = 2(2)] - 1T (w, ) da
7
+ ’ | (@) (=, ) — (e, F)] dx).
n

Hence, using the elementary inequality

ab < a[alog (e—|— %) + N(e¥° 1)]
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for positive mrmbers a, b, £ and N, we obtain

V0

limsup| § A=) (2, 7)) — J(z, F)] dm4
n

< [ 1\@) - (@) - Iz, )l do
2

J(z, F) )
+ £ limsu [ J(z, Fu)lo (e—l———--~————-——— dx
u—roop !§, ( ) 8 “J(.’B, J:.V)”Ll(ﬂ’)

+ 1@, F) |z [ (e — 1) dm]
2

+ tim | § A(2)id (e, ) — I, F)] do:l.
2

As already shown, for A; € C§°(£2) the latter term vanishes. The first term
can be made as small as we wish, by the Dominated Convergence Theorem.
The middle term is bounded by

g[c +C {(rle 1) da:]
irs

where the constant C' depends neither on £ nor on 7. This is because the
Jacobians J(z, F,) stay bounded in Llog L(£2’) (see (9.1)). Therefore this
term can also be made as small as we wish by first choosing ¢ sufficiently
small and then taking j sufficiently large. In conclusion,

lim { \(z)[J(z, ) — (2, F)|dz = 0

L 00
as claimed.

FProof of Theorem 10.1. Fix e > 0 and 6 > (. Then
| Fu ()]
8+ el F(z)| + J{z, Fo)
Algebraic calculations reveal that
| Fo (@) _ | F (=) |?
S P @) +I@F) | S+ elF @)+ @, F)

S 2F@NFA) - |F(x)) | Fla)PlI(e, Fo) — (2, F)]

T d4e|F(z)| + J(z, F) (6+elF| + J(z,F))?

For every nonnegative test function ¢ € L°(12), we can write

< Ko(z).
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[ ARG, (@@
& +e|lF(z)| + J(z, F) ;0 +elF (@) + J(=, F)

20(2) | F ()| (|Fof)| ~ | F()])
R e S [ B

dzx
0

n
— S !p(m)lf(m)P{J(m,}',,) - J(m’F)] dr
(8 + el F(z)| + J(z, F))? '
By Lemmas 10.2 and 10.4 this estimate yields
o(z)|F (z)|* . (@) Fu(@)|?
A S ) S e R

and from distortion inequality this is
< Hminfg () () dz = S p(z)K(z) dz.
Q 2

By the Monotone Convergence Theorem we can pass to the limit as £ goes
to zero:

i p(@)|F@))” dz < | p(z)K(z) dz.

L o+J {z,F) b
Since  was arbitrary and nonnegative in L°(2), it follows that
|F ()2
Tt (e ) S ) ae

Hence
|F(2))* < K(=)[6 + J (=, F)].

The last inequality holds for every 4 > 0, so for § = 0 as well:
|F(2)]* < K(z)T(z,F) ae.,

completing the proof. m
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