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Linear extension operators for restrictions of
function spaces to irregular open sets

by

V. 8. RYCHKOV (Jena)

Abstract. Let an open set 2 C R™ satisfy for some 0 < d < nand ¢ > 0 the condition:
the d-Hausdorff content H4(f2 N B) > &lB|*" for any ball B centered in {2 of volume
[B| € 1. Let Hj denote the Bessel potential space on B™ (1 < p < oo, 8 > 0), and let
H}{£2] be the linear space of restrictions of elements of Hj to £ endowed with the quotient
space norm. We find sufficient conditions for the existence of a linear extension operator for
H3[2), i.e., a bounded linear operator ext : Hj[2] — Hj such that ext f|p = f for all f.
The main result is that such an operator exists if (i) d > n—1 and 8 > (n — d)/min(p, 2),
or (ii}d <n—1and s—{s > (n— d)/min{p,2). It is an open problem whether these
assumptions are sharp.

1. Introduction. Let & (1 < p < 00, 5 > 0) denote the Bessel potential
space on K™, otherwise known as the fractional Sobolev space (it coincides
with the usual Scbolev space if s € N}. Let £2 C R® be an open set. Denote
by Hp[{2] the linear space whose elements f are the restrictions to (2 of
functions g € 3. The norm in H;[{2] is given by

Hf”H;,[Q} = inf{||gllzz : gla = f a.e.}.

With this norm H3[f2] becomes a Banach space, which is called the restric-
tion space of Hy to {2. The restriction operator req : f +— flp is then
a bounded linear operator from H to Hj[f2]. A bounded linear opera-
tor ext : H3[2] — H is called a linear extension operator for Hp[(2] if
regoext = id in HJ[(2]. In this paper we are looking for sufficient condi-

tions on {2 under which
(1.1) there exists a linear extension operator for Hy[£2].

To get a better understanding and an additional motivation of the prob-
lem, consider the closed subspace Hp , C H copsisting of all functions
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f € Hj for which f|g = 0 a.e. Then (1.1) is equivalent to the geometrical
fact that H; qis complemented in H;. The proof of the equivalence is imme-
diate 1f we note that H[f2] is isometrically isomorphic to the quotient space
H;/H; 5. In particular, it follows that (1.1) is always true in the Hilbertian
case p = 2.

As far as the case p # 2 is concerned, it follows from results of Seeger [19]
that (1.1) is true for all 1 < p < oo, s > 0 if §2 satisfies the (g, d) condition
of Jones [11]. The class of such {2 is strictly larger than the class of domains
with Lipschitz boundary, for which (1.1) was obtained earlier by Strichartz

22|.

[ ]Our approach to the problem (which leads to more general results)
is based on the method of local polynomial approximation going back to
Brudny¥ (e.g. [3]) and developed further by several other authors [20], [13],
[12], [5]. The idea is to find for a given f € H;[f2] and every dyadic cube
() intersecting {2 a polynomial P approximating f “near” @ in a certain
sense. Having a family of such polynomials, it is not difficult to construct
an extension of f, as we show in Section 3. Thus, the problem essen-
tially reduces to finding the polynomials. We propose to construct them
by means of integration of f and its derivatives over some measures pu
supported in @ N 2. For this method to work, it should be possible to
choose a sufficiently regular ;, which relates directly to how massive QN 2
is. We formulate the massiveness requirement in terms of Hausdorff con-
tents.

Let 0 € d < n. Recall that the Hausdorff content Hg(X) of any set
X ¢ R” is defined as

= inf Z 'rf’,

where the infimum is taken over all countable coverings of X by balls
B(zj,7;) with arbitrary centers z; and radii r;.

We say that an open set {2 is d-fhick if there is an € > 0 such that for
alzeNand 0<r <1,

(1.2) Hy(B(z,7)N2) > er®.

Note that every {2 is O-thick, and that the condition of n-thickness is equiv-
alent to
|B{z,rYN 2] > er™.

In particular, every (g,d) domain alluded to above, or every domain satisfy-
ing the cone condition is n-thick. It is also easily seen that every connected
£2 is 1-thick.

In Section 4 we develop methods of constructing local polynomial ap-
proximations for functions defined in d-thick open sets. We propose two
different methods. The first one works for all d and uses all derivatives up to
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order m of a given function f in order to construct a polynomial of degree
m approximating f. The sacond method uses only values of f itself, but it is
applicable only for d > n — 1. The reason is that the set of zeros of a generic
polynomial has Hausdorff dimension n — 1.

By using the results of Sections 3 and 4, in Section 5 we prove the fol-
lowing theorem, which is essentially the main result of the paper.

THEOREM 1.1. Let §2 be d-thick. Then (1.1) is true if either

(a) d>n~—1 and s > (n — d)/min(p,2), or
b)d<n-—1and s—[s] > (n—d)/min(p,2), where [s] is the integer
part of s.

In particular, if {2 is n-thick, then {1.1) is true for all s and p, which
gives a generalization of Seeger’s result.

As far as the sharpness of the theorem is concerned, one should distin-
guish the sharpness for each particular {2 and for the whole class of d-thick
open sets. In the first sense the theorem is not sharp. E.g., Kalyabin (per-
sonal communication, see also [14]) has proved (1.1) for 2 ¢ R? being a
cusp of the form

2 ={(e,y):0<2z<], 0<y<z"}, v>1,

if 8 — 1/p is noninteger. By means of our theorem, we could establish this
result only for s — [s] > 1/min(p, 2).

We do not know whether our theorem is sharp on the whole class of
d-thick open sets. Moreover, we do not even have a single example of an
open set {2 for which (1.1) would be false for some ¢ and p. Finding such
examples appears to be an interesting problem.

The paper is written in the framework of the theory of more general
Besov spaces By, and Triebel-Lizorkin spaces Fj,. (Theorem 1.1 follows
from Theorem 5.1 by noting that Hy = F7,.}) 'I‘hls is done not only for the
sake of generality, but also because the methods developed in the theory
of those spaces (e.g., the technique of Peetre’s maximal functions, and the
atomic characterizations of Frazier-Jawerth and Netrusov) are well suited
to our purposes. However, we have tried to make this paper comprehensible
even to the reader who is not very familiar with the theory of B;, and F .
Because of that, we have collected in Section 2 some definitions and facts
that might not be widely known.

Finally, the following warning remark may be in order. If s € N, then
the usual way to define the Sobolev space in an open set {2 is

H(Q) ={feD (@) 3 1D Fllraie < oo }.

lel<s
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Note that although H[f2] = Hj(£2) for “nice” {2 (e.g., satisfying the (g,8)
condition), in general only the inclusion H? S12] C Hy(92) is true.

Acknowledgments. The research of this paper was supported by a
graduate fellowship of the Deutsche Forschungsgemeinschaft, and by the
Russian Foundation for Basic Research grant 96-01-00243. The author is
grateful to the referee for many suggestions on the improvement of the ex-
position.

2. Function spaces on R". Let & and &' be the Schwartz spaces
of (complex-valued) test functions and tempered distributions on R™. For
@ € & and j € Z we will often use the notation ¢;{x) = 29"p(27 ). We write
i for the Fourier transform of ¢.

We recall the definition of the Besov and Triebel-Lizorkin spaces (see,
e.g., Triebel [23]). Let & € & be chosen so that supp® C B(0,2) and B(¢) = 1
on B(0,1), and let ¢ € § be given by #(£) = @(¢) — $(2¢). Note that in this
case

BE)+> 3277 =1 omR".

=1

supp @ C B(0,2)\ B(0,1/2),

Let £,(Lp) and Ly(£,) be the spaces of all sequences {g;} of measurable
functions on [R™ with finite quasi-norms

03 Mieatr = 1ol Hie, = (S losl,) ",
85 e = s Oz, = [ (Slostle) ]

DEerFINITION 2.1. (a) Let s € R, 0 < p,¢ < 0o. Then (Besov spaces)
By ={f €8 |\ fllsy, = 1% * fllz, + 1{27%0; * F}1llegcz,) < o0}
(b) Let s € R, 0 < p < o0, 0 < g € co. Then { Triebel-Lizorkin spaces)
Fpy=1f €8 filrg, = 18 * flln, + 1{27°0; * £}32ll£,00,) < 00}

It is well known that these definitions are independent of the choice
of &, and that different choices lead to equivalent quasi-norms. We will also
need a stronger variant of this assertion involving Peetre’s maximal func-
tions. For fixed ¥, € §, A > 0, and any f € &', € R" these are given
by

- ¥ o=
B = smp

Yi * f )
Yiaf(z)= sup “(“i—l_;é*lm(—yyg;: JeN

(2.1)
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Let m > —1 be the maximal integer such that
(2.2) DPp(0)=0 forall |B]<m.

LEMMA 2.2. Let [s] <m, 0 < p,g < 00, A > n/min(p, q). Then for all
fes,

(2.32) @5 fllL, + {2 ¢) 0 2ulley e,y < Cliflmg,
(2.3b) O3 Fllr, + {950 F152ullz,e) < Cliflle;, (P <oo).

Estimate (2.3b) is due to Peetre {16]; see also Bui, Paluszyriski, and
Taibleson [4], where a more explicit formulation is given. (2.3a) can be con-
sidered analogously. Under the additional restriction n(1/p —1) < m +1
both (2.3a) and (2.3b) are treated in Triebel [24]. A full proof can be found
in Rychkov [18].

For later reference we note a simple but important property of Peetre’s
maximal functions which follows directly from (2.1}): for all z,y € R™,

(2.4) Yiaf (@) S Uiaf )L+ Yl -y

The next assertion supplies a very useful sufficient condition for the cen-
vergence of series in By, and FJ . It is contained in well-known results of
Frazier and Jawerth [8], [9] and Netrusov [15] on atomic characterizations
of these spaces.

For j € Ny
by

= NU {0} and k € Z*, let Q; i denote the cube given

Qi =127k, 27 (k1 + 1)] x ... x [279ky, 27 (K + 1))
(dyadic cubes). If Q@ C B™ is a cube with edges parallel to the coordinate
axes (only such cubes are considered), and a > 0, then a@Q denotes the
cube with the same center and side length o times as large. Finally, let

- llg =11 o)

LEMMA 2.3. For a given sequence {f7 }5’-';0 af C* functions on K™ and
S e N define

- o-dled|| D il L L
d.?lk |EJ[aSD§ “D f HSQ;f,k

Then for ¢ll 0 < p,qg < oo and (nfp—n)y <8< 8,

(2.50) Hg i ’ng < OH {2:‘5 gzzn d .’kx,i,k};:o

and for all 0 <p < o0, 0 < g < oo and (n/min(p,q)—n)+ <s< 8,

(2.5b) ”Z £

£q(Lp)’

o0

< ol{Z X duoxan}

Lp(£q)
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in the sense that if the right-hand side of {2.5a) or (2.5b) is finite, then the
series on the left-hand side converges in §', and the estimate s true. The
constant C depends only on s, p, ¢, n.

REMARK 2.4. The role of the assumptions

n N n
(2.6) &> (—1; - n)+ for By, s> (m - n)+ for F,,

is that if s does not satisfy them, then one has to impose moment conditions
on the atoms in the relevant atomic characterizations of BJ, and F} (see
(8, [9], [15]). In other words, the convergence of the series 327, f7 becomes
then determined not only by smoothness and size conditions, but also by
certain cancellations. Dealing with cancellation phenomena would require
methods different from those developed in this paper, and we do not touch
that case here.

We finally note that, as is well known, for § > (n/p — n)+ one has
B, By © Lia(1,py © LP°. This follows from Definition 2.1, for p > 1
immediately, and for p < 1 by means of a Nikol'skil-type inequality (Triebel
[23], 1.3.2, (1)).

3. A general extension theorem. The purpose of this section is to
show how to construct an extension of a function f given in {2, provided that
we know its local polynomial approximations on dyadic cubes intersecting £2.
Thus, let £2 be a subset of R™ (in this section we do not assume it to be
open). Define

Di={keZ":5Q:nNN2#0}, jel,
r={(k):jeNy, ke I}}

We introduce the local polynomial space Pp,(£2), m € Ny. Its elements are
indexed families P of polynomials,

(3.1) P={Pjx:(jk)eI}, Pjxe I, =polynomials of degree < m.

Thus every cube Q;x with k € I'; is assigned a polynomial P; . In appli-
cations (Section 5) these polynomials will approximate a function f given
in f2. In this section the function f does not appear explicitly, but still
it is useful to think of P;y as approximants in order to understand what
happens.

P, ({2) is a linear space with natural operations of scalar multiplica-
tion and sum (just add polynomials corresponding to the same cubes Qjx)-
We are going to introduce suitable quasi-norms on Pp(£2). Set g(u, k) =
maXj—1,.. n |t — k. For every P € Prn(£2) define numbers a; 4 == a; 1 (P},
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(7,k) € I', by
g,k ”PUJ(“QD,M k ¢ I,
aik = [Pix — Pi-1x @

+ Z ”P',k - Pj,UHQj,u: kel j21,
UEPJ‘
e(u,k)=1

(3.2)

where k' € Z® is (uniquely) determined by the condition @ 10 D @jk
(note that k' € I'j_1). Further put

(3.3) A (PY (&) = Y ajuxsixle), §€No, s eR™
kel

Then the quasi-norms we have in mind are given by

Pl e, (2.8, = {2745 (P)}5olle, s
PP (a.rs,) = {277 A4 (P)} 20l Lycen)-

Let P, (12, BS,) and P, (82, Fj,) be the linear subspaces of 7, (f2) consisting
of all P for which the introduced quasi-norms are finite. These subspaces
are quasi-Banach spaces with those quasi-norms.

We now construct what we call an extension operator for these local

polynomial spaces. Let

G ={keZ":3Q;xNR#8 CTy, jel.

(3.4)

Take an 1 € C*(Qq o) with integral 1 and define a smooth partition of unity
ik = 75 * Xjk, 80 that

supp ik C 3Qj4:  », Mx =1 onR™
keZn

Introduce a sequence of cut-off functions
wl = E i1k 7 € No.
KET 11
Note that
(3.5) wi=1 onf, suppw’ C U Qix

kel;

(to see the latter property, notice that if u € jj:".]_]_ and 3Q; 410N Qjx # 0,
then 3Q;+1,u C 3@;x and, consequently, k € ry..
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Let P be of the form (3.1). For z € R™ put
B (P)(x) =Y Pixlo)mik(e), jEN,
ker;
FO(P)(x) = E°(P)(z),
FI(P)(z) = w(a)(B(P)(e) — B (P)(z)), jeN
Further, let

(3.6)

(3.7) B(P)= iFj PYe &,

J=0

provided that the series converges in &', It is clear that F is a linear op-
erator on the set D(E) of all P for which the convergence in (3.7) oc-
curs.

THEOREM 3.1. (a) Let 0 < p,g < o0 and s > (n/p— n}y. Then
P (2, B;;) € D(E) and

(3.8) 1B(P)i5s, < Cls.p, 4,7 my M| Pllpnia,s,)

for any P € Pru(£2, By,)-
(b) Let 0 < p < 00,0 < g < 00 and 5 > (n/min(p,g) — n)+. Then

Pn(£2,FS,) C D(E) and the estimate (3.8) is true with F,, instead of B}

REMARK 3.2. As we mentioned above, in applications P will approxi-
mate a function f given in £2. This function will belong to a restriction space
B;,[£2] or F},[12]. Assume that we have managed to construct the Py in
such a way that the family 7 is in the corresponding space P, (f2, Bj,) or
P (12, F;,). Then by the theorem E(P) belongs to BE, or F3,. However,
because of (3.5) we have

> Fi(P)|a = B{P)la,

j=0

and it is easily seen from the definition of E!(P) that, if the P; ) approximate
f sufficiently well, there is a good chance that E*(P) will converge to f in, for
instance, L;(§2,1oc). After having verified this convergence, we may assert
that E(P) is an extension of f. This explains the importance of the theorem.
While proving the main results of the paper in Section 5, we will essentially
follow the plan we have just described.

Proof (of Thecrem 3.1}. For P € Pp,(f2) and F¥ = FY(P) put

e = ma D F gy, S [ 41.
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We claim that under the conditions of the thecrem one has

“{2J > disxix } ”E (L,,) ClPip.(a,8,)

kel

{2 X i},

kEF P(eq)

(3.9)

S ClIPlpnia,rg)y

As soon as we prove this, the theorem will follow from Lemma 2.3.
Recall the n-dimensional Markov inequality: for every fixed m € Ny there
is a constant C such that

(3.10) ID*Pllg < CL@Q)Y|Pllg, e <m,
for every polynomial P € Il and every cube @ C R* (£(Q) is the side
length of Q).

Put a;i = 0 for k € I};. If § = 0, then it follows from (3.10} and Leibniz’s
rule that

(3.11) dox <C Y, a
olu k) <2
Let now j € N. It follows from (3.5) that
(3.12) supp F¥ < U Qi
kefj

Let k £ fj and = € @; x. By Leibniz’s rule
(3.13)  max 2771|D*Fi(z)| < C max 2771*| DB (z) — BT 1(z))]
|aj<S |a]<8
(we have used the obvious estimate ||D%w||z,, < €271 for |a] < 8, and
set BJ = E(P)). Further (k' was defined after (3.2))
(3.14) |D*(E(z) — B {a))]
=0 T Palmiale) = Y Prav@na(@)]

el{uk)<1 o(v,k*)<1
<[p* I (Binle) = Pus@)myula)]
e{uk)=1

+ | D*(Pjx(z) — Pj-100(2))]
£[p* Y (Brawe(®) = Broay@)noie)],
o{v.k')=1

where we have used the obvious fact that if k € Iy, then k' € I_;, and
therefore p(u, k) =1, g(v. k) =limplyu € I}, ve I;1
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By applying (3.10) and Leibniz’s rule to each term on the right-hand
side of (3.14), we easily obtain

max Q“jlaJED“{Ej(Z) _ Ej*l(w)” < Clague + aj-1x)-

|| < S
Hence, in view of (3.12) and (3.13),
(3.15) die <C Y. (a5u+ aj-1,w)-
a(uk) <t

By a standard argument we now deduce (3.9} from (3.11) and (3.15). =

4. Polynomial projections. In this section we continue the realization
of the program outlined in the introduction and in Remark 3.2. Assume that
{2 is a d-thick open set, and let @ be a cube with side length 1 whose center
zg is in £2. We are limiting ourselves to cubes of side length 1 because the
d-thickness condition is homogeneous. In Section 5 the construction will be
easily transferred by dilation to all scales. We have

(4.1) Hi{QNn2)>e>0.

It is well known that for any Borel F one has Hy(F) = sup Hg(K) over
all compact K C E (see Rogers [17], Chapter 2:7). We take a compact
K C @n 2 such that Hy(K) > £/2. By a well-known theorem of Frostman
[10] (see also Adams and Hedberg [2], Theorem 5.1.12) there exists a positive
Borel measure g with #(K) = 1 such that

(4.2) p(B(z,r)) < % r®  for all B(z,r).

The @ and u will be fixed in the rest of the section. We will construct, by

integration with respect to 4, polynomials approximating a given function
f defined in @ N 2.

CASE d > n~1. For any continuous function g on R™ denote by Z(g) the
set of its zeros. We start by proving two lemmas about such sets correspond-
ing to polynomials. The first one says essentially that Z(P) has Hausdorfl
dimension < n - 1 for any nontrivial P.

LeMma 4.1. Let P € I, be o nontrivial polynomial in n variables,
and let Z = Z(P) N Q. Cover Q with a mesh of closed cubes with disjoint
interiors and side length 6, 0 < § < 1. Then the number of cubes of this
mesh intersecting Z is < C(m,n)é ™.

Proof. This is an irtuitively clear fact, so we are brief. The assertion is
trivial for all n if m = 0, and also for all m if n = 1. Acting by induction, it
suffices to prove the assertion for given m and » under the assumption that
it is already proved for degree m in dimension n — 1, and for degree m — 1
in dimension 7.
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Let Qs be a cube of the mesh intersecting Z. If VP does not vanish in
(s, then Z must intersect a face of @5 (if Z does not meet a face and n > 2,
then the sign of P must be constant on the boundary of Q, for instance
positive; then the point of @ at which P attains its minimum, which is non-
positive, is a critical point, and that contradicts the hypothesis). Consider
P as a polynomial of n — 1 variables on the hyperplane containing this face.
Since the total number of such hyperplanes is of order 6%, by the induction
hypothesis we conclude that the number of such cubes @5 does not exceed
Oé‘——lél—(n—l) = 5l

Further, since D,, P are polynomials of degree m — 1, by the other in-
duction hypothesis the number of cubes Qs on which VP vanishes is also
not greater than C§'". =

The next lemnma gives an upper estimate of the Hausdorff content of the
set on which a given polynomial is small.

LeMmmMmA 4.2, Let P € Il be such that ||Pllg = 1. Then for any § the
set {z € Q: |P(x)] €827} can be covered by at most C(m,n)61~" balls
of radius §.

Proof. The assertion follows by induction from Lemma 4.1 and from
the inclusion
{z €Q:|P(x)| <&} Us(Z(P))U{z € Q: [VP(z)| < Cd},

where C' = C(m,n) is sufficiently large and Us denotes the d-neighborhood.
To see this inclusion, note that [V2P| is uniformly bounded in @ by a con-
stant by Markov’s inequality (3.10). Therefore, if for some © € @ we have
|P(z)| < 62 and |VP(z)| > C§ with € large enough, then by Taylor’s for-
mula there is a zero of P in the §-neighborhood of z. m

Let now P be as in Lemma 4.2. It follows from Lemma 4.2 and (4.2)
that

u{reQ: |P(z)| <4
Hence
(43) {PPduz | |PPdpzd (1~ Ole,mn)e™ ™)
{ipI>82m""}
> C'(g,myn, d)

if we choose § so that Cfe, m,n)§%+1~" = 1/2. This inequality implies that
in the space II,, there exists an Lg(u)-orthonormal basis {FPa}|aj<m such
that

(4.4) |Pallo < Cle,m,n,d) for all c.

2m—-1

}) < Cle,m,n)s™i" 50 (5 0).
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To see this, we take any basis of IT,, of sup-norm 1 and apply the Gram-
Schmidt orthonormalization procedure. Then (4.3) shows that the “normal-
ization” part of the procedure does not increase the supremum norm by
more than a bounded factor, and the “orthogonalization” does not increase
it at all, since it involves only a bounded number of terms.

We now define the operator L : C(Q N {2} — II,, by the formula

(4.5) L) = Pa(®) | Paly)f(y) du(y)-
[ef<m K

It is easily seen that I is a projection, ie. I? = L. Before we study
the properties of L in detail, we introduce its twin L working for d <
n — 1.

CaSE d < n— 1. In this case we will use the projection from C™(Q N £2)
to 17,,, given by the formula

(16)  Ifm) = | Tri@dat)= Y — |- 9)"DS ) dulw)
K || <m K

(T;*f denotes the mth order Taylor polynomial of f at y.) In general, it
would not be possible to construct such a projection by using fewer than m
derivations. (An example: all derivatives of the polynomial =* up to order
m — 1 vanish on the (n — 1)-dimensional hyperplane {z; = 0}.) In principle,
we could use L for d > n— 1 as well, but the results obtained would be
worse than those with the use of L.

PROPERTIES. We now establish a series of estimates for L and L which
will be extensively used in Section 5.

LEMMA 4.3. For any f € O™ and a > 1,
(473)  |f - Lfllag < Clenm, d,)[V™ fllag  (d>n— 1)
(@7b)  |f ~ Lfllag < Cln,m, a) |V Fllug.

Proof. By Taylor's formula,
(4.8) |£(2) — T 4(2)] < Ol m)| V™ £ lug

for all 7,y € o). From this we get (4.7b) by integrating over du(y). To get
(4.7a), fix y and write

If = Lfllag < If = T fllag + I1LF — T3" fllagy
=f =L fllag + I1L(f ~ T3 Hllag
< (1 + C(S, n,m, da G))Hf - Tf;nf“a.Qa

where we have used (4.4). It remains to invoke (4.8) once more. =
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LEMMA 4.4. Let ¥ be a rapidly decreasing function, that is, [W(z)| <
Cn(1+ |z)™ for all N. Then for 1 < r < oo (with ' being the index
congugate to r),

(4.9) 1@ % ullr, < Cle,n, @) 2H—9/7 [N

J -

Proof It suffices to prove the estimate when ¥ is the characteristic
function of the ball B(0, 1). In this case ¥; * u(z) = 2" u(B(z, 271)), whence
(4.9) for r = 1 follows. For 7 = 00, (4.9) is obvious by Fubini's theorem. The
general case follows by trivial interpolation. m

REMARK 4.5. An equivalent form of writing (4.9) is
pe B LA,
Since the latter space is dual to Bﬁ;"l_d)/ " (see Triebel [23], 2.11.2), it fol-

lows that we can extend L by continuity to this space, and I to the space
Bml-ﬁ-(n—d)/'r
r, '

Lemma 4.6. Let 0 < r < oo and » = nfr — d/max(1,r). Then for any
f €8 such that supp f C {|¢{ < 2'}, 1 e No, and any N > 0,0 > 1,

23T ifr
26l < 02%( § o i) T (s,

w (I + [z =)V
= Df(@)" )”’
Efla<c2* ¥ (| i)
IZ5 e lqlzsm ) Tr e —zaD?

where C depends only one, n, m, d, N, r, a.

Proof. It suffices to show that under the assumptions of the lemma for
any continuous function g,

)T 1/r
(4.10) H gfd,u.|5 C(s,n,N,r)zl"(g ﬁﬂ—wm) llglle-
K Re

Without loss of generality, we may assume that zg = 0. Let & £ S be a func-
tion invariant under reflection in the origin and such that supp @ C {|£| < 2}
and & =1 for |£| € 1. Then f = f * &, whence

(@.11) ] 97 du| = |+ 2+ (@) (=)0)
K

= | § £(2)(@ + (on))(=) da|
]Rﬂ.
For r > 1 we estimate the integrand by absolute value to get

< gl IF(@)i - 1] * () da.
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We further note that since supp 4 C @, the convolution |P] + u is rapidly
decreasing outside 3Q, and therefore the estimate can be continued as

1£(2),
<lolo (O et § M mdu dz).

Now by applying Hélder’s inequality and Lemma 4.4, we obtain (4.10) (with
a different, but still arbitrarily large value of N).

For r < 1 we first apply a Nikol'skil-type inequality (see Triebel [23],
1.3.2, (1)), which says that whenever v € & has Fourier transform supported
in {|¢] < 2!}, one has

(4.12) lullz, < On,r)2" M Dz, 7 <1

In our case u(z) = F(z)(F; * (gi))(z), and supp@ C {|¢| < 3. 2'}. Hence,
we may apply (4.12) to conclude that the right-hand side of (4.11) is

< 020 ([ £(a) B (o)) da)

Estimating by absolute value as before, we find that this does not ex-
ceed

Ry 1/r
czfn(l/r—ﬂnqu(GN | %derS|f(m){rdm'|||¢zi*u||§cg) ;

B30 3Q
whence (4.10) follows by the case r = 1 of Lemma 4.4. w

REMARK 4.7. It should be noted that the projections (4.5) and (4.6)
have earlier been used by Jonsson [12] in his study of restrictions of function
spaces on closed sets preserving Markov’s inequality. Also, the projections
given by {4.6) have been applied by Hedberg while proving Poincaré type
inequalities depending on capacities (see Adams and Hedberg [2], Section
8.2, Equation (8.2.6)).

5. Main result. Let A7, be one of the spaces B, or Fy, with parameters
satisfying (2.6). In particular, by Remark 2.4, Ay, C Llc Let 2 be an open
subset of R". We define the notions of the restnctlon space A3 [2] and of
the linear extension operator for Asq[.Q analogously to how 1t Was done in
the introduction for H;[{2]. We are now interested in whether or not

(5.1) there exists a linear extension operator for Ay [f2].

We will prove the following theorem, which is the main result of this pa-
per. In particular, it will imply Theorem 1.1 by specializing H =

B2
l<p<oo. Pubu=plor A}, = By, and u = min{p, g) for A, = Fp,.

Py
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THEOREM 5.1. Let {2 be d-thick. Then (5.1} is true if

(a) d>n—1 and s > n/u — d/max(1,u).

(byd<n-1and s—[s] >nfu—d/max(l,u).

It should be mentioned that in the case d = n, p > 1, A7, = B;, the ex-
istence of a linear extension operator was established earlier by Shvartsman

[20].

Proof. We follow the plan outlined in Remark 3.2. We will define a
linear operator

(5.2) A AL 0] — Pr(2, A7)
and will prove that it is bounded. Then we will put
(5.3) ext = B o A,

By Theorem 3.1 we will conclude that ext : A5 [2] — A}/ is a bounded
linear map, and it will only remain to prove that regoext = id.

STeP 1. We consider the case d < n— 1; minor changes in the argument
necessary for d > n — 1 will be indicated at the end of the proof. We retain
all the notation from Section 3. To define the operator 4, we should for each
(4,k} € I' define a linear map

£ Pix(f):
We have 5@, N 2 # . Consider a cube Q7 of side length 277 centered
somewhere in this nonempty intersection. By d-thickness,
He(Qfu N 2) 2 277,
hence, in view of the obvious homogeneity of the Hausdorff content,
Hy(2Q1,N202)>e > 0.
We now apply the theory of Section 4 to @ = 27Qj,. We consider the
projection
L=Ljx: C™(2Q N2 2) — Oy,
This projection depends on j, k, but it satisfies the estimates of Lemma 4.3
and 4.6 with constants independent of j,k. We talke .
Let f € C™(£2). Then f(279.) € C™(27Q% ), N 2702). We put

(5.4) Pixl(f) = (Lix F2TIN (7).
In other words, we first dilate, then apply the projection, and finally shrink
back.

The formula (5.4) defines the operator A originally on C™(42). However,
we claim that in fact A can be extended (by continuity, or by understanding
the integration against the measure y in (4.6) in the sense of the duality
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pairing) to every space A with parameters satisfying the assumptions of
Theorem 5.1(b). Indeed, by Remark 4.5 this will be proved if we verify the
embedding

(5.5) A5, c BYFC=O/® g = max(1,p).
We use the following elementary fact (see Triebel [23], 2.3.2, Proposition 2):
(5.6) As C By, fors>%

For p > 1, (5.5) follows from (5.6), because we have s > m + (n — d}/p.
If p < 1, we first apply a Sobolev-type embedding (see [23], 2.7.1, (1) and
(2))

(5.7) AS, C AP (p <.

Since we have s+n—n/p > m+n~d for p < 1, we get (5.5) by applying
(5.6) to the space on the right-hand side of (5.7). For later reference we note
that the argument just given shows a little bit more. Namely, we can change
m + (n —d)/6 on the right-hand side of (5.5) to a slightly greater number
50 that the embedding will remain valid.

STEP 2. In the previous step we constructed a linear operator A :
AL [12] — Pr(f2), and we are now going to prove that it acts boundedly
into P (12, A7), ie.,

(5.8) 14911 7..(2,45,) < Cligllag, i)
with (' independent of g. It suffices to prove for all f € Az, the estimate
(5.9) 147 15y, < Cllfllas

since (5.8) follows from (5.9) by taking the infimum over all f satisfying
fle =g
Let &, be as in Definition 2.1. We use the representation

(5.10) F=®xf+ > @*f
le=gt1

m--{n—d)/0

By (5.5), this series converges in By, . Therefore for all (7, k) € I',

Piac(f) = Piac(®ix £) + D Piacloor » f),
l=g 41
and, consequently (see (3.2)),

(5.11) 055 (Af) < ajac(A(@s% 1))+ Y ajpl(A{or = £)).

. l=j+1
Let j € N (for j = 0 the argument would differ slightly because of the dif-
ferent definition of agy in (3.2)). In view of (5.4), by Lemma 4.3 we have
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for any fixed a > 1 the estimate
(5:12)  1Pjacl®; * f) = & * fllagy, < CIV™HH((@5 % 277 DNaziay,

— 02*3(m+1)“vm+1(¢,j * f)“a@;‘,k-
Analogous estimates are valid for P;y and Q;’k replaced by P;_1x and
Qi_1 4 or by Py and Q7 , where u € I, o(u, k) = 1. Now take a so large

i—Llk s Ju 3

that all the cubes 0@} 1 0Q5_1 o, aQ} cover Qjx, say, a = 100. Then it
follows from (3.2) by the triangle inequality and by (5.12) (together with its
analogues just mentioned) that
(5.13) . (A(@; * f)) < C27ImHD 0™ (B, £){l10000; 4

We now deal with the remaining terms in (5.11). The functions (¢ f)(277-)
have their Fourier transforms supported in {£] < 21417} hence Lemma 4.6
shows that (z;x = g, ,)

(5.14)  [|Pxcloor * @
< oot 3 ( [ 1D HE NG dm)”*‘,
)

(14 iz — 2z;])V

o <m

where 0 < r < 00, 3¢ = 3(r) = n/r — d/max(1,r). Analogous estimates are
again true for P;,, and P;_; . By summing them all together and changing
variables 2~ 7¢ — x, we arrive at

(5.15)  ajw(Alr * f))
< Cat- T (zinz(l—a')lai | LD%0) = f)(2)! dm)w

[a|<m Rr (l + 23"[:!: - mj’kDN

To rewrite the estimates obtained in a more compact form, we introduce
suitable Peetre’s maximal functions (see (2.1)) by

)= Y (D*®)\fl=)+ 3 (Do) f(3),
fal=m+1 e

where A > n/min(p, 4} is a fixed number. Then it follows from (5.11), (5.13),
and (5.15) (see also (2.4)) that

* r 1/r
O )

(5.16)  aju(Af) <O 2t-amt) (zy‘n S s P

=4 R"

(N has become X smaller). This is the crucial estimate. The reader will eas-

ily check that the analogous estimate for j = 0 is also true if we define fj
appropriately.

Let M be the usual Hardy—Littlewood maximal operator, and M, 0 <

r < 00, be defined by M, f = (M{|f|"))*/. If we choose N > n, then by the
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well-known majorant property of M (e.g. Stein and Weiss [21], Chapter 2,
(3.9)) (5.16) implies (see (3.3))

o
(5.17) A5(Af) < €2t p (£7).
1=
So far 0 < r < oo have not been fixed, and all constants in the estimates
depend on r. We now pick (as we may) an r satisfying

d
(5.18) {i)r<u and (ii)s—m>x=§—»—mm.
Consider the case of A}, = F,.. In view of (5.18)(ii), m + sc — s < 0, and if

P
we rewrite (5.17) as

zjsAj (/lf) < C Z 2(le)(m+x~s)2l.9Mr(fl*),
I=j
the following estimate clearly follows (see (3.4)):
45| p(2,a2,) < CIH{2* Mo (17133200 2, 2,

By the Fefferman—Stein vector-valued maximal theorem ([7]), which is ap-
plicable in view of (5.18)(i) (recall « = min(p, ¢}}, we conclude that

{27 M (£ ) ey = CIL27 £ M 22y
Finally, Lemma 2.2 can be applied with D*® (|a| = m + 1) or D% in-

stead of v (the condition (2.2) is satisfied), and this gives us the esti-
mate

127 5 H 2,000 < Clifllz,-

The last three estimates prove (5.9) for Aj, = FZ . If A5, = B2 . then the
same estimates are true with Ly(£;) replaced with £4(L,). In this case the
simple scalar-valued maximal theorem suffices, and we can take u = p. Thus,
the boundedness of A is proved,

STEP 3. We now define the operator ext by (5.3). Then (i) both E and
A are linear; (ii) in the previous step we proved (5.2); (iii) £ is a bounded
linear operator P ({2, 4;,) — A3, by Theorem 3.1. Hence, ext is a bounded
linear operator from Ay, [£2] to A% . We claim that ext also has the extension
property, i.e., repoext = id. As we already noticed in Remark 3.2, this
property will be proved if we show that B7(Af) — fin L1(£2,1oc) as § — cc.

We will show that B/(Af) — &; % f — 0 in L; (12, loc). Since &; * f — f
‘in L}¢ for any locally integrable F, this will give the desired result.

We take another look at the argument of Step 2. We are about to esti-
mate the distance between Pjx(f) and &; * f. The estimate (5.12) informs
us about the distance between P;y(®; » f) and &; + f, and (5.14) says
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that the Pjy(s; * f) are not too large. Actually, if we express the right-

hand sides of (5.12) and (5.14) via f;, then we arrive analogously to (5.17)
at

(519) N (AF) ~ &« fllue) < O > 20091, (£7)
I=5

L@y

where @ is any cube contained in (2. Here we are not bound to choose r
as in (5.18); in fact, we now take r = max(1,p) — 4§, § > 0 small. Now
Lnax(1,)(@) € L1{Q), and M, is bounded on Lyax(1,z). It follows that the
right-hand side of (5.19) does not exceed

= =]
=3 (m+s) Z 2£(m+z)“ﬁ”meu,m(Q) < zﬂ(nwx)“f”BQ:;:(1 o
I=j e
where the latter estimate follows by Lemma 2.2. Thus, if we prove that
fe B::;c’(rl,p),l’ we are done. Recall that in Step 1 we proved the em-
bedding (5.5) with § = max(1,p), and noticed that the same embedding
with a slightly greater smoothness parameter of the target space is true.
Since x{max(1,p)) = (n — d)/max(1,p} = (n — d)/6, it follows that if

we take ¢ sufficiently small, then A7 is embedded into Bn”f:;’(‘lj 5,10 88 de-
sired.

STEP 4. So far we proved part (b) of the theorem. In the case of (a) one
needs to make the following changes in the above argument. First, in the
definition of the operator A {Step 1) we must change I~type projections to
I~type ones (see Section 4). The proof of the boundedness of A in A7 [2]
then follows the same scheme. However, while applying Lemma 4.6 we get
an analogue of (5.14) in which instead of the sum over |a| < m on the right-
hand side there is only the term corresponding to oo = 0. By continning the
estimation, we arrive at the counterpart of (3.17) of the form

o0
Ai(AF) < Y 25D ML (7).
I=j
Hence the houndedness of A in the desired range of s follows. Now to prove
that ext has the extension property we repeat the argument of Step 3 putting
m = 0 throughout. This concludes the proof of the theorem. m

RuMaRK 5.2. It follows from the above proof that under the conditions
of the theorem the following equivalence is true:

C7Y fllas 1o S 1AF Pt 2,a5,) < Cllfllag, @ for all f & Ap,[£2].

Moreover, it can be seen from the proof that the equivalence is preserved for
all f € A3 (£2,loc), ie., for f such that pf € Ay, for every ¢ € Cso (). In
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other words, we get the following intrinsic characterization: the space Az 162]
consists of exactly those f € 43,(£2,1oc) for which Af € Pr(02, A7)

REMARK 5.3. We finally note that the methods of this paper can be
applied to study restrictions to (or traces on) sets {2 satisfying the condition
(1.2) which are not assumed to be open. Of course, the definition of the
restriction space should be modified in this case. E.g., for any f € L11°° let

Jf‘vdenote the function given by

(5.20) f{z) = lim

T BS Fy)dy

(z,0)

for all z € B* for which the limit exists, and f(z) = 0 otherwise. It is well
known that if f belongs to H, then the set where the Hmit does not exist
has H capacity (= (p, 5)-capacity) zero, and f is quasi-continuous with
respect to the H capacity (see, e.g., Adams and Hedberg [2]). Analogous
results are valid for Besov and Triebel-Lizorkin spaces (see Dorronsoro [6],
Netrusov [15]). We set Repf = Flo. By using the known relations between
the capacities and Hausdorff contents (see [2], Chapter 5, and Adams [1]),
one can show that for s > n/fu ~ d/max{1,u) the restriction space A;,[{2]
makes sense as the linear space of equivalence classes of functions on 2
with equivalence relation f ~ g < Hy({z € 2: f(z) # g(z}}) = 0. The
restriction space can be normed by

llgll ag 07 = w{]| fllaz, - Reaf ~ g}

Analogously for m € N and s > m + n/u — d/max(1,u) the jet restriction
space A3 [f2,m] is defined by means of the jet restriction operator Rel f =
{D*flahaj<m:

By a suitable adaptation of the methods developed above, one can prove

THEOREM 5.4. Let £2 be a (not necessarily open) Borel subset of R™
satisfying the d-thickness condition (1.2).

(a) If d > n—1 and s > nfu—d/max(1,u), then there exists a bounded
linear operator Bxt : A3 [2] — A}, such that Req o Ext = id.

(b) If d < n—1 and s — [s] > nfu — d/max(1,u), then there exists o
bounc[le]d linear operator Ext : A5 [2,m] — A7 such that Refy o Ext = id,
m = [s].

It should be noted that for closed d-thick sets {2 (in the case when
A;, = F,, one must also impose the condition that {2 have empty inte-
rior), this theorem can be derived from Jonsson [12], Theorems 5 and 7, by
using results of Bylund [5].
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Restriction of an operator to the range of its powers

by
M. BERKANI (Oujda)

Abstract. Let T be a bounded linear operator acting on a Banach space X. For each
integer n, define T}, to be the restriction of T' to R(T™) viewed as a map from R({T™) into
R(T™). In [1] and [2] we have characterized operators 7' such that for a given integer n, the
operator T, is a Fredholm or a semi-Fredholm operator. We continue those investigations
and we study the cases where T, belongs to a given regularity in the sense defined by
Kordula and Miiller in [10], We also consider the regularity of operators with topological
uniform descent.

1. Introduction. Let L(X) be the Banach algebra of bounded linear
operators acting on a Banach space X and let T € L(X). We denote by
N(T) the null space of T, by e(T) the nullity of T, by R(T") the range of
T and by B(T) its defect. If the range R(T'} of T' is closed and a(T) < oo
(resp. B(T) < oo), then T is called an upper semi-Fredholm (resp. a lower
semi-Fredholm) operator. A semi-Fredholm operalor is an upper or a lower
semi-Fredholm operator. We let @,.(X) {resp. #_(X)) denote the set of
upper (resp. lower) semi-Fredholm operators. If both o{T') and B(T) are
finite then T is called a Fredholm operator and the index of T is defined by
ind(T) = a(T) — B(T).

For each integer n, define T, to be the restriction of T to R(1™) viewed as
a map from R(T™) into R(T™) (in particular Ty = T). If for some integer n
the range space R(T™) is closed and T, is a Fredholm (resp. semi-Fredholm)
operator, then T is called a B-Fredholm operator (resp. a semd-B-Fredholm)
operator. In [1] the author has studied this class of operators and proved
[1, Theorem 2.7) that T € L(X) is a B-Fredholm operator if and only if
T = Q & F, where @ is a nilpotent operator and F' is a Fredholm operator.
In [2] we have proved the same result for semi-B-Fredholm operators acting
on Hilbert spaces.

Recall that an operator T € L(X) has a generalized inverse if there is
an § € L{X) such that T'ST = T. In this case T is also called a relatively
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