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On having a countable cover by sets of small local diameter
by
NADEZHDA K. RIBARSKA (Sofia)

Abstract. A characterization of topological spaces admitting a countable cover by
gets of small local diameter close in spirit to known characterizations of fragmentability
is obtained. Tt is proved that if X and ¥ are Hausdorff compacta such that C{X) has an
equivalent p-Kadec norm and Cp(Y) has a countable cover by sets of small local norm
diameter, then Cp(X % ¥) has a countable cover by sets of small Jocal norm diameter as
well.

1. Introduction. The topological properties of the space (E,w) where I
is a Banach space and w is its weak topology (as well as of the spaces Cp(X)
of continuous functions on X with the pointwise topology) have proved to be
important for studying the Banach space E {or C'(X)) itself. These proper-
ties are closely related to the properties of mappings into the Banach space
in question (e.g. existence of Baire class 1 selectors, co-Namioka property,
single-valuedness almost everywhere of uscos, ¢f. [9], [7] and others), the
descriptive properties of its subsets (e.g. coincidence of the Borel o-algebras
generated by the weak and the norm topologies, cf. [2], [16] and others).
Most striking perhaps is the close connection with the renorming properties
of the space. We recall some definitions:

DEFINITION 1.1. Let E be a linear space and T be a linear topology
on it. A norm || - || on E is said to be r-Kadec (or just Kadec if T is the
weak topology) if 7 and the norm topology coincide on the unit sphere. A
norm is said to be locally uniformly rotund (LUR) if whenever {@,}5%; is
a sequence in the unit sphere and z is a point in the unit sphere such that
limy, o0 ||[@n + x| = 2 then {5,}5%, converges to x in norm.

The LUR norms which are r-lower semicontinuous are 7-Kadec.
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100 N. K. Ribarska

In [6] Jayne, Namioka and Rogers introduced and deeply studied the no-
tion of o-fragmentability. In particular they proved that every Banach space
admitting an equivalent Kadec norm is o-fragmentable (using differences of
weakly closed sets). Moreover, they showed that such a Banach space sat-
isfies a stronger condition they called “having a countable cover by sets of
small local diameter”:

DEFINITION 1.2 (see [6]}). Let (X, 7) be a topological space and ¢ be a
metric on it. We say that X has a countable cover by sets of small local
o-diameter (or o-SLD for short) if for every £ > 0 one can split the space
into countably many parts,

- Ox
n=1

in such a way that for every positive integer n and every point # € X7 there
exists a T-open set [/ containing ¢ and satisfying
o-diam(U N XE) < e.

Molté, Orihuela and Troyanski [11] characterized the Banach spaces ¥
admitting an equivalent LUR norm as those spaces B for which (F,w) has
a special kind of || - |-SLD, namely the weakly open sets U appearing in the
definition of the SLD property should be open halfspaces.

The topological properties of spaces having g-SLD were deeply studied
in [12], [5). M. Raja [16] proved that in the context of a Banach space with

weak topology the | - [[-SLD property is almost equivalent to the existence
of a Kadec renorming:

TueoREM 1.3 (cf. [15], [16]). Let E be a Banach space, T be & vector
topology coarser than the norm topology and By be bounded. Then the fol-
lowing are equivalent:

(i) (B, ) has |- |-SLD;
(ii) For every constant ¢ > 1 there exists o nonnegative symmetric pogi-
tive homogeneous T-lower semicontinuous function F on E with
|-l<F<e| -
and such that the norm topology and T coincide on the set
S={rxcE: F(z)=1}

This paper is devoted to the property of having a countable cover by
sets of small local diameter. In the second section we show that, roughly
speaking, for a topological space (X,7) the existence of a metric o on it
such that X has g-SLD is equivalent to (X, 7) being a Gruenhage space (see

Definition 2.1 below). The last notion appeared more than ten years ago
in [4] under the name of a “topological space admitting a o-distributively
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point-finite Tp-separating cover”. In [18] a characterization was given for
guch spaces close in spirit to the characterization of fragmentable spaces
obtained in [17].

We hope that the investigation we present here may illuminate the com-
mon features as well as the substantial differences between spaces admitting
¢-SLD and fragmentable (o-fragmentable)} spaces. It turns out that there ex-
ists an analogy between the relation o-fragmentability —fragmentability, es-
tablished by Kenderov and Moors in [10], and the relation SLD++Gruenhage
spaces, established in the second section. Moreover, in the Banach space
context, the analogue of Theorem 1.4 of {10! (the existence of a fragment-
ing metric which majorizes the weak topology is equivalent to the existence
of a fragmenting metric which majorizes the norm topology) holds true
(cf. Corollary 2.6). In the third section we use these topological results to
prove that if C{X) admits an equivalent p-Kadec norm and C;(Y') has SLD
with respect to the norm for two Hausdorff compact spaces X and Y, then
Cp(X x Y) has || - {|-SLD. In fact, we do not need the full power of the
assumption on C(X). We can use the function F built in Raja’s theorem
(Theorem 1.3) provided that in addition it is norm continuous.

It was shown recently (cf. [13], [19], [14]) that if X and ¥ are Hausdorff
compacta and C,(X), Cp(Y) are o-fragmentable, then so is Cp(X x Y).
Tt would be interesting to know whether Cp(X x Y) has || - [|-SLD pro-
vided Cp(X) and Cp(Y) have this property. Another open question con-
cerns the stability of the existence of an equivalent p-Kadec renorming under
this operation. A natural question is also: if X and ¥ are Hausdorff com-
pacta such that C(X) and C(Y") admit a (pointwise lower semicontinuous)
LUR renorming, does (X x Y admit a (pointwise lower semicontinuous)
LUR norm as well? This is answered affirmatively in a forthcoming work of
V. D. Babev and the author. The proof strongly relies on the construction
implemented in the proof of Theorem 3.1 below.

Acknowledgements. I am very grateful to Prof. P. S. Kenderov for his.
interest in this work and for the discussions on the subject.

2. Topological characterization of SLD. The following definition
can be found in [18].

DEFINTTION 2.1. A well ordered family Y = {Us: 1 £ £ < £} of subsets
of a topological space X is said to be a G-relatively open partition of X if
(i) Uy is open in X;
(i) {Ue:2 <€ < £} is a disjoint family of relatively open subsets of
X\ Uy; :
(iit) Ug = XN (U$<E Ue).
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The family {U¢ : 2 < £ < £} will be called the middle level of U.

The family U of subsets of X will be called a o-G-relatively open parti-
tion if it is the union of countably many G-relatively open partitions 4",
n=12,..., of X. We say that U = |J,_, U™ separates the points of X if
whenever z and y are two distinct points of X there exists a positive integer
n such that z and y belong to different elements of Z{™. A topological space
X is said to be a Gruenhage space if it admits a separating o-G-relatively
open partition.

Having a o-G-relatively open partition U = |J,—, U™, we denote by o(l)
the following metric on X:

_ [ (min{n : Y™ separates & and y})"! if 2 #y,

o) (o) = { § fery
ProPOSITION 2.2. Let (X,7) be a regular topological space and ¢ be a

metric on it, satisfying af least one of the following two conditions:

(a) ¢ is lower semicontinuous with respect to 75
(b) 7, (the topology generated by g) is stronger than 7.

If (X, 7) has a countable cover by sets of small local o-diameter, then there
erists a separating o-G-relatively open partition U of X. Moreover, Ty 2
T, in case (a) and Ty > T in case (b).

Proof. In this proof, unless otherwise specified, all topological notions
refer to the original topology 7.

Let I € N, We consider the cover of X consisting of all p-open balls
with radius 1/f. This cover has a g-discrete {with respect to 7,) refine-
ment consisting of g-open sets, Denote it by B' = |J°°, B, where Bl are
o-discrete families of p-open sets of g-diameter less than or equal to 2/1. On
the other hand, by assumption, for every m € N the space can be expressed
as X = po,; X7 in such a way that for all k € N and z € X' there
exists an open set U containing = with g-diam(U N X*) < 1/m. Now for
each quadruple (I,n,m, k) we define a G-relatively open partition Yk of
(X, 7} in the following way:

v X\ X,
U™k — fg € X7* : there exists U open, z € U, 0 # U N X C B}
for every B & BL. Some of these sets may be empty, but all of them are
obviously relatively open subsets of X \ Ul"™* = XT", Note that
Upme U™ < ¢ if B # Ba.
Tndeed, if V' = UR™ N UR™* is not empty, then V N X" 5 @ because V

is relatively open and X{* is dense in X[*. On the other hand, VNXT C
U™ NXT C Bifori=1,2 Hence VNX" C ByNBy =0 (as B, o
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{Bj, By} is discrete), a contradiction. So {U¥™* : B € BL} is a disjoint
family of relatively open subsets of X7*. The last element of this G-relatively
open partition U™™* will consist of the remaining points.

Let us see that {U™™* : [, m,n,k = 1,2,...} separates the points of X.
We choose z # y in X In case (a) we fix { € N such that 2/! < p(z,y). In
case (b) we fix an open set V separating z and y, that is, z € V, y € V
(X is Hausdorff). Then 7, > 7 implies that there exists ! € N such that the
ball B{x,2/l) is contained in V. Now for both cases, using the fact that B
is a cover of X, we find n and B € B, with z € B. The set B is g-open
and so there exists m € N such that B,(z,1/m) C B. As X =i, X3 for
this m, we finally fix k with z € XJ*. Let U 3 z be an open set satisfying
o-diam(X[* N U} < 1/m. Then § # X N U C B. Therefore z € U™,
Note that g-diam(B) < 2/1 yields o-diam{Ui™* N X) < 2/1.

Is it possible to have y € U™* as well? In case (a) the lower semicon-
tinuity of ¢ yields

o-diam(X* NU) = p-diam(X7* N T)
where U is an open set with UR™ = U n X*. Indeed, assume the con-
trary, i.e.
o-diam(X* NU) > p-diam(X7* NU) = d.
Then there exist 21, z2 in X* N U with g(21,22) > d. Now by the lower
semicontinuity of o we find open sets V; with z; € V; C U, i = 1,2, such
that o(y1,yz) > d whenever y; € Vi, 3 € Vo. But 2 € X7 shows that we
can select two points y; € X' NV;, i = 1,2. Now g(y1,y2) > d contradicts
¥1,Y2 € X NU and g-diam{X7* NU) < d.
Using the above equality, we can estimate

o-diam(U™) = p-diam(U N X7") = p-diam(Ug™ N XT") < 2/1,
which shows that o(x,y) > 2/1 yields y ¢ US™*. Moreover, if we choose
arbitrarily small, the above reasoning shows that there exist n, m, & and a
set B such that the element U™ of the G-relatively open partition 24/"™"
contains x and is contained in B,(z, 2/1). This means that 7, 2 7.

In case (b) the estimate p-diam(UZ™* N XJ") < 2/1 together with the
choice of I gives UE™* N X C V. Therefore

Ugamk — Uganmk mfknﬁ.' - UJBnmk ) X"ﬂg’l C "V'_

Asy ¢ V, this finishes the proof that 1" separates x and y. Again,
letting ¥ be an arbitrary open neighbourhood of z, we derive the existence
of I, n, m, k and U™ € Uppmk with z € U™ C V. The last inclusion
and the regularity of X yield that 7,0 2 7.

REMARK 2.3. Note that in the proposition above for every point x
and every neighbourhood (g-neighbourhood in case (a)) of z we found a
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G-relatively open partition and its element in the middle level containing z
and contained in the neighbourhood in question. Thus we proved that the
union of the middle levels of the partitions constructed above is a o-isolated
(in 7) network for 7 (7, in case (a)). For the definition of o-isolated network
and related results see [12].

PROPOSITION 2.4. Let (X,7) be a topological space and U = | J7_, U™ be
a o-G-relatively open partition which separates the points of X. Then X has
a countable cover by sets of small local o(ld)-diameter. Moreover, if o is o
metric on X with T,qq) = 7,, then X has o countable cover by sets of small
local o-diemeter.

Proof.LetZAf“:‘:{Ug:1§§<§n+1}.Wedeﬁne
Ep=Ur, Ef= |J Up, Ep=UL.

1<E<tn
Let € > 0 and n be such that 1/n < e. We put
X;. .. =E.n.. .NE}

where i; € {1,2,3} for every g € {1,...,n}. It is clear that

X=|JXE 4, i€ {1,238}, je{l,....n}}.
Note that these sets are only finitely many. Fix » in Xf , . For a fixed
k€ {1,...,n} we define Vi to be UP if z € U, UF UU} if & € U for some
e (&), andallof X ifx & Ué“k. The sets Vi, are open in X and contain .
Their intersection V = ();_; Vi is open, too, and contains z.

We now prove that VN X{ ; has small o(if)-diameter. Indeed, let k €
{1,...,n}. We know that x € V C V;. If i = 1, then X§ , C Ef =Uf,
so VNX: ; CUfeUr Ifip =2, then X7 ; C Ujceee, ng and so
V C Vi = UF UU§, where z € UF, £ € (1,&). Thus VN X] , < UE. It
iy =3, then X£ , C UE € U¥. Therefore U* does not separate any two
points of V N X7 _; , meaning that

ennin
1 1

diam(VNXE )< — < -
oth)diam(V N X5, i) S —p <

Let g be a metric on X with 7, < 7). We fix € > 0 and put
X:={z € X :o(z,v) < e whenever y € X satisfies o(U)(z,y) < 1/n}.

It is clear that X = |J77; X2 because of the relation between the topologies
generated by ¢ and o(i/). Now by the first part of the proof we can split each
XE into finitely many parts so that the points in every part have relative
neighbourhoods of g(if)-diameter less than 1/n. Then the same relative
neighbourhoods will have g-diameter less than 2e.
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REMARK 2.5. It is worth noting that in Proposition 2.4 the space X with
respect to p(l{) has a stronger property than just having a countable cover
of sets of small local diameter. Namely for each € > 0 one can split the space
in finitely many (not countably many as usual) subsets. There is an analogy
with simplifying the property of “o-fragmentability” to “fragmentability”
when passing to a metric generating a stronger topology.

COROLLARY 2.6. Let E be a Banach space, w be its weak topology and A
be a nonempty subset of E. Then (A, w) has || - || g-SLD if and only if (A, w)
has ¢-SLD for some metric p with 7, > w.

Indeed, the “only if” part is trivial, and to prove the “if” part we note
that by Remark 2.3, A has a o-isolated network for the weak topology. We
apply (d)=-(a) of Corollary 2 in [12] to finish the proof.

The following proposition requires no proof.

PROPOSITION 2.7. Let U = {U; : 1 < £ < €} be a G-relatively open
partition of a topological space X

(a) If Xo is o subspace of X, then the family U N Xo :={UsNXg:1 <
£ < &} s a G-relatively open partition of Xo.

(b)Y If Vv ={V;, : 1 < n <7} is a G-relatively open partition of X, then

UNV = {Ti UV IU{UenV,:2€ €<, 25 <THU{Uz UVy)
is a G-relatively open partition of X.

(c) If V&= {V,$ 11 < <0t} is o G-relatively open partition of U for
every £ € [2,€), then the family

U = {Ulu U Vf} U{VE 2<n<nf, 2<¢ <Z}U{U§U U %}
¢e(2.8) £€(2,€)
is o G-relatively open partition of X.

3. A stability property for SLD

THBOREM 3.1. fet X and Y be Hausdorff compact spaces such that
Co(X) admits an equivalent p-Kedec norm and Cp(Y') has |- ||-SLD. Then
Cp{X x Y) has || - ||-SLD.

Proof. We will develop a structure on Cp (X} for our purposes, and on
Cp(Y) just the definition of || - [[-SLD will be sufficient. We will work in
a (maybe) more general situation than having an equivalent Kadec norm,
namely we will assume the following:

There is a nonnegative symmetric, homogeneous, norm conlinuous p-
lower semicontinuous function F' on Co(X) with ||h]| < F(h) < 2[[A| when-
ever h € C(X) and such that the norm topology and the pointwise topology
coincide on the set S = {h € C(X): F(h) = 1}.
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In the whole proof of the theorem £ > 0 will be fixed. For the fixed ¢ we
will construct a o-G-relatively open partition of G, (X x V) satisfying: for
every f € C(X x Y) there exists a middle level set in one of the countably
many G-relatively open partitions which contains f and has norm diameter
not greater than &. This will be sufficient to prove the theorem because of
Proposition 2.4 (and the possibility to give € the values 1/n, n =1,2,...).

The following lemma is an adaptation of Lemma 2.4 of [6], with the norm
replaced by the function F.

LeMMA 3.2. Let h be in S and U be a pointwise neighbourhood of h with
diam(SNT) < e.
Then there exists an elementary pointwise neighbourhood W C U of h with
diam(BNU) <¢
where B = {g € C{X): F(g) £1}.
Proof Choose § with 0 < § < 1 so that
26 + diam(SNTU) < e.

Then choose an elementary pointwise neighbourhood V' of zero with A+ V
C U, Since V is a norm neighbourhood of zero, we can choose n with 0 <
n<d<land {heC(X):|hll<n} CIV. But

7B = {heCX): F(h)<n} < {he G(X) : |h] Sn} € 3V.

As F(h) = 1, we have h & (1 — 1)B, a pointwise closed set. Let V' be an
elementary neighbourhood of zero such that (h+ V)N (1 —n)B = 0. Put
W= (h+ V)N (h+ V).

This set is an elementary neighbourhood of A contained in U. We estimate
the diameter of B N W. Suppose by € BN W. Write b} = h,/F(h;). Then

by
Fh) —h) = F| —— — =il—
(=) = P g7y~ ) =it = Fi)i <
because hy € BNW implies F(hy) > 1 —n (hs € (1 —n)B) and 1 > F(hy)
(h1 € B). Thus b} —hy € 5B C 1V and hy € h+ £V, so that
Bi=h+ (i —h)eh+iV+iVCh+VCU.
Moreover, F'(h{) =1 and so k) isin S. Having b} € SNU, we can similarly
put hy = ha/F(hs) for a second point ho € BNW. Again by € SNU. Thus
A1~ hall < lihy — Ryl -+ [[BY — hgll + [|hg — ha|
< F(h’l - hl) +d1&m(SﬂU)+F(h’2 —'hz)
<24 diam(SNU) < 2§ + diam(SNT) < e.
This shows that diam(B NW) < ¢ as required.
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We will call a subset W ¢ C(X) a finitely determined pointwise open
set if

I My X
w = (Uthe ) hiagy) > ey u (J{h € CCX) : hah) < Ban})
1 k=1

i=l  f=

where x; and z}; are points in X and a;y, By are reals. Some of the unions
may be empty. Then we set

[} ™mi i
w9 =N (U{h : hlaly) > o+ 63U | (- h{ale) < Ban — 63),
k=1

i=1 j=1

I m, ng
Wi = (U{h Ch{ah) > oy — 0YU | {(hs Rl(2f) < B + 5}).
k=1

i=1 =1

LEMMA 3.3. There ezists a pointwise open set U containing S and count-
ably many G-relatively open partitions U™ of CL(X) with first element
C(X)\ B and middle levels {UP : 2 < £ <&"}, n =1,2,..., having the
following properties:

(1) Unea Ugere, sy U8 = BNU;
(@) {Uf :2<¢€< &, n € N} is a locally finite family in the norm
topology; 5
(iii) for every n there exists 6, > O such that for each k-tuple £ =
(€1...&k), 2 € & < ... < & < €N, there emist k digjoint pointwise open
sets Wi, ..., Wy which are finitely determined, Wi(_m D UZ and

diam(Wi(M“) NB)<e foreveryi=1,....k

Proof We apply the construction in the proof of Stone’s theorem (see
for example Theorem 4.4.1 of [3]) to the family of elementary pointwise open
sets given by the previous lemma. Let b € 5. Let W), be an elementary
pointwise neighbourhood of h satisfying diam (W3 N B) < € (it exists by the
previous lemma). Similarly, for every n let Wp be an elementary pointwise
open set containing k, contained in Wy, and satisfying diam(WNB) < 1/2".
Well order S = [0,%) and consider the family {Wekeepz)- It covers 5. We
define inductively

Up = (hggwgg) NB

where A7 consists of all h € S satisfying:
(1) {g € C(X) : |h—gll < 8/2"} C W5
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(2) h ¢ W, whenever 5 < §;
3)he Uf] for every I < n and every 5 € [0,£).

The sets UL are relatively pointwise open in B. We put

v=U U Uwm

n=1¢eln,g) heAZ

Obviously

oo
vne=J) (J v

n=1tg[0,£)

This set contains S. Indeed, let A € S and let £ be the first ordinal with
h € We. Choose n so large that By.y(h. 3/2") C Wg. So, either h € U} for
some | <n and n € [0,£), or h € UP.

We prove that the families {U7 : £ € [0,€}} are discrete in the norm
topology for every n. It is sufficient to show that if hy € UE’”; and hg € g;,
£ # &, then [[hy — hg|| > 1/27. Indeed,

A = hall 2 [[By — ha|| — [[hy — hal| — [ha — ko > 1/27
where h; € W,l:i, h; € A?i for i =1, 2.

.To finish the proof of (ii), we show that every h in I/ N B has a norm
neighbourhood which does not intersect U™ for m sufficiently large. As

h € UN B, there exist n and £ € [0,£) with h € U¢. Hence there is I € N
such that

{geB:|g—hl<1/2}cUp
‘We show that
{9eB:g—hl<1/2% N0 =0

whenever m = I +n and 5 € [0,€). Indeed, AT NUP = 0 for m > n by

condition (3) in our definition. Therefore ||h — k|| > 1/2* for every k & A™.
Now l+n > 1+1and m > | + 1 imply "

{ocCX):h-gll <1/2""n{ge C(X): [h—g|| < 1/2™} = 0
whenever b € A7 Remembering that diam(B N W) < 1/2™, we have
Uynige B:lg—hll <1/2""} =9,
thus finishing the proof of (ii).
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To prove (iii), we set §, = 1/2"! and fix E={(&..6),0<8 <...<
£, < £. Then we define

~38n —38, ~3d,
Wy =W W = w T WL
k—1
Wi o= WS\ | wi%e)
LES]
These sets are finitely determined because the Wy are elementary. Moreover,

l=bn) = (Wg(:ss") \U Wéjfaan))(“sﬂj _ Wé:4én) \ '_Ul W{(j—zan)_
j=1 J=1
Thus if h € U, then there exists h € Af, with |jh — h| < 1/2™ = 24, and
{9 € 0(X) : g —hll < 80n} C W,
hence
he{geC(X): |g—hl < 26,} c W,

On the other hand, for j < i we have h & We, by condition (2) and so
h ¢ WE(J_"Z‘S")-. Therefore Wi(_'s"‘) D U}. The second part of the assertion in

(iii} follows from Wi(+5“) C We,.

To finish the proof of the lemma it remains to renumber the families
{Ug: g€ [0,€)} removing the empty sets and moving the beginning of the
ordinal interval to 2.

LEMMA 3.4. Every norm compact subset of C(X) can be covered by
B.1(0,£/2) and by finitely many members of the family {qU§ : 2 < § <
£, s e N, q€ Q} where Q is the set of rational numbers. The families
{UE“ :2 < £ <Y, 8=1,2,..., are built in the previous lemma to be the
middle levels of the G-relatively open partitions U*, s =1,2,..., of Cp(X).

P roof. Thisis the key point where we need the continuity of the function
F which is replacing an equivalent pointwise Kadec norm. Let K be a norm
compact subset of C(X). We consider the set

K'=K\{heCX):|h|] <e/2}
and its “projection” on S
K5 ={h/F(h):h€ K'}.
Since F is continuous and it is not less than /2 on K, K 5 is norm compact
as & continuous image of a compact space. We denote by K¥ the sector of
B generated by K':
E¥ .={ah:he K5, aels/2,1)}
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It is compact as well. We assert that there exists y > 0 such that (1 —+)B D
KE\ U where U is the pointwise open set from the previous lemma. Indeed,
assume the contrary, i.e. there exists a sequence {h,}32; C K7\ U with
F(hn) — 1. Since K is compact and U is open, there exists a subsequence
{h,,, }22 , tending to a point Ao in K¥ \ U. Now the continuity of F implies
that F(ho) = 1, that is, kg € S. This contradicts U D S. A consequence of
the above fact and of the continuity of the function F is that

UNBDK¥\int{l —v)B whenever v < 7.

Let M = max{F(h}: h € K'}. We find rational numbers vy and My such
that 0 < vo < v and

(1-—"M < (1~v)Mo <M < M.

As {(1—v0)™Mo}5%, tends to zero, we can choose ng with (1 — )™M, <
e/2. Then

KcC ( LZJ()K”) U{h e C(X): |h| <e/2}

where
K" :={oh:he K% ac|(l— )" My, (1 - ) "M]}.

By the above, the norm compact set K™ is contained in gn(U N B} where
dn = (1 = v)"My. Now we use the fact that the family {Ug 12 < £ < g,
s € N} is locally finite and covers B N U {condition (i)) to prove that K"
can be covered by finitely many members of the family {ang 12K €6<
&8, s € N}

LEMMA 3.5. For every f € C(X xY') the operator Py : Y — (C(X), - )
defined by [Pr(y)]{(z) = f(=,y), i.e. Pr(y) = F(.,y), s continuous. In par-

ticular, the set P¢(¥y) is norm ecompact in C(X) for every closed subset Yy
of Y.

Proof. Let {ya}aca be a net in ¥ converging to yo. Assume that

{P#(ya)}aca does not converge to P¢(yo). Passing to a subnet if necessary
we can assume that

1 P¢(¥a) — Pr(yo}ll = eo

for some fixed ey > 0. Then for every o € A there exists a point %, in the
compact space X with

|f(wouya) - f(xa,yo)| > 60/2.

We can assume that {Ze}aca converges to a point zq of X. But this con-
tradicts the continuity of f.
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Lemma 3.8. Let ¥y be o closed subset of Y. Then the set
{f e CX xY): Py(¥o) N U # 0}
is pointwise open whenever U is a pointwise open subset of C(X).

Proof. Let f be in the set in question, i.e. there exists a point yy in Yp
such that f(-,ys) € U. Hence there exists an elementary neighbourhood of
f(-;yp) in Cp(X) which is contained in U:

{he C(X): |hlz;) ~ flzs,yf)| <ou, i=1,...,8} CU.
Then

{ge C(X xY) gl yy) — Flon yp)l < o, i= 1,...,8}
is an elementary neighbourhood of f in CL{X x Y) and g(-,yy) € U, that
is, Py(Yo) NU # @ for every g in this neighbourhood.

CONSTRUCTION: STEP 1. Given a G-relatively open partition I of Cp{X)
and a closed subset Y of ¥ we construct countably many G-relatively open
partitions U*, k = 1,2,..., of Cp(X x Y') sorting the functions with respect
to the behaviour of the sets Py (Yp).

Let U = {U1} U {Ug:2<{ < &} U{UE} Put

degy (f,Yo) := [{€ € [2,€) : Pr(¥o) N U # 0}
for every f € C(X x Y). Then we define
TF = {f € C(XXY) : Py(Yo)nUy # 0}U{f € C(X xY) : degy(f,Yo) > k}-
As Uy U Ug is open in Cp(X) for every £ € [2,€), the above set is open in
Cp(X x Y) by Lemma 3.6. Let &1 < ... < ¢ bein 2,€). We put
~ _ oy
T8 e ={feCXxY): Pp(Yo)NUg #0, i=1,..,k}\UT,
gh=oxxy\ (U U The)
281 <o <R <l
Thus we have defined
F = {TFYU{UF g 256 <. <& <{HU {UE},
which is a G-relatively open partition of CL(X x Y). Indeed, th::—: set {f €
C(X xY) : Pe(Yo) N (U1 UTg) # 0 for every i = 1,...,k} is open in
Co(X x Y) and if Py(Yo) N U # @, then f is in UF. So U, is relatively
open in Cp(X x Y)\ {7k, Moreover, if (£1...&) # {(m...7x) (in the sense
that £ # n; for at least one i), then the corresponding elements of U* have

empty intersection, because degy(f,Yo) > k implies that f is in U¥. Note
that the middle level is empty in the case k = 0.
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CONSTRUCTION: STEP 2. Let I/ be a G-relatively open partition of
Cp(X) having the additional property from Lemma 3.3, namely: There ex-
ists § > 0 such that for every k-tuple £ = (£1...6), where 2 € £ < ... <
£ < £, there exist k disjoint finitely determined pointwise open sets W,
i=1,...,k, in C(X) satisfying

Wﬁ_,‘s)DUEi, |1-|\-diam(wi+,5)\Ul<a, i=1,...,k

For every k we will construct countably many G-relatively open partitions
Wk of Co(X x Y), which are refinements of the partition U* from Step 1,
having the properties:

(a) the union of the middle levels of Wh 1=12..
of i4%;

(b) for every set V in the middle level of scme Whl there exists a closed
subset Yy of ¥y such that Y5\ Yy is nonempty and for every y € Y5\ Yy the
norm diameter of {P;{y) : f € V} is less than . Moreover, Py(¥y) C Uz
whenever f € V.

., is the middle level

For the above § by Proposition 2.2 and Remark 2.3 there exist countably
many G-relatively open partitions V™ of Cp(Y") such that the union of their
middle levels covers C(Y") and every middle level set in them has diameter
(in the uniform norm of C(Y")) less than §. Note that this is the only place
where we use the fact that Cp(Y') has a countable cover by sets of small local
diameter. We lift the partitions V™ to G-relatively open partitions Pmaz of
Co(X xY): V™ = {V,:1 <7< 7}, weput V™ = {¥,: 1 <9 <7}
where

Vp={f e CX xY): f(z,) € V}.

Now fix k and & = (1. 6k)2<&<... <& < €. We first construct
countably many G- relatwely open partltmns WEL of the middle lovel set
Uk Let C'~ be the finite subset of X involved in the definition of the finitely
deterrmned pointwise open sets W Fot=1..k Ifs= [C~|, our countable
index = {l(ac)}_.ceg- congists of s-tuples of posmve 1ntegers We define

YA Sy A 7k
WL = ( N v ) n ot
(EEOE

where the intersection of G-relatively open partitions is taken in the sense of
Proposition 2.7(b) and then every element of it is intersected with U g (see
Propasition 2.7(a)). The partitions Wk are obtained by collecting W for
the different { = (£1...&x) as in Proposition 2.7(c) (the positive integers k
and [ are ﬁxgd). Note that the nature of the countable index [ is different
for different £, but we think about it as about a positive integer.
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Let us check condition (a). Indeed, if f is in the middle leve] set fj’g and
& € Oy, then there exists I¢(z) € N such that f(z,-) is in a middle level set
of V(=) We put I; := {Is(z)}zec;- Then f is in a middle level set of Wit

For (b), we fix a middle level set V of W* contained in [7'&’9 and define

k
= {y EYo: Pr(y) & U Uy, for every f € V}.
=1

Note that f € V C [7? implies that Ps(Yy) < C(X)\ Uy. But Ui, U, is a
relatively open subset of C{X}\ Uy, so the set

{y €Yo: Prly) ¢ CJ Uel-}
i=1

is closed in Yy because of the continuity of Py. Therefore ¥ is closed as an
intersection of closed sets. By the definitions of ¥ and U"Ei we have

k
PHYY) € C(X)\ (U1 U Ugi) C U
=1

for every f € V' (because P;(Yy) N Ue = 0 whenever € € [2,€) is not in £
and f is in U’Eﬁ)

Fix y in the set Y5\ Y (obviously nonempty) and let f € V. Since
y ¢ YY, there exists f € V with Pe(y) € U;lc Ug;. If z is in the finite set
C then f and f being both in V ylelds that f(z,-) and f(z,-) are in the
same middle level set of V* for some positive integer s. Therefore

[ £(z,) = Flz, oy < 6

In particular, |f(z,y) ~ f(z,y)| < & for every = in Cp Letic {1,...,k} be
such that P(y) = F(-,y) € Ug,. But then U, C W~( 5) and the inequalities

above imply that Ps(y) = f(-,9) € Wg,i' On the other hand, V C [7:;5 vields
that f(-,y) ¢ Ui. Hence
{Pr(y): f eV T W \ U
But the norm diameter of Wz, \ U1 is less than e, which finishes the proof
of (b).
Let W* be a G-relatively open partition of Cp(X x Y) labelled by some
finite sequence of positive mtegers t and such that to every middle level

set V of Wt a closed subset Yy of Y is assigned. Suppose we are also
given a G-relatively open partition g™ of Cp(X ) among the ones built in
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Lemma 3.3, Then by a passage through our two-step construction we will
mean the following procedure: .

We fix V in the middle level of W* and start the two-step construction
with the initial G-relatively open partition U of C,(X) to be glf™ and ¥,
to be Y. As a result we get countably many G-relatively open partitions
of Co(X x Y) called W{iﬁv We intersect them with V to obtain countably

many G-relatively open partitions of the topological space (V,p):
W W nv.

Now for (k,1) fixed we have a Gmrelatively open partition of every middle
level set V' of W*. Then there exists a G-relatively open partition W (k)
of the whole C;, (X x Y) whose middle level is the union of the middle levels

of WE for all V (see Proposition 2.7(c}). The new label is a finite sequence
of positive integers beginning with ¢ and continuing with the quadruple
(g,n,k,1) whose first two elements identify the G-relatively open partition
of Cp(X) we start with and whose next two elements identify one of the
resulting countably many partitions obtained after the passage.

We are ready to define the desired o-G-relatively open partition of
Cp{X x Y') by repeating the above described passages finitely many times.
The labels of the partitions are finite sequences of positive integers of the
form

(gnikily, genokals, . . ., gsnoksls).

They are divided into quadruples each of which corresponds to a passage.
Thus we start the first passage with Yy = Y and some G-relatively open
partition of C(X) of the form g;2{™. After the two-step construction we
obtain countably many G-relatively open partitions of C (X x Y) called
Wlanikl) (we still have no G-relatively open partition of Co(X xY) to
refine). To start the second passage we fix one of the partitions just obtained
in one passage, choose a partition g™ of C(X) and apply the construction
to obtain the partitions W{emkilignakala) Note that suitable closed sets
YO are already assigned to the middle level sets V of W{arakili) by the
second step of the construction. We can continue in this way & times to
obtain a G-relatively open partition of C (X xY) labelled with the above
sequence,

It remains to prove that for every - f € C(XxY), (among the constructed
partitions) there exists a partition W such that the element V' € W con-
taining f has norm diameter not greater than &. Indeed, let K = Pp(Y). It
is a norm compact subset of C(X)} by Lemma 3.5. Now Lemma 3.4 yields
the existence of finitely many rational numbers q,,, m = 0,1,...,mg, and
finitely many positive integers {nl* : i = 1,...,7%; m =0, i,...,mo} such
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that K™ is contained in the union of the middle levels of the partitions
Gnld™ i =1,...,77, for every fixed m = 0, 1,...,mq (for the definition of
K™ see the proof of Lemma 3.4). The G-relatively open partition W we are
seeking for will be obtained in s = 7% (™ passages. Its label begins with
the couple (gyny). Remembering the definition of g5 we see that K = Pr(Y")
does not intersect the first element of gold™ (equal to C(X)\ ¢oB). As the
widdle level of qounx is discrete, K intersects at most finitely many of its
elements (and at least one by the choice of the partition), hence there exist
k0 € N and a k?-tuple £ of ordinals such that f belongs to the correspond-
ing middle level set of the partition constructed in the first step. Proceeding
with the second step, we find I§ € N such that f is in a middle level set of
the corresponding partition (by (a)). Thus after the first passage we have
built a G-relatively open partition W@k %) such that f is in a set of its
middle level. We proceed in the same way doing n? passages with initial

C({X)-partitions qold™, i = 1,...,nP. The function f belongs to a middle
level set V0 of the resulting partition. Moreover, condition (b) in the second
steps gives that

diam({P,(y) : g € V°}) <¢

whenever y € ¥\ YOV0 Also, Ps(Yy 0) does not intersect the union of
the middle levels of qu , 1 =1,...,n% hence it does not intersect K o
Therefore Py (Y,?) does not 1ntersect the ﬁ.rst element C'(X )\ qu.B of g™ n}
i =1,...,n'. Then we can make n! passages keeping f in some middle level
set V1 of one of the resulting G-relatively open partitions and so on. We
repeat this procedure myg times, obtaining a label . Then the partition W,
labelled by (t,€/2,1), contains f in some middle level set V. 1t satisfies

diam({Py(y): g€ V}) <e
for every y € Y\ ¥y and
P(¥Yyc{heCX):|nll<e/2}, geV.
The last statement implies that the diameter of the set {Py(y) : g € V} is

less than ¢ for every y in the compact space Y. Therefore the uniform norm
diameter of V is not greater than £ and the theorem is proved.
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Degenerate evolution problems and Beta-type operators
by
ANTONIO ATTALIENTI and MICHELE CAMPITI (Bari)

Abstract. The present paper is concerned with the study of the differential opera-
tor Aulz) = a(z)v”(x) + B(z}u'(z) in the space C([0,1]) and of its adjoint Bu(z) =
{{aw) () — Bz)v(z)) in the space LY{0,1), where a{z) = 2(1 —2)/2 (0 < = < 1).
A careful analysis of their main properties is carried out in view of some generation re-
sults available in [6, 12, 20] and [25]. In addition, we introduce and study two different
kinds of Beta-type operators as a generalization of similar operators defined in [18]. Among
the corresponding approximation results, we show how they can be used in order to repre-
sent explicitly the solutions of the Cauchy problerns associated with the operators A and
A, where A is equal to B up to a suitable bounded additive perturbation.

1. Introduction and notations. The present paper falls within a wide
program of investigations whose main object is the interplay between con-
structive approximation processes and degenerate evolution problems by
means of standard semigroup theory. More specifically, we are interested in
representing explicitly the semigroups generated by some degenerate differ-
ential operators in terms of powers of suitable positive linear operators: as
a direct consequence, the solutions of the initial value problems canonically
associated with such differential operators may be represented in the same
way, as well. This kind of approach, basically based upon Voronovskaya-type
formulas and Trotter’s theorem [26], has its roots in a paper by Altomare [1],
dealing with the convergence of the powers of the classical Bernstein oper-
ators; actually, it turns out to be quite satisfactory in practical situations,
since gome qualitative properties of the relevant semigroups, such as asymp-
totic behaviour, regularity, saturation and so on, may sometimes be eas-
ily derived from the corresponding properties of the approximating opera-
tors.

A rather exhaustive treatment of this subject together with a system-
atic analysis of some classical approximation processes may be found in

2000 Muthematics Subject Classification: 41A36, 34A45, 47EOS.
Key words and phrases: approximation process, Cp-semigroups of contractions, Beta-
type operators, differential operators.
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