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Commutative, radical amenable Banach algebras
by

C. J. READ (Cambridge)

Abstract, There has been a considerable search for radical, amenable Banach alge-
bras. Noncommutative examples were finally found by Volker Runde [R]; here we present
the first commutative examples. Centrally placed within the construction, the reader may
be pleased to notice a reprise of the undergraduate argument that shows that a normed
gpace with totally bounded unit ball is finite-dimensional; we use the same idea (approx-
imate the norm 1 vector @ within distance n by a “good” vector yi; then approximate
(& —y1)/n within distance 7 by a “good” vector y2, thus approximating & within distance
n? by g1 - nya, and so on) to go from n = 9/10 in Lemma 1.5 to arbitrarily small » in
Lemna 2.1, This i not an arbitrary decision on the part of the author; it really is forced
on him by the nature of the construction, see e.g. (6.1) for a place where 7 small at the
start will not do.

0. Introduction. The father of the notion of amenability in Banach
algebras is Barry Johnson [J], who in 1972 showed that a locally compact
group (7 is amenable if and only if the group algebra LY{@) has a certain
cohomology property, which he naturally christened “amenability” of the
Banach algebra.

Since then the theory of amenable Banach algebras has had some beauti-
ful theorems, such as Haagerup's theorem [H] that a C* algebra is amenable
if and only if it is nuclear; but has also had something of a dearth of good
examples. As Grenbaek [G] remarked in 1991, “except in the C” algebra
case, no substantial enlargement of the class of amenable Banach algebras
has been discovered since Johnson's original paper.”

Certain “enlargements” have been achieved since; in [GIJW], for example,
a condition (related to the approximation property) is given that is sufficient
for the amenability of the algebra X(X) of compact operators on a Banach
space X. That paper includes (in passing) a slightly pessimistic remark
about the chances of finding radical amenable Banach algebras, which were
eventually found by Runde [R].

2000 Mathematics Subject Classification: Primary 46745, 46H20, 46H25; Secondary
46B25, 461345, .
Key words and phrases: radical, Banach algebra, amenable, nilpotent.
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This author had a “toe in the water” as regards matters amenable, when
he collaborated [LRRW] with Loy, Runde and Willis to produce some singly
generated, weakly amenable Banach algebras which are integral domains
and have bounded approximate identities that are normalised powers of the
generator. Those algebras are not amenable, however; and the algebras in
this paper do not appear to be singly generated (and they certainly are not
integral domains).

Now a Banach algebra A is called amenable if H'(A, X*) = {0} for all
Banach A-bimodules X, i.e. if every continuons derivation from A to a dual
Banach A-bimodule X* is inner. But in a constructive paper like this, we
work with the “nuts and bolts” characterisation of amenability, namely: A
is amenable if and only if it has an approzimate diagonal, that is, a bounded
net {A,) in the projective tensor product .4 & A such that for every a € A,
the commutators [a, A,] ~ 0, and if 7 : A® A — A is the product map,
then m(A,)a — a. For the proof that this condition characterises amenabil-
ity, 1 was going to refer the reader to [BD], Theorem 43.9; however, the
referee wisely pointed out that this theorem deals only with unitel Banach
algebras, so a word of explanation about nonunital Banach algebras (such
as radical ones) is in order. In fact A is amenable if and only if the unital
algebra At is amenable, if and only if A has an approximate diagonal, if and
only if A! has an approximate diagonal. Let us prove this.

Whether A is unital or not, H'(A, X*) is the quotient of the Banach
space of continuous derivations .4 — X * by the subspace of inner derivations
§¢:a— af — fafor f € X* So HYA, X*) = {0} if and only if every
continuous derivation is inner.

Suppose A is not amenable, so for suitable X a continuous derivation
§: A — X* exists that is not inner. One may extend J§ continuously to
the algebra A* with unit adjoined, by defining 6(1) = 0; and one may make
X into a Banach Al-bimodule by defining 1z = 21 = z for all z € X.
Then § : A — X* is a continuous derivation that is not inner, so .A! is not
amenable. By [BD], Theorem 43.9, Al has no approximate diagonal. But if
(dn) were an approximate diagonal for .4, one may check that

D, =181~ 1®@%(dy) = 7{ds) ® 1 + 7(dn) ® w(dn) + 2d, — d2

would be an approximate diagonal for AY; so A has no approximate diagonal
either.

Conversely, if .4 is amenable, consider any derivation & : A} — X*, where
X* is a dual Banach A-bimodule that is unit-linked, i.e. 12 = 21 = x for all
z € X, One must then have §(1) = 0, and 4|4 is a derivation on A, so for
some € X we have d(a) = az — za for all a € A. The same is true when
a=1,504: A — X* is inner. By [BD], Lemma 43.6, the unit-linked case is
enough to establish that 4! is amenable, and therefore has an approximate

icm

CRAB algebras 201

diagonal (D,) which may be written
Dn=2101-18a,— G, ®14+ 4,

with cn,Bs € A and A, € A& A. One may then check that necessarily
An =+ 1, {an), (Bn) are bounded approximate identities for A, and

dy = Ay — G ® ap

is an approximate diagonal for .A.
Let us now make some related definitions of our own.

1. Preliminary definitions. Within this paper we are invariably using
diagonal elements A, of norm at most 1. So, we say A has a metric approz-
imate diagonel if it has an approximate diagonal whose elements are norm
bounded by 1. The “metric” concept is useful because one can of course
multiply two tensors together, getting a ® b- ¢ ® d = ac ® db; this multipli-
cation extends linearly and continuously throughout the projective tensor
product A ® A, making that space a Banach algebra; and it is very useful
to us to be able to multiply several “diagonal elements” together without
fear that they may become unbounded. We do a good deal of multiplying
of elements in A & A when proving Lemma 2.1.

We are aiming throughout to construct commutative, radical, amenable
Banach algebras, or “CRAB” algebras. The main building block from which
they are constructed is the “FDNC” algebra (Finite Dimensions, Nilpotent,
Commutative), by which we mean a finite-dimensional commutative Banach
algebra, every element of which is nilpotent. Obviously for such an algebra
A there is a d such that z¢ = 0 for every z & A; the least such d is called
the degree of A.

Now an FDNC algebra is basically just a collection of matrices; but the
variety of algebra norms one can put on such a collection is truly fascinating
and will herein be used to advantage. Here are some possibilities.

DEFINITION 1.1. Let B be a Banach algebra and A C B a subalgebra.
A metric approgimate unit for A with constant § is an element u € B such
that |ul| <1, and |ua — af| < éljal| for every a € A.

As an casy introduction to the methods of proof to be used in the abso-
lutely fundamental Lemma 1.5, we shall shortly prove the following lemma
(or T suspect one can deduce it as a corollary of [DW]}:

LEMMA 1.2. For every FDNC algebra A and every & > 0 there is an
extension B D A, also an FDNC algebra, containing o metric approrimate
unit for A with constant §.

We have an idea analogous to “metric approximate unit”, namely the
“metric diagonal element”, that helps with making approximate diagonals.
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DerFINITION 1.3, Let A be an FDNC algebra and u, a € A with |lul| < 1.
The element A € A @ A is a {strong) metric approzimate commutant for o
in A (with image u and constant {) if we have w(A) = u (where 7 is the
natural multiplication map A& A — A), ||4| <1, and

(1.1) {a, Al < <llall-

DEFINITION 1.4. Also, if i > 0 is relatively large, and ¢ > 0 is small,
it is of great interest tc us to know if a slightly weaker condition holds: if
m(A) = u and ||A[l €1 as above, and for some & € A we can find y € A
such that ||y — a|| < 7lla| and ||[y, A]| < ¢||al|, then we say A is a weak
metric approtimnate commutant for a, with image u and constants n and (.

As we mentioned in the abstract, we are forced by the nature of the
construction to start off with 7 > 9/10. Here is the letnma involved.

LemMaA 1.5. Let A be an FDNC algebro and u € A, ||lu|| £ 1. Then for
any a € A and { > 0, n € [9/10,1] there is an FDNC algebra B containing
A such that B& B contains o weak metric approrimate commutant A for a
with image u, and constants n and ¢.

Now Lemma 1.5 is the heart of this paper; everything else fits in around
it. Before attempting to prove Lemmas 1.2 and 1.5, let us de the “soft” part
of this paper, where we take the result of Lemma 1.5 and “stretch” it until
we get a CRAB algebra.

2. Constructing CRAB algebras using Lemma 1.2 and 1.5.
Throughout this section we shall assume that Lemmas 1.2 and 1.5 are true,
facts we shall not begin to prove until later. Given these facts, we may
construct CRAB algebras as follows.

A useful advantage of having everything commutative is that metric
approximate commutants can be multiplied together: if ¢ € A and A, As &
A® A then we have [a, 41 43] = [a, A1) Az = [a, Ag] Ay; hence if for ¢ = 1,2
each A; is a weak metric approximate commutant for a; with image u; and
constants 7;, (;, then A;A; is a weak metric approximate commutant for
both a1 and @y with image u1us and constants no worse than max (1, 7z),
max((1, {2). This idea is used in proving the following lemma;

LEMMA 2.1, For each FDNC algebra A, each z,u € A with ||ul| = ||z
=1, and each ¢ > 0, 5 € [9/10,1} and n € N, there is an FDNC algebra
B, O A containing ¢ week metric approzimate commutant A, for z with
image u" and constants ™ and n{.

Proof By induction on n. The result n = 1 is Lemma 1.5. Qur induction
hypothesis is that we have an extension B, satisfying the conditions (with
the metric approximate commutant used being A, € B, & B,,), and we seek
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a suitable extension B,i11 D B, containing a suitable metric approximate
commutant Ay, 1. By induction hypothesis there is a y € B, with |z —y| <
n™ such that ||{y, Ap]|| < n¢. Now the vector &' = (x — »)/%#™ has norm at
most 1, so by Lemma 1.5, there is an extension B,y; O B, that contains an
element z with ||z — (z —y)n™"|| < n, and a metric approximate commutant
A such that |A|| <1, 7(A) = w and ||[z, 4]]| < {. Write Apy1=A- 4, €
Bat1 & By Then we have 7{A,1q) = v, obviously || Anp| < 1, and
[z, Ansall| £ ¢ Writing v/ = y + 0™z, we have
Iy = 2l = ily — = —72)) <7
Also

1" Ana]ll = [lly", A~ Au]ll < AL [y, Aalll 4 [ An]l-[14, 72| < (r+1)C.
So Apqp is our required metric approximate commutant, and the lemma is
proved.

Having proved Lemma 2.1, it is a short step to proving the following
natural sequel:

LemMA 2.2. If A is an FDNC algebra and 6 > 0, there is an FDNC
eztension B O A containing a metric approzimate unit u for A with constant
8, and an element A € B® B such that n(A) = u, and for everya € A, 4
i3 a strong metric approzimate commutant for a with constant §.

Proof. Take a basis of A, say ay, ..., oy, and let us also find a constant
K so that each z € A is written Y., Ma; with
113

(2.1) Y Il < K|,

i=1
Next, pick any n € [9/10,1) and choose n so large that
(2.2) MK < §/2.
Then choose ¢ so small that
(2.3) nCK < §/2.

Use Lemma 1.2 to find an extension By O A containing a metric approx-
imate unit ug for A with constant §' = §/n%. Then use Lemma 2.1 to find
an extension By O Bo having a weak metric approximate commutant A,
for ay with image w2 and constants n",n¢. Likewise find Bz 2 By having a
weak metric approximate commutant Ay for ap with image uf and the same
constants ™, n¢. Continue like this until we have an extension B, D By with
weak metric approximate commutants 4A; for each @, i =1,...,n, with the
same image uJ and the same constants 7", 7.

Consider now the product A = [[, A:. Then [[4]| < 1, and 7(4) =
ug’ = y, where since ug is a metric approximate unit for A with constant
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8" = 6 /n?, v is a metric approximate unit for A with constant no worse than
5. Further, if = Y14 Mia; € A, we have

{==1

(2, 4] = Nlai, AT ] 45,
el Jsti
hence n
[z, Al < > |xi] max|[ai, Adl) < Kol max|j[a:, Aill
i=1
But for each ¢ there is ay; € B; such that {|a; —vill < #™ and ||[ys, 4]l < ng.
Cleaxly, ||la; — vi, Ailll < 2l — will - | Aill < 297, 50

max | [as, Ai]| < 20" +n¢
and
Iz, 4] < Kllz(2n™ +n) < dlla].,
by (2.2) and (2.3). Thus A is a strong metric diagonal element for every
z € A relative to 4, with image « and constants §,d; and our lemma is
proved.

So, if A is an FDNC algebra and B O A an FDNC extension satisfying
(for some § > 0) the conditions of Lemma 2.2 above, we say that B is a
diagonal extension of A with constant §.

THEOREM 2.3. Let (A;)2, be a nested sequence of FDNC algebras such
that for each i, Asy1 15 o diagonal emtension of A; with constant &;; and
suppose that §; — 0. Let A be the completion of the union (U2, A;. Then A
is a CRAB algebra.

Proof. Let Apyq € Ani1®Any1 be astrong metric diagonal element for
all z € A, relative to A, with constants 4, d,,. We claim that the sequence
A, € A& A is an approzimote diagonal for A, and so, A is amenable.
For if z € Ay, for some m, it is plain that [z, A,] — 0 and 7(4,)z — = as
n — oo} but such elements are dense in A, and the sequence 4, is uniformly
bounded, so the result follows, and A is indeed amenable.

Finally A has a dense set of nilpotent elements and is commutative, so it
is plainly radical. Therefore, it is a commutative, radical, amenable Banach
algebra.

3. Proof of Lemma 1.2, This proof is somewhat like parts of [LRRW],
only simpler. We may assume that § < 1. Let A be the given FDNC algebra,
and let Ay be the extension obtained by adjoining a unit to .4, and imposing
the norm

AL +all = A + Jal 4
(A € C, a € A). We consider the algebra Alyl, consisting of polynomials
in the symbaol y with coefficients in A;, such that the constant coefficient
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lies in A. If we adjoin the unit, allowing the constant coefficient to lie in
all of Ay, we call the algebra A;[y]. These are infinite-dimensional spaces
of polynomials, which we reduce to finite dimensions by taking the quotient
spaces B = Alyl/{y™) and By = A;[y]/(y") for some large N, where {y™)
is the ideal {yVq(y) : ¢ € Aiy]}. By demanding that ¥ = 0 in this way,
we ensure that B is another FDNC algebra, with degree at most N +d—1,
where d is the degree of A (for any z € B can be written a + yx;1 where
a € A; and each term in the binomial expansion of (a + yz1)V¥%"! has
either a factor a? or a factor y7).

If we impose a norm on B; such that .4 is embedded isometrically as
the constants, then B C By is an FDNC algebra extending .A. The simplest
example of such a norm is

N-1 N-1
(3.) I3 | = 3 talan,
i=0 i=0
where evidently we have |||y|]| = 1. Of course, we need something a little
more complicated; given the constant § > 0, choose an N, and let || - || be

the largest algebra {semi-)norm on B such that ||jz|| < ||| for all z (the
norm ||| - ||| as in (3.1)), and

(3.2) lay — all < 4lla]

for every a € A. Plainly such a (semi-)norm exists, it is the restriction to B
of the seminorm on By given by

M M
(3.3) |lz|| = inf { Z lzlll : = = Zmisi, 8; € S},
i=0

=0

where

k
(34) S= {5-‘“[1(% —a) k20, €A flas] =1 (i= 1,...,k)}.
gzl

Now if dim.A = n, and a = 0 for every o € A, then any product of
nd vectors in A is zero. So the nonzero elements of § involve values k& <
nd — 1; and hence, |[s]]| < (2/8)% < (2/8)"4~1 (since 6 < 1) for every
s € S. Therefore || - || really is a norm, not just a seminorm; we know
2| > (8§/2)74=2||z||| for every & € By. We claim that if N is chosen large
enough, then A is isometrically embedded in (B, || - ||)—and in view of (3.2),
y € (B,] | is the desired metric approximate unit for A. We prove this
by dualising—let a € A have norm 1, and let a* : A — C be a support
functional for @, having ||a*|| 4« = 1 and a*(a) = 1. If we can extend a” to a
functional &* ; By — C so that &" has norm 1 with respect to the new norm
on By, then |jal|z = |lal| 4 as required.
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The extension we use is as follows. First, extend e* to A; by defining
a*(1) = 0. Then let a* be the unique linear map B; — C such that

(3.5) & (y*b) = (1 - k/N)a*(¥)

for each k=0,...,N —1 and each b € .4;. To show that |[a*|| = 1 it is
sufficient, in view of (3.3), that |@*(sz1}| < 1 for all 21, s such that |||zy]| = L,
s € &. Because of the nature (see (3.1)) of the norm || - |||, we can assume
that 2y is of form y'b for b € Ay with ||b]l.a, = 1, and { € N — 1. Then the
general element z = sz is of form

k
(3.6) z=5"*](aiy — a) - ',

fe=l
where |ja;]|.a, [1b]la, = 1. If k = 0 then it is obvious that |@*(y'd)| =

(L-I/N}a*(b)} < 1. ¥ 0 < k < dn, where n = dim A4, we proceed as
follows.

Casg 1: If k41 < N, then the highest power of y involved is at most N,
so for all relevant indices r we get @*(y"a) = (1 ~r/N}a*(a) for all & € A;,
The “relevant” « is always o = b]—[i;l a;, hence

3(2) = 5_%*(-&)?; (5)wr(1-2)
fpee g

since for k > 1 both 3%, (%}(=1)* and Efzos(':)(wl)s are zero. In the
nonzero case when k = 1, since |a*(a)| < 1 we certainly have |a*(z)| <
1/{(8.N}, which is less than 1 for large N > 1/4.

Casg 2: If k+ 1 > N, then since k < dn, for each 0 < r < k the value
of a*(y"*e) (as involved when computing a*(2) from (3.6)) is either zero

(when r +1 > N) or a value (1 —~ (r + [)/N)a*(), where the coefficient
1—(r+1)/N < nd/N. Hence,

k

. - k3 nd . nd nd
* < 5~k - B nd 1%

[a*(2)| < ;:0(8)]\, <V <5

(we can assume that § < 1), which is again less than 1 for large enough
N > 2ndpg/gnd,

Thus, for large enough N, the extension @* : B; — C defined in (3.5) will
always have norm 1, and A is indeed embedded isometrically in (8, || - |,

B.being an FDNC algebra containing a metric approximate unit y for A4
with constant d. And so our lemma is proved,
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4. Beginning the proof of Lemma 1.5. The conditions involving @
in Definition 1.4 are homogenecus in a, so we may assume |/a]| = 1.

Our proof starts out like the proof of Lemma 1.2, in that we take an N
much larger than n, the dimension of the given algebra A, or d, the degree
ol A. But instead of adding one extra generator y, we add N extra gener-
ators (y;)}Y.;, considering the algebra .43 [y, ..., yn| (hereafter abbreviated
to Ay ly]) of polynomials in the y; with coefficients in A;. Of course we de-
fine Aly] to be the ideal of polynomials whose constant coefficient lies in A;
and our final algebra B will be a suitable quotient of Afy].

A general product Hf\;l yit will be referred to as ¥*, and we will write
|r| for the sum Ej\;l ;. Our choice of quotient will of course have the effect
of ensuring that y* = 0 for large enough |r|, in fact this will be true for
| > N%d. More interestingly, if u € A is our given image vector (such that
7 (A) must be equal to u), we shall demand that Hf\]:l yY = u, that is, if 1
denotes the vector (1,...,1) € (Z*)¥, then yV* = w.

So we consider the quotient space By = A1 [y]/I, where I = Iy + 17 is the
sum of the ideal Jj generated by {y* : |r| > N2d}, and the ideal I; generated
by yN1 —u. Our algebra B will (as usual) be the ideal of polynomiais g(y) +1
such that the constant coefficient of ¢ lies in A.

As when proving Lemma 1.2, we have a simple “initial norm” on A:[y],
the norm [|] - ||| such that

=2 llarfla.-

(4.1) |Hzaryr

Given 1 € [9/10,1] and @ € A, we define a (semi-)norm || - || on By to
be the largest seminorm on the quotient algebra A;[y]/! such that for all
z € A [y}, |+ I| < l{|=|l/, and such that

1 N
o yi) —a+1

From. now on we shall slightly abuse notation by dropping the “+I”. We
claim that A is, for large enough N, isometrically embedded in (B, || - ) as
the constants; and of course B is an FDNG algebra. Let y = %E?; Y S0
that by (4.2), |ly —al| € 7. Let A be the element

(4.3) (N-1" Y yey'TeB&B
1<r<(N-1)1

Now A = H?f__l A;, where 4; = (N —1)7¢ E?:ll v! @ y¥ 77, hence, since
]| < 1, we have [|Aq]| < 1, and ||A[| < 1; and since s, Adlll < 2/(N =1,
we find that [|[y:, A}f < 2/(N — 1) for all ¢, and so0 |y, Al € 1/(N —1).

This is less than the given constant ¢ > 0, provided we choose N > 14+ 1/¢.

(4.2) <
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So A is a weak metric approximate commutant for the given a € A, with
image m(A) = yV¥! = v (mod I), and constants i and ¢. But to complete the
proof of Lemma 1.5, we face the tricky task of proving that 4 is embedded
isometrically in B.

5. Starting to prove that 4 is embedded isometrically in B, As
before, we dualise. Since we know |zijp < |lz]|4 for z € A, it is enough if
an arbitrary norm 1 linear functional ¢* € A* can be extended, still with
norm 1, to (B, | - ||g).

As before we extend a* to A; by defining a*(1) = 0; then we define an
extension @* : By -+ C as follows. For each set of indices r € (ZT)" and
each x € Ay we define

(5_1) a*(yrm) — {a*(u’“alm) ifr= .’{.;N]. +s, ke [U,d), |S‘ =[lc [O, d),
0 otherwise.

Note that provided N? > d, the cases where @* is nonzero above do not

overlap for different values of k, since each value of k involves only indices

r with |r| € [kN?, kN? + d). So @* is well defined as a map A;[y] — C. To

see that it is well defined on By = A, [y]/J we need a lemma asserting that

a*, as defined in (5.1) above, annihilates I'; which we prove immediately.

LemmMa 5.1, The functional @* defined in (5.1) annihilates the ideal I,
provided N > d.

Proof. We show separately that 2* annihilates Jy and I;.

(a) @ annihilates I if a*(y"z) = 0 for every z € A; and |r| > N3d. But
&*(y"z) = 0 unless |r| € (kN2 kN2 + d) for some k < d. Since we chose
N > d, that implies |r| < {(d — 1)N? +d — 1 < dN2.

(b) @ annihilates I if &*((y"! — w)y*z) = 0 for every r and z. If
r=FkN1+s and 0 < [s| < d for some k < d, then (5.1) gives
(5.2) a*(uyTz) = a*(a®lut"a).

Otherwise, we have @*(uy*z) = 0. Now if r = kN1 +s with 0 < |s| < d and
k < d—1 then (5.1) also gives

(5.3) a* (yV ) = a*(allt ).
Otherwise, we have *(y"¥'**z) = 0. In the case r = kN1 +s with 0 < |s| <
d and k = d — 1, when we appear to get different results for a*(uy™z) and

a*(yV**rg), this is appearance only because u*+! = 4% = 0 for this value
of k. So @* does indeed annihilate the ideal I;.

Having got Lemma 5.1 out of the way, we must prove that ||a*| < 1,
given [|a*|| < 1. Now by (4.2), the norm |- || on By is the greatest (semi-)norm
on the quotient algebra such that |- | < ||| - |||, and |5k S8, v — a|| <.
Since the norm ||| - ||| is given by (4.1), plainly we have
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64) ol = it { 3 lbaels,
k,r . N .
_ —k
m—g’? (W;yi—a) yrbk,rmodf}.

At this point we pause to note that this expression is a norm, not merely
a seminorm, on By, because values k > N2d +d — 1 give

L X k
(Eﬁgyi — a) = 0 mod I
=
. 2
in any case, hence ||| > #™¥ +4-1||z||| for all = € B;.
To show that ||3*|| < 1, knowing already that it annihilates I, it is enough
to cbtain the estimate

(5.5) a* ((%i% - a) ky’b) ’ <P

for every k > 0, b € Ay of norm 1, and r € (Z+)N. To establish this we
consider separately “large” and “small” sizes of k. The easiest to deal with
is when k& is large.

6. Proving (5.5) for “large” k > d{log 4)/(log 6/5). Write the expres-
. 1 N
sion (gl Y g ¥ —a) as asum

> yewy (L) ok

08| <k

where (‘:) denotes the multinomial coeflicient (ah_"'f,SN ) We note that since
a® = 0, the A; norm of the coefficient of y* in the sum is no greater than 44
times the norm of the corresponding coefficient in the multinomial expansion
of (5}\;2;11 Yi ;lia,)k. Since [lal| < 1, the sum of all those norms is at most
(3/4)*; so the sum of the norms of coefficients in the original expansion is at
most 4% - (3/4)%. Since ||b|| is also less than or equal to 1, we may therefore
wribe (s S0, i = a)ky’b as a sum. 3, csy® with Y [|os]l.4, < 42 (3/4)%.
Now &* acts on each cgy® as either zero or a linear map a* (v’ a'cs). At any
rate, |i* (ay®)] < ||cs .4, - But then we can sum this estimate over s, use the
triangle inequality, and obtain

1 k (3 B
- il L r e <
“((vgne) ol =#(G) =

t=1
as required by (5.5), provided k > d(log4)/(log 4n/3). Since n = 9/10, k >
d(log 4)/(log 8/5) will suffice, bringing the discussion of this case to a close.

(6.1)
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7. Proving (5.5) when k < d(log4)/(log6/5), for certain values
of r. The values of r with which we shall deal in this section are when
r = N1 + 1 for some 0 < ¢ < d and v’ > 2, |r'| < d. Once again we use a

multinomial expansion to write
R — r i _ —|s r-s
(7.1) (QN_Z% a) y°b Z (S)(2N) (—a) by
i=1 z<s, [si<k

Z (s) (Elﬁ)Isl(_m)k_gs|byz\rt1+r'+s_

2 <s, [s| <k

I

Now if |r'| 4 |s| < d, certainly (5.1) gives us
&*(ak—|s\byNt1+r’+5) =" (utakﬂr’]b)l

In fact this is also the case for d < |r'| + |s| < N2, because in such cases
(5.1) gives a*(a"~slbyNti+r'+s) = 0, which (since a® = 0 and k + |r'| >
|s| + [r| > d) is also the value of the expression o*(u*a®™/*'Ip), Provided N
is reasonably large compared to d (N? > d(1 + (log4)/(log6/5)) will do),
values r’| + |s| > N? can never occur; so applying @* to (7.1) we get

() )=_3, () ey

#<s, 8| <k
= (1/2 — 1)*a* (uba*T1¥'1p),
by the “multinomial theorem”; which has absolute value at most (1/2)*
since |a*(uta®+F'1b)| < 1. And that is less than n* because > 1/2. Thus
{5.5) is established, for the values of k and r described at the beginning of
this section.

8. Proving (5.5) when k < d(log4)/(log6/5), for all other values
of r. We now assume that the index r is mot of form Nt1 + ¢’ for any
0<t<dandr’' > z, |r'| < d. Nevertheless, if every term in the multinomial
expansion of

(8.1) ﬁ*((ﬁ-lﬁf;y - a)ky‘”b)

is not simply zero, (5.1) tells us that for at least one index s, z < s, Is| <
k, we must have r +s = Nt1 +r' for some such # and v'. Because the
possible values of |r + s| cannot span an interval of width as big as N2 — d
{provided N? > d(1+ (log 4)/(log 6/5))), only one value of ¢ is ever involved
as s varies. In fact, there is a least s > z for which r + s > Ntl, namely
s = 8g-= (Nt1 —r)4. The other values of s for which r + s has the correct
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form all satisfy s > sq. Now, the multinomial expansion for (8.1) is

> @(?lzv)isl(—1)‘“-'5'6*(a’““'“"’by”“)’

z<s, 8| <k

and in the cases when it does not just give zero, (5.1) gives a*(ak—Islpy=+s)
as a number of absolute value at most 1. Therefore

(( 1 i )’“ b)‘ 5 N/ 1\"
¢ 2N yi—a yr S ( )(_) .
2N d=1 s>sg, |8|<k S N

Now for fixed p, the number of s with s > sy and |s — sg| = p is at most
N? (we must add p unit vectors to sg and there are N to choose from at
each step). The largest conceivable multinomial coefficient (¥) is k1. So very
cridely, we have

(8.2) T (:) (%)m ékiul

8280, 8| <k p=0

as we do at least have [so| > 1. But & is bounded above by d{log4)/(log 6/5);
50 we bring our proof to a close by observing that {8.2) will, as required, be
at most n¥, provided N is so large that

N >n7*(k + 1)1/2,

where ky = [d(log 4)/(log 6/5)], the integer part of that multiple of d. Thus,
having imposed another moderately demanding condition on how large N
must be, Lemma 1.5 is proved, and we know by Theorem 2.3 that nonzero
CRAB algebras exist.

b

1\ Pl (k +1)!
— PR <
(QN) VRSN

9. Conclusion. In fact we have proved slightly more than the existence
of CRAB algebras, namely

THEOREM 0.1. Bvery FDNC algebra can be isometrically embedded in a
CRAB alyebra B such thai B has a metric epprozimate dicgonal, and the
nilpotent elements of B are dense in B.

I would conjecture that CRAB algebras are in fact “fairly common”
among radical commutative Banach algebras; something like the following
may be true:

CONIECTURE 9.2, Every commultotive radical Banach algebra A con be
isometrically embedded in o CRAB algebra B with o meiric approximate
diagonal. If A is an integral domain, B can be an integral domain. If A has
compact multiplication, B can hove compact multiplication.
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(We recall, however, that by Corollary 3.5 of [LRRW], an amenable Ba-
nach algebra which has the approximation property cannot both be an in-
tegral domain and have compact multiplication.} In other words, we conjec-
ture that there is no “forbidden subalgebra” for & CRAB algebra, beyond
the requirement that subalgebras must be radical and commutative; and
that the use of nilpotency, which simplified things in this paper, can be
“gotten around” to produce integral domains; and that compact multipli-
cation is also a possibility (though again, not I believe with our present
construction).

I hope that this paper sheds some light on the area of amenable Ba-
nach algebras in general and CRAB algebras in particular; and that having
found some examples, we will come to understand better the nature of these
unusual algebras.

References

[BD] F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New
York, 1973. :

[DW] P.G.Dixon and G. A. Willis, Approzimate identities in extensions of topo-
logically nilpotent Banach algebras, Proc. Roy, Soc. Edinburgh Sect, A 122
(1992), 45-52.

[G] N. Grpabeaek, Amenability and weok amenability of tensor algebras and alge-
bros of nuclear operators, J. Austral. Math. Soc, 51 (1991}, 483-488,

[QIW] N. Grgnbazk, B. E. Johnson and G. A, Willis, Amenability of Baonach

algebras of compact operators, Israel J. Math. 87 (1994), 289-324.

(H} U.Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983),
305319,

{J] B. E. Jchuson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127
(1972).

[LRRW] R.J. Loy, C.J. Read, V. Runde and G. A. Willis, Amenable and weakly
amenable Banach algebras with compact multiplication, J. Funct. Anal., to ap-
pear.

[R] V. Runde, The structure of contractitle and amenable Banach clgebras, in:
E. Albrecht & M. Mathien (eds.), Banach Algebras ‘97, de Gruyter, Berlin,
1998, 415-430.

Department of Pure Mathematics
University of Cambridge
Cambridge CB2 18B

United Kingdom

F-mail: cr25@cam.ac.uk

Received June 22, 1999 (4350)
Revised version February 4, 2000

icm

STUDIA MATHEMATICA 140 (3) (2000)

On the size of approximately convex sets in normed spaces
by

S. J. DILWORTH, RALPH HOWARD
and JAMES W. ROBERTS (Columbia, SO)

Abstract. Let X be a normed space. A set 4 C X is approzimately convez if d(ta +
(1—1)b, A) < 1forall a,b € A and ¢ € [0,1]. We prove that every n-dimensional normed
space contains appreximately convex sets 4 with H (4, Co(A4)) > logy n—1 and diam(A4) <
C/n(lnn)?, where H denotes the Hausdorff distance. These estimates are reasonably
sharp. For every D > 0, we construct worst possible approximately convex sets in C[0, 1]
such that H({A,Co(A4)) = diam(A4) = D. Several results pertaining to the Hyers—Ulam
stability thecrem are also proved.

1. Introduction. Let (X,|| - ||) be a normed space. In the following
definition d(z, A) = inf{||z — a| : & € A} denotes the distance from z to the
set A.

DerinNITION 1.1. A set A C X is approzimately convex if
ditz+ (1 —t)y,A) <1 forallz,yec Aandt & [0,1].

Recall that the Hausdorff distance hetween subsets A and B of X is
defined by .

H(A, B) = sup{d(z, B),d(y, A} : x € A, y € B}.
Thus, A is approximately convex if and only if

sup H(tA+ (1 -£)A,A) < 1
t€(0,1]

The aim of this article is to study the relationship betwen the size of an
approximately convex set, as measured by its diameter

diam(A) = sup{||lz — ¥!| : z, ¥ € A},
and the extent to which A fails to be convex, as measured by the Hausdorff
distance H (A, Co(A)) from 4 to its convex hull Co(4).
2000 Mathematics Subject Classification: Primary 26B25, 46B20; Secondary 41Add,
46B07, B2A27, 52A40.
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