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(We recall, however, that by Corollary 3.5 of [LRRW], an amenable Ba-
nach algebra which has the approximation property cannot both be an in-
tegral domain and have compact multiplication.} In other words, we conjec-
ture that there is no “forbidden subalgebra” for & CRAB algebra, beyond
the requirement that subalgebras must be radical and commutative; and
that the use of nilpotency, which simplified things in this paper, can be
“gotten around” to produce integral domains; and that compact multipli-
cation is also a possibility (though again, not I believe with our present
construction).

I hope that this paper sheds some light on the area of amenable Ba-
nach algebras in general and CRAB algebras in particular; and that having
found some examples, we will come to understand better the nature of these
unusual algebras.
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On the size of approximately convex sets in normed spaces
by

S. J. DILWORTH, RALPH HOWARD
and JAMES W. ROBERTS (Columbia, SO)

Abstract. Let X be a normed space. A set 4 C X is approzimately convez if d(ta +
(1—1)b, A) < 1forall a,b € A and ¢ € [0,1]. We prove that every n-dimensional normed
space contains appreximately convex sets 4 with H (4, Co(A4)) > logy n—1 and diam(A4) <
C/n(lnn)?, where H denotes the Hausdorff distance. These estimates are reasonably
sharp. For every D > 0, we construct worst possible approximately convex sets in C[0, 1]
such that H({A,Co(A4)) = diam(A4) = D. Several results pertaining to the Hyers—Ulam
stability thecrem are also proved.

1. Introduction. Let (X,|| - ||) be a normed space. In the following
definition d(z, A) = inf{||z — a| : & € A} denotes the distance from z to the
set A.

DerinNITION 1.1. A set A C X is approzimately convex if
ditz+ (1 —t)y,A) <1 forallz,yec Aandt & [0,1].

Recall that the Hausdorff distance hetween subsets A and B of X is
defined by .

H(A, B) = sup{d(z, B),d(y, A} : x € A, y € B}.
Thus, A is approximately convex if and only if

sup H(tA+ (1 -£)A,A) < 1
t€(0,1]

The aim of this article is to study the relationship betwen the size of an
approximately convex set, as measured by its diameter

diam(A) = sup{||lz — ¥!| : z, ¥ € A},
and the extent to which A fails to be convex, as measured by the Hausdorff
distance H (A, Co(A)) from 4 to its convex hull Co(4).
2000 Mathematics Subject Classification: Primary 26B25, 46B20; Secondary 41Add,
46B07, B2A27, 52A40.
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In Section 3 we extend some of the results of [7] to the case of approxi-
mately convex sets. In particular, it is shown that if X is an n-dimensional
normed space then the quantity

C(X) = sup{H(4,Co(4)) : A € X is approximately convex}
satisfles
(1) logy n £ C(X) < [logy(n+ 1),

where [z] denotes the smallest integer n > z. For the Euclidean spaces R",
we prove that C(R™) = log, n for infinitely many values of n. Thus, the
lower bound in (1) is sharp.

We also prove in Section 3 that every infinite-dimensional normed space
contains an approximately convex set A with H(A, Co(A)) = oco. This is used
to show that the Hyers—Ulam stability theorem fails rather spectacularly in
every infinite-dimensional normed space.

In our previous paper [7] we studied the quantity H (A, Co(A)) for the
class of approzimately Jensen-convez sets defined as follows.

DEFINITION 1.2. A set A C X is approzimately Jensen-conver if

d(m;y,A) <1 forallzmye A

Suppose again that X Is an n-dimensional normed space. In the con-
struction of approximately convex sets A C X presented in Section 3, we
find that diam(A) — oo as H(A, Co(A)) approaches C(X). Section 4 refines
this construction to produce such sets whose diameters are not too large in
an asymptotic sense as n — 0. To make this precise, let us say that an
approximately convex set A is bad if H(A, Co(4)) > logyn — 1. Then our
main result says that every n-dimensional normed space contains bad ap-
proximately convex sets of diameter O{+/n(logn)?). The proof uses a result
of Bourgain and Szarek [1] from the local theory of Banach spaces.

In Section 5 we show that the factor /n in the latter result is sharp
by demonstrating the lower bound diam(A) > 0.76./% for all bad approx-
imately convex sets in the Euclidean space R™ when n is sufficiently large.
‘We also construct nearly extremal approximately convex sets in R* of diam-
eter O(y/nlogn), which is better than our estimate in the general normed
space case. '

Our construction uses the classical entropy function

n-+1
Eﬂ(tl‘) s :tn+1) — Zti 10g2(1/tz)
51
defined on the standard n-simplex. In particular, we make heavy use of the
fact that E, is an epprozimately conver function. This observation seems to
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be new, and we include its short proof in Section 2. As & corollary we obtain
the best constants in the classical Hyers—Ulam stability theorem [10] when
n+ 1 is a power of 2.

The last two sections concern approximately convex sets in infinite-
dimensional spaces. The results in Section 6 are in principle not new: they
are essentially reformulations of known results of Larsson [12] and of Casini

and Papini [3] (also of Bruck [2]). It is shown that X is B-convex if and only
if there exists ¢ > 0 such that

diam(A) > cexp{cH(A4, Co(A)))

for every approximately convex set A C X. A similar bound with a sharp
exponent is given for spaces of type p.

Qur deepest and perhaps most interesting result is Theorem 7.1 of Sec-
tion 7, which says that the trivial inequality

diam(A} > H(4, Co(A4))

is actually best possible in general Banach spaces. More precisely, we show
that for every M > 0 there exists a Banach space X (which is isomorphic
to £1) and an approximately convex set A C X such that

diam(A4) = H(A4,Co(A4)) = M.

The space X is obtained from a rather complicated combinatorial construc-
tion which may conceivably have other applications in Banach space theory.
Theorem 7.1 and its proof may be read independently of the rest of the
paper.

Finally, a few words about notation. All normed spaces are assumed to be
real. The closed unit ball {z € X : |l2]} £ 1} of a normed space X is denoted
by Bx. The closed ball of radius R is denoted by Bg(X). The dual space
of X is denoted by X*. A closed subspace Y of X has a finite-dimensional
decomposition if there exist finite-dimensional subspaces F, C Y (n > 1)
such that every y € ¥ admits a unique representation as a convergent series
y = E:":l yn With y, € F,. This implies that the finite-dimensional pro-
jections P, (y) = 3 i, yi are uniformly bounded in the operator norm. We
write ¥ = Z;’;l @ F,,. The sequence spaces £, the finite-dimensional spaces
£3, the Lebesgue spaces Lp(0,1) (1 < p < oc), and the space C[0,1] of all
continuous functions on [0,1], are all equipped with their classical norms.
More specialized terminology from Banach space theory will be introduced
as needed.

2. Approximately convex functions. Hyers and Ulam {10] introduced
the notion of an e-convex function.

DeFNITION 2.1. Let C be a convex subset of X and let £ > 0. A function
f:C — Ris e-conver if
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(2) Flz+ (1 -t)y) <tf(z) + (1 -t)f(y) +=

forall z,y € C and t € [0, 1].
Note that if f is e-convex then the function Af is Ae-convex for each

A > 0. Thus, £ merely plays the role of a scaling factor. For our results it is
convenient to normalize by taking ¢ = 1 as follows.

DerFINITION 2.2. Let C be a convex subset of X. A function f: C — R
is approzimately conves if

(3) Flte+ (1—t)y) Stf(z)+ (1 -t fy) +1
for all z,y € C' and t € [0, 1].

Forn > 1, let Ap = {t = (t;}74! : t; >0, 7 e = 1} be the standard
n-simplex. Let e; {1 < i < n 4+ 1) be the vertices of A, and let F, be

the collection of all approximately convex functions f : A, — R satisfying
fle;) €0for 1 <4 <n+ 1 Now define

{(4) k(n) = sup sup f(z).

FEF, x€EA,
Cholewa [5] (cf. {9]) proved the following sharp version of the famous
Hyers—Ulam stability theorem [10].

THEOREM A [B]. Let U C R™ be a conver set and let € > 0. For every
g-conver function f : U — R there exist conver functions g and gy such that

6) 1) <ola) < F@) +rime,  1F(@) - ao(@)] < e
Moreover, k(n) is the sharp constant in (5) and satisfies the upper bound
k() Sk for 2871 <n < 2%, de. k(n) < [logy(n+ 1)1.

REMARK 2.3. Laczkovich [11] observed that x{n) is the sharp constant
for every convex U with nonempty interior.

The following lemma will be used repeatedly.

LeMmMA 2.4. Let f : C ~ R be approzimately conves, where C' ¢ X is
convez. Suppose that n > 1 and that 3,...,2n41 € C. Then

41 n+1

(6) f ( > iﬂi) <Y tif(m:) + k(n)

i=1 i=1
Proof. Define F: A, — R by

for all ()24 € A,.

n+l n+l
= £( Do) — 3 s (w0).
i=1 i=1

Then F' is approximately convex and F(e;) = 0 for 1 < ¢ < n+ 1. So
F(t) < x{n) for all t € A,,, which gives (6). m
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For our results on approximately convex sets we require a good lower
bound for K,(n) we shall show that «(n) > logy{n + 1), which improves the
bound x(n) = (1/2)logy(n -+ 1) given in [11].

We require the following lemma from [7] concerning the function ¢(t)
defined by ¢(0) = 0 and ¢(t) = —tlogyt (¢ € (0,1]). For completeness we
include a proof.

LEMMA 2.5. For oll t,z,y € [0,1], we have
0 < ¢tz + (1 —t)y) —te(z) — (1 - )o(y) < )z + o(1 — Dy
Proof The left-hand inequality just says that ¢ is concave (to see this
note that ¢”(t) = —1/(¢tin2) < 0). To prove the right-hand inequality, first
consider the case 0 < z < y < 1. For fixed ¢ and y, let
P(z) = ptz + (1 — B)y) — td(z) — (1 - £)¢(y)-
Then
¥ (z) = (ln z—In(tz+ (1 -ty)) <
Thus %(z) is decrea.smg on [0, y} and attaing its maximum at z = 0. But
$(0) = ¢((1 - thy) — (1 —t)é(w)
= —(1 —tlylogy ({1 — t)y) + (1 —t)yloga y
= —(1 - t)ylogy(l — &) = ¢(1 — t)y.
Thus, if z < y, then
$(tz + (1 - t)y) — té(z) — {1 — 1)é(y) < P(1 ~ t)y < d(t)z + $(1 — )y.
Similarly, if y < z, then
Btz + (1 - t)y) — tp(x) — (1 —1)¢(y) < d{t)z < (1) + ¢(1 — t)y. m
The approximately convex sets which we construct in the next section

are essentially graphs of the entropy functions
el

En(t]_, e ,tn+1) = Zti lng(l/t,;)

i=]1
The following crucial observation seems to be new.

((ti)?if € An).

PROPOSITION 2.6. B, i a continuous concave approzimately convexr
function on A,. In perticular, By is approzimately affine, i.e

(7) |Bn(tz + (1 — t)y) — tBa(z) — (L — 1) En(y)| £ 1
for all z,y € A, andt € [0,1].

Proof E,(t)= E?:ll ¢(t;) is a sum of concave functions (by Lemma 2. 5)

and so B, is concave. For z = (z;)i0) and y = ()M in A, and ¢ € [0, 1],
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we can use Lemma 2.5 for the first inequality to get

Balta+ (1 —1)y) — tEn(z) — (1 — ) En(y)
n+1

= ($tws + (1 — £y ~ tp(x:) — (1 — £)b(ws))
i=1
n+1
< Do (80 + B{1 - t)ys)
=1
n+1 n+1
&) > mi+o(1-1) Zm #) +6(1 1),
im=]

The function ¢(t) + ¢(1 ~t) is concave and symmetric about ¢ = 1/2. Thus,
Bt} + o(1—¢) < 26(1/2) = 1,
with equality in the last inequality only if t =1/2. =
ReMARK 2.7. The fact that E, has the weaker property of being ap~

proximately Jensen-convez (which corresponds to setting ¢ = 1/2 in Defini-
tion 2.2) is well known and has been observed by various authors, e.g. [11].

Note that the following theorem gives the sharp constant in the Hyers-—
Ulam stability theorem when n + 1 is a power of 2.

THEOREM 2.8. The constants k(n) satisfy the bounds
(8) logy(n + 1) < s(n) < [logy(n + 1)].
In particular, x(n) =logy(n+ 1) when n+ 1 is a power of 2.

Proof The upper bound is due to Cholewa [5]. For the lower bound,
since By, € F,, we have

K(n) 2 max Bu(t) = Ba(1/(n+1), .., 1/(n+ 1)) = logy(n + 1). =

REMARK 2.9. Obviously, 5(1) = 1. Green [8] showed that #(2) = 5/3. In
a later paper we shall show that, for n > 1,

2(n + 1 — 2{loga )
n+1 !

where [z] is the greatest integer function. The proof is too long to be in-

cluded here. The corresponding constants for bounded Jensen-convex func-
tions were computed in [7).

#(n) = [logy ] ~
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3. Approximately convex sets

THEOREM 3.1. Let X be an n-dimensional normed space. There is a least
posttive constant C(X) such that

(9) H(A, Co(4)) < C(X) sr[lp]’hf(tA +(1~1)4, 4)
t€[0,1

for every nonempty A C X. Moreover, C(X) satisfies
(10) logs n < C(X) < k(n).
In particular, logyn £ C(X) < [logy(n+1)] < logyn+1.

Proof. We may agsume that the right-hand side of (9) is finite, otherwise
there is nothing to prove. Observe that the effect of replacing A by AA is to
multiply both sides of (9) by |A|. So, by choosing X appropriately, we may
assurme that

sup H(tA+ {1 —1)A,A)=1.
t€[0,1]

The right-hand estimate for C'(X) is due to Casini and Papini [3]. For com-
pleteness we recall the proof. Let f(z) = d(x, A) (z € X). First note that f
is 1-Lipschitz and nonnegative. To see that f is approximately convex, note
that for z,y € X, a,b€ A, and ¢ € [0, 1], we have
fltz + (1 - t)y) = d{tz + (1 - )y, 4)
< |tz + (1 —)y) — (fa + (L — )b)[} + d(ta + (1 — £)b, A)
Stllz—of + (1 -1y - bl + 1.
Taking the infimum of this expression over all choices of & and b yields

fltz+ (1 t)y) <tf(x) + - 1)fly)+1

Now suppose that 2 € Co(4). By Carathéodory’s Theorem (see e.g. [18,
Thm. 17.1]), z = Ez__l t;ai, a convex combination of n-+1 elements a; € A.
Then Lemma 2.4 yields

fle) €3 tiflas) + w(n) = &(n),

since f(a) = 0 for all a € A. The left-hand inequality uses the entropy
functions E,. Let (e;)2-; be an Auerbach basis for X (see e.g. [14, p. 16]).
Recall that this means that

-1 n—1
(1) max|a] < || 3 ases| < 3 la
Fu=f) =0

for all scalars ag,...,an—1. Set €, = 0 so that Co{e; : 1 < i < n} is an
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(n — 1)}-simplex. For each M > 0, we define a set Ay thus:
n—1

Ay = {Mztiei + Ep-1(ty, ... tn)en s (£i)iey € An—1}-
i=1
First let us verify that Ay is approximately convex. Suppose that 0 <t <1
and that a = M 37 1 zie; + By o1(x)ep and b= MZz_l yie; + Fn_1(y)ep
belong to AM, where z = ()7, and y = (y;).; belong to A,_;. Then
c=MY 1 zi€; + Ey_1(2)eg also belongs to Apr, where z = ¢z -+ (1 — t)y.
Since ey is a unit vector and E,_1 is approzimately affine (7), we have
lta + (1 — )b — |

= [tBn-1(z) + (1 — ) En-1(y) — Ena(tz + (1 - t)y)| < 1,
and so Ay is approximately convex. Note that zo = (M/n)Y i e: €
Co(Ap). We show d(zg, Aar) — logy n as M —+ co. To see this, fix £>0. By
continuity of Bn.1 there exists a > 0 such that if max;cicn_1[ti—1/n| < a
then En_1(t1,...,%n) = logyn — €, whence by (11),
tn)eg) H > Ep_y(ti, ... te) > logyn — e.

n—1
HCED - (Mztm + Epoy(ty,. ..,
i=1

Now suf)pose, on the other hand, that max;¢i<n-1|ti — 1/n| > a. By (11)
again,

n—1

||wo - (M > tiei + Epoa(ty, ... ,tn)eg) H

i=1

> M max |t"—1/n|>Ma-—>oo
1<i<n—

as M — oc. Thus, for all sufficiently large M, we have d(zo, Axs) = logy n—e.
Since £ > 0 is arbitrary, this gives the lower bound C'(X) > logyn. =

Tor large n the lower bound C(X) > logyn is actually attained for
certain Euclidean spaces (e.g. for X = R!%),

THEOREM 3.2. Suppose that n = 2%, where k > 4. Then C(BR™) = log, n.

Proof. For n = 2%, we have k(n — 1) = log,n. The argument used to
prove Theorem 3.7 of [7] (too lengthy to recall here) shows that the result
will follow provided n = 2% is large enough to ensure that

VAR(VER + VA=)

kn—1)> 1

This holds for k > 4. n

REMARK 3.3. The calculation of C{R") for small n seems problematic.
Clearly, C{R) = 1, and examples show that C'(R?) > 1.37. In [7] the corre-
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sponding constants for approximately Jensen-convex sets in B™ were com-
puted in all dimensions.

Before turning to infinite-dimensional spaces, let us make the following
definition (the analogue of Definition 2.1).

DEFINITION 3.4. Let ¢ > 0. A set A C X is e-conver if
d(ta-+ (1—t}h,A) <z foralla,be A

THEOREM 3.5. Let X be an infinite-dimensional normed space. There
exists an approzimately conver set A C X such that H(A, Co(A)) = oo

Proof We shall use the following consequence of Theorem 3.1. Let
e > 0 and M > 0. Then every normed space of sufficiently large dimension
contains a compact e-convex set A such that H(A, Co(A}) > M. Using this
fact repeatedly, a routine argument (cf. [14, p. 4]) shows that X contains
a subspace Y with a finite-dimensional decomposition ¥ o, BF, and sets
A, C F, (n > 1) such that A4, is a 2 "-convex set containing zero and
H(An, Co(An)) > n. Let Abe the collection of all vectors of the form },, @n,
where z, € A, and only finitely many of the z,’s are nonzero.

First let us verify that A is approximately convex. Suppose that = =
Yop®nandy =73 y,arein A and that 0 <t < 1. Since A, is 27"-convex
and compact, there exists z, € A, with ||z — (Ezn + (1 — t)yn)|| < 27"
Moreover, we may choose the z,’s so that only finitely many are nonzero,
ensuring that z = 3~ 2, belongs to 4. By the triangle inequality

Iz (tz+ Q=N <3 lzn— (ton + (L~ tya)| < D277 = 1.

Let us verify that H(4, Co(A)) = oo. Since 3 o, &F, is a finite-dimen-
sional decomposition, the natural projection maps from 3o | ®F, onto F,
are uniformly bounded in operator norm by K, say. Since H{4n, Co(An)) >
n, there exists w, € Co(A,) such that d(wn, 4,) > n, and since A, C F,
we have

d(wm A) =
Thus, H(A,Co(A)) =oc. m

(1/K)d(tn, An) > n/K.

As an application of the last result we show that the Hyers—Ulam stabil-
ity theorem (Theorem A above) fails rather dramatically in every infinite-
dimensional normed space (cf. [4]}.

COROLLARY 3.6. Let X be an infinite-dimensional normed space. There
exists a 1-Lipschitz approzimately conver function.f : X — R with the
following property. For all M > 0 there exists R > O such that for every
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conver function g : Br(X) — R, we have
pa f(2) = g(z)| > M.

cEBR(X
In particular, sup{|f(z) — g(z)| : ¢ € X} = oo for every convez function
g: X =R

Proof. Using the notation of Theorem 3.5, we prove that f(z) = d(z, A)
has the required property. It was shown in Theorem 3.1 that f is approxi-
mately convex and 1-Lipschitz. Choose R so that Co(A4,) € Bgr(X). Suppose
that g : Br(X) — R is a convex function satisfying |g(z) — f{z)| < M. Since
flz}=0for all z € A,, it follows that g{z) < M for all z € A, and hence
g(z) < M for all £ € Co(A,). But f(wn) > n, andso M > n/2. u

Recall that a normed space X is B-conver if X does not “contain £7’s
uniformly”, i.e., if there exist n > 2 and « > 0 such that

n
min H Z Lz
+
=1

For general normed spaces, Corollary 3.6 is close to optimal in view
of the following positive result on the approximation of Lipschitz &-convex
functions on bounded sets from [4]. (Here (a)=>(c) is [4, Thim. 1] and (b}=-(a)
is implicit in [4, Props. 1, 2]. The remaining implication (c)=>(b) is trivial.)

<n—a forallz; € B(X) (1<i<n)

THEOREM B [4]. Let X be a normed space. The following are equivalent:
(a) X is B-conver;
{b) there exist k < 1/2 and o > 0 such that for every € < & and every

g-conver 1-Lipschitz function f : B(X) — R there exists a conver function
g: B(X) =R such that

lg(z) = (@) <k (z € B(X));
(¢) there exist ¢ > 0 and a > 0 such that for every & < a and for every

g-convez 1-Lipschitz function f : B(X) — R there exists o conver function
g: B(X) -+ R such that

9(@) ~ f(=)| < celogy(1/e) (2 € B(X)).

ReEMARK 3.7. Condition (b) of this result is very pertinent to Section 7
below, where we prove (Corollary 7.13) that for X = C[0,1] there is no
constant k£ < 1 such that (b) holds. This is clearly an optimal result since
every l-Lipschitz function f on B(X) satisfles |f(z) — ¢| < 1, where ¢ =
{inf f 4 sup f}/2, i.e. (b) holds for k = 1.

4. Diameter of approximately convex sets. Our next goal is to prove
that everyn-dimensional normed space contains a “bad” approximately con-
vex set (that is, H(A, Co(A)) > logy(n+ 1) — ) of diameter O(y/A(logn)?).
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In the next section we shall prove that for Euclidean spaces this estimate
for the diameter is fairly sharp.

For two isomorphic Banach spaces X and ¥ recall that their Bonach—
Muazur distance d(X,Y) is defined thus:

d(X,Y) = f{||T||-|T7'|: T: X — Y is an isomorphism}.

THEOREM 4.1, Let € € (0,3). For all sufficiently large n and all normed
spaces X of dimension n there exists an approzimately convez set A C X
such that

(12) H{A,Co(A)) > log,n—¢
and
(13) diam(A) < %(1% n)2d( X, £7).

Proof. In order to simplify notation we shall prove the result for all
normed spaces X of dimension n+1 (with n---1 replacing n in (12) and (13)).
Note that X contains a subspace Z of codimension one such that d(Z, £7) <
d(X, 7Y (since £7" contains subspaces isometric to £7). Let F' be a linear
functional in X* of unit norm and such that Z = ker(F). Let eg be a unit
vector in X which is normed by F, i.e., such that F(ey) = ||eg|| = 1. Note
that by the triangle inequality

(14) Iz + Aeol| = max(||z]| — [Al, |Al) = max{||z[|/2, |A])

for all z € Z (= ker(F)) and A € R. Since d(Z,£}) < d(X,£;1"), Z has a
basis (ex)R., satisfying

n n n
(15) S lal < [ anen| < A6 ET) Y lal
k=1 k=1 k=1

for all choices of scalars (ax)7.,. For each M > 0, define Apr € X by

Ay = {M(Zn:tkek) 4 Bui(brye . to)eo t (B, tn) € An_l}.
k=l

It was proved in Theorem 3.1 that A,y is approximately convex for all choices
of M. Observe also that

M n
Ty = —= Zek e CO(AM)
n
k=1
In order to verify (12), it suffices to show that
d(zo, Apr) > logo(n+ 1) — ¢
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for a suitable choice of M. To that end, fix a € (0,1) and fix

y = M(Ztkek) + (Ztk logz(l/tk))ec. € Aur.
k=1 k=1
Let
Bi={k:tr 2 (1+a}/n}, Ba={k:tp <(l+a)/n}
and set pu(B;) = 3 pcp, tx (i = 1,2). Then, by (14) for the first inequality
and the left-hand side of {15) for the second, we have

=z = | 303t = 1/mes+ (3t loga(1/80) |
P ‘ kel

> max <%| gM(tk - 1/”)61:‘ ;gtk 1082“-/“«))
2 (U3 60 1700, 3 o1/
2 k=1 k=1L
> max 3 i 1/0l, 3 talons(6))
kchy 2 keB,y
M
Z max (—2— (g kgl tk)? (kgﬁ tk) (logg n — logo (1 -+ a)))

{since tx — 1/n > (a/(1 + a))tx > (a/2)tx for k € By)
Mo
> max 22 (), (o~ 30/ Du(B) ),
where at the last step we use the fact that log,(1 + o) < 3a/2 for o &

[0,1]. Now set M = 4(log, n)%/a. There are two cases to consider. First, if
#(Ba) > 1 — ae/logy n, then

ly — 2oll = (logz n — Ber/2)uu(B2)
> (logzn — 3c/2)(1 — ar/logy n) > logy n — Bar/2.
Secondly, if u(B1) > a/logsn, then

M
— g = — -
ly — =0 2 T Tomm

Hence iy —zoll > loga n—5er/2. Setting o = £/3 we see that (12) is satisfied
(with n replaced by n+1) by A=Ay whenever n is so large that log, (n-+1)
—logz n < a/2. Finally, the right-hand side of (15) yields

diam(4) < 2d(X, £47YM +log,n
< 24(X, £171)(4(logy n)? /) + logy
< 25(log, n)*d(X, £+1)/s
for all sufficiently large », and so A satisfies condition (13). m

= log, n.
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Since d(£3,¢}) = nP=1/P for 1 < p < 2, we get the following corollary.

COROLLARY 4.2. Let 1 < p < 2 and let ¢ € (0,3). For all sufficiently
large n there exists an approvimately convex set A C £y such that

H(A,Co(A)) = logon—e end diam(A4) < 2 -1/ (logy )2
£

REMARK 4.3. For p = 2, a much stronger result will be proved in the
next section.

For p == 1, we may reduce the exponent of log, n.

PROPOSITION 4.4. Let & € (0,2). For all sufficiently large n there exists
an approzimately conver set A C £} such that

(16) H(A, Co(A)) > logyn —¢
and
(17) diam(A) < (8/e + 1} log, n.

Proof. Setting X = ETH, we follow Theorem 4.1 taking advantage
of some simplifications in the proof which we now indicate. First, we may
choose (€g,...,en) to be the standard unit vector basis of E"f“, so that
(14) becomes simply |z -+ deg|| = fjz|| + |A| for all z =37, a;e; € Z. The
estimate for ||y — zp|| then becomes

Mo
Iy~ moll 2 22 4(B,) + (logan — 30/ Ba).
Setting M = 2(log, n}/c, we obtain
Iy — oll = (logz n — 3c/2)((By) + u(B2)) = loga n — 3a/2.
Setting o = £/2 we see that (16) is satisfied (with n replaced by n + 1) by
A = Apr whenever n is large enough to ensure that logy (n+1)—logy n < /2.
Finally,
diam(4) < 2M +logyn < (4/a + 1) logy n,
which yields (17). =

REMARK 4.5, In particular, £ contains “bad” approximately convex sets
of “small” diameter O(logn). Indeed, the trivial lower bound

diam(A) > H(A,Co(A)) = logyn—¢
shows that the diameter must grow at least logarithmically with .
Finally, we come to the main result of this section.

THEOREM 4.6. Let € € (0,6). For all sufficiently lorge n and all normed
spaces X of dimension n there exists an approzimotely conver set A C X
such that

(18) H(A, Co(4)) 2 logym — &
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and

2
(19) diam(A4) £ @23—“)_"@’

where K 18 an absolute constant.

Proof Fix 0 € (0,1). Bourgain and Szarek [1] (cf. also [19]) proved that
every n-dimensional nortned space X contains a subspace Y, with dimY =
k > [fn], satisfying

(20) d(Y,£1) < C(1 - 6)"m,
where C' is a constant. Set § =1 —¢/6. Then, for e < 1,
(21) logs k > loga n — logy(1/6) > logyn — /2.

Applying Theorem 4.1 to ¥ and to £/2 yields an approximately convex set
A C Y satisfying (18) (from (21) and (12)) and (19) (from (20) and (13)). m

5. Bounds in Euclidean spaces. In this section we prove that the
“bad” approximately convex sets constructed in Theorem 4.6 necessarily
have diameter larger than 0.764/% in n-dimensional Euclidean spaces when
n is large. The proof uses only elementary geometry. Along the way we prove
a result about Hilbert space (Theorem 5.2) which may be of independent
interest because of its sharp constants. We also improve the upper bound of
Corollary 4.2 by constructing a nearly extremal approximately convex set
in R” of diameter O(v/nlogn).

Recall that a simplex 3 C R® is reguler if its edges all have the same
Euclidean length,

LemMma 5.1. Let X be an n-simpler which contains the origin in its
interior and whose vertices lie on the Euclidean unit sphere S~ 1. For each
0 <k <n—1 there exists a k-face Fy, of 5 such that

n—k

d(0,Fg) £ Gn jp = W’

with equolity if X is o regular sz’mpléx.

Proof. First we prove the result for & = n — 1. Let V be one of the
vertices for which the corresponding barycentric coordinate of the origin is
at most 1/(n + 1). Let the line segment through the origin joining V to the
opposite {n — 1)-face F' intersect F' in a point P, say. Then the origin divides
the line joining V' to P into two segments bearing a ratio of not less than
n to 1. Since V lies on the unit sphere, it follows that d(0, P) < 1/n. Thus,
d(0, F) £ 1/n = o, n_1, which completes the proof for the case k =n — 1.

The proof for 0 < k < n — 1 is by induction on n. Suppose that the
result holds for n— 1 and for 0 < k < n— 1. Let F},_; be an (n — 1)-face
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of X nearest to the origin and let @ be the point in F,,_1 nearest to the
origin. Then 0 < d = d(0, Q) = d(0, F;,_1) < 1/n. The largest Euclidean ball
inscribed in X' with center the origin touches F,,_; at Q. Hence @} is in the
interior of the (n — 1)-simplex F,,_; whose vertices lie on the (n — 2)-sphere
with center ¢} and radius v1— 42 Fix 0 < k& < n — 1. By the inductive
hypothesis applied to @ and F,,_; there exists a k-face F of F,_; such that

d(Q, Fy,) < an_1 51~ d2.

d(0, Fi)® =d(0,Q)* + d(Q, Fi)* < d®+ (1 —d™)oy_1 4,
where 0 < d < 1/n. The right-hand side is greatest when d = 1/n, which
gives

So

1 1
d(0, Fy,)* < 2t (1 - ﬁ) Q15 = 0ne ®

The following theorem is perhaps of independent interest because of the
sharp constants.

THEOREM 5.2, Let (z)E' be elements from the unit ball of o Hilbert
space H and suppose that 0 € Co({zx; :1 < i <n-+1}). For each 1 < j < n,
there exists J C {i: 1 < i <n+ 1} such that |J| =7 and

d(0, Co({z: : i € 7)) < 4 /”—J’nljﬂll

Proof. By slightly perturbing the elements, if necessary, we may assume
that the set {z; : 1 <i < n+ 1} is affinely independent and that the origin
lies in the interior of the simplex Co({x; : 1 <4 < n+1}). Let y; = i/ |||
Clearly,

d(0, Co({z; : i € A})) < d(0,Co({y: :i € A}))
forall AC {i:1<i<n+1}. Now Lemma 5.1 applied to the simplex X
with vertices {y; : 1 < i <+ 1} yields the desired result. m

THEOREM 5.3. Suppose that A C R™ is approwimately conver and satis-
fies H(A,Co(A)) = logyn — 1. Then for any integer j with 1 < j < n we

" [log, 1)V
- (logon —1— [logy j j)
(22) diam(A) > ( NS vn
In particular, A satisfies the (nontrivial) lower bounds diam(A4) > 0.7525/n
for all n > 20, and diam(A) > 0.768+/n for all sufficiently large n.

Proof. Assuming (as we may) that A is compact, there exists xp €
Co(A) with d(zg, 4) > logyn — 1. By translating A, we may assume that
zo = 0. Thus, 0 € Co(A) and d(0, A) > logg n ~ 1. The fact that diam(A) =
D now implies that [|z|| < D for all z € A. By Carathéodory’s Theorem,
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there exist {x;)7h" in A such that 0 € Co({z; : 1 £
1 < j < n. Then by Theorem 5.2 there exists J & {4 : 1
that |J] = 7 and

, n—~j+1 n—j+1 D
L. < —_— . — e
d(0,Co({z; : 1 € J})) < 1/‘ e D ; =

Let yy be the point in Co({; : ¢ € J}) nearest to the origin. Because A
is approximately convex, the function d(x, A) is an approximately convex
function which vanishes at each z;. So, by Lemma 2.4, d(yo, 4) < w(j—1) <
[logy §] for 2 < j < n, and if j = 1 then yo € A and d(yo, 4) = 0 = [log, 1].
Thus d(yg, 4) < [log, 7] for 1 £ § < n. Therefore

n—j+1 D .
logyn ~ 1 <d(0, 4) < {yol + d(yo, 4) < V&Y [og, 51,

which yields

< n+ 1)), Let
i

%
<i<n+1} such

(togym — 1 — [log, §1)+/7 :
D> =
where the last formula defines f(j,n). If k is a nonnegative integer with
28 < n then [log, 2] = k = logy(2*). Therefore
(logyn — 1 — log, 2%)v/2k
Vn—2F4+1

logy (n/2*) — 1 k
= = F(n/2%) + r(k,

s = Fn/2 4 r(hun)
where F(a) = (logy e - 1)/(va —1) and r(k,n} — 0 as n,k — oo. For
each n and « > 0 there is an integer k so that o < n/2% < 2, and for
oy = 9.109883742,

ap < <20 implies F{a) = 0.76811996.

Therefore if n is sufficiently large and k is chosen so that o < n/2% < 2eq
then

F(2F,m) =

: k
[Zax f(g,n) > f(2%,n) > 0.768

and thus D > 0.768+/n.
Forany nand k > 1,

logy(n/2*) — 1

F(2F,n) > = G(n/2*

®m) n/2k— 1+ 121 (n/2°)

where G(8) = (logy 8 — 1)//B — 1/2. If o = 9.919205826, then Fo < 8 <
20y implies G(f) > 0.7525. Now assume that n > 20, and that G < n/2* <
200. Then 1.008 < 20/(28) < n/(260) < 2%, s0o k > 1. Therefore the”
argument above implies that for n > 20 the bound D > 0.7525,/n holds.
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For this lower bound to be nontrivial we also require 0.7525/n > logyn— 1.
However, this is true for all n > 1 and so the lower bound on D holds and
is nontrivial for all n > 20. »

REMARK 5.4. A similar argument shows that there exists £ > 0 such that
if A C R™ is approximately convex and satisfies H({A, Co(A)) > logyn — &,
then diam(A4) > 1.16+/n for infinitely many n.

Finally, we improve the upper estimate for the diameter provided by
Corollary 4.2.

THEOREM 5.5. Let (e:)lq be the unit vector basis of £37 . Then, for

n=4 and M = ./(2/In2)nlog, n, the set
A={MY tier+ Boaltr,staeot (t1,. - tn) € Ano
t==1
is approzimately convexr and satisfies the following:

H(A,Co(A)) =logam and diam(A4) < iwmlogz n + log, n.
Vin2

REMARK 5.6. Theorem 5.5 is a significant improvement on Corollary 4.2
as it eliminates the dependence on £ and reduces the exponent of Jog » in the
estimate for diam(A). When n + 1 = 2%, the set A is very nearly extremal,
since in this case H(4, Co(A)) < logy(n + 1) = C(R™*!) by Theorem 3.2.

The proof of this result is a consequence of the solution to a constrained
optimization problem. Consider the following functional:

k2 n 2
I(y) = M* {y(2)? do + ( { qb(y(z))dw) ,
0 0
where y(z) is a nonnegative function defined on the open interval (0,n).
(Recall that ¢(t) = tlog,(1/t).) The problem is to minimize I(y) subject to
the following constraints on y:
n
0<y<l and Sy(m)dm:l.
0
We prove in Lemma 5.10 below that, for M? = (2/In2)nlogyn, I(y) is
minimized by yo = (1/1)X(0,n)-

Assuming this result, we now complete the proof of Theorem 5.5.
Proof of Theorem 5.5. Clearly,
H(A, Co(A)) £ max En_i{t) =logyn.
tEAnv-rl
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To establish the reverse inequality, we show that d(zo, A) = logy n for zo =
(M/n)Y ", e;. Observe that

d(zo, A
=min{M2i (ti - l)Z t Bi(f1, .o tn)?  (f1,. 0 tn) € An—l},

i=1 n

and also that

Mzg (ti _ %)2 b Enoaltn, . )2 = glt1, . tn) — _l\i_z

where n n
ot ta) = 238+ (To(t)

Hence =1 i=1

d(zo, A2 = min{g(t1, -, tn) : (b1, o tn) € Anc1} ~ M2 /n.

But g{t1,...,ta) = I(§), where §(z) = > 5 1 teX[k—1,5). (Note that g(x) sat-
isfies the constraints for the optimization problem.) Since I(y) is minimized
by yo = (1/n)X(0,n) (see Lemma 5.10), we get

9(t1, - ta) = I1(3) = I(yo) = g(1/m, ..., 1/n).
Hence
d(zo, A = g(1/n,...,1/n) — M?/n = (logy n)?.
Thus, H(4, Co{A)) >log, n. The estimate for diam(A)} is straightforward. =
The next four lemmas solve the constrained optimization  problem.

LeEmMMA 5.7. Let M > 0 and n > 1. There exists o right-continucus
nonincreasing function yo on (0,n) which solves the constrained optimiza-
tion problem.

Proof. Let m be the infimum of I(y) taken over all y which satisfy
the constraints, There exist y, (n > 1) satisfying the constraints such that
I{yn) — m as n — oc. By replacing each y, by its nowincreasing rear-
rangement, we may assume that each y, is right-continuous and nonin-
creasing. By Helly’s selection theorem (see e.g. [15, p. 221]), we may also
assume (by passing to a subsequence) that y.{z) — Fo(z) pointwise. Since
0 < yo £ 1, it follows from the Bounded Convergence Theorem that
satisfies the constraints and that I(%p) = lim, I(y,) = m. Finally, let 1 be
the right-continucous modification of . w

LeMMA 5.8. There erists o € (0,1) such that the set of values taken by
Yo is o subset of {0,1,a}.
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Proof. In the notaticn of T.emma 5.7, we may assume that yy is a
step function minimizing I{y) over all step functions z;f:l 05X [(j-1)n/k,jn k)
satisfying the constraints, A value A € (0,1) taken by yx must satisfy the
following Lagrange multiplier equation for a local minimum:

(23) 2MA+ (2 9y de)¢'(3) = 24,

0
where A is a constant. It is easily seen that this equation has at most two
roots in (0,1). By the pointwise convergence of yy to %, it follows that yo
takes at most two values in (0,1). Therefore we may apply the method of
Lagrange multipliers again to deduce that these values must also satisfy (23)
(with vy replaced by o). Equivalently, setting B = Sg d(yo) dz > 0, we get

(24) M2X + B(log,(1/3) — 1/In2) = A.

Suppose that there are two distinct roots, a and 3, with 0 < & < 8 < 1,
and suppose that yq takes one of these values, « say, on an interval .J. (The
argument is similar if yo takes the value §5.) Let g take the value 0 on the
complement of J, and the values 1 and —1 on the left-hand and right-hand
halves of J, respectively. Since o € (0, 1), it follows that yo + g satisfies the
constraints, provided & > 0 is sufficiently small. Moreaver,

Since y¢ minimizes I,
B
o _—— >0
(25) M = mne 2
To derive a contradiction, suppose that yp also takes the value 8 on an
interval. Then, by the same argument,

B
M? e —— > 0.
(In2)8
Since (24) is satisfied by A =  and A = 3, the Mean Value Theorem implies
the existence of v € («, 3) such that

B
2 - ——— T
(In 2}y 0
Thus,
B B
e e M =0
o) In 2}y

But this contradicts (25). Thus, yo cannot take the value 5. =

M2
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LEMMA 5.9. Suppose that n > 4 and that

‘ 2
5n < M? < —~-nlog,n.

In2
Then yo does not toke the value 1.
Proof. For n > 4, we have
1
%) T <I(2xem)
M? 2 M?
= + (logy n)? < 2 loggn + (logy n)® < 5

Suppose that 3o takes the value 1 on [0, 2] and the nonzero value k € (0,1)
on an interval of length (1 —)/k < n—x. If k > 1/2 then I{yo) > (1/2)M?,
which contradicts (26). So we may assume that k € (0,1/2). Now

(o) = M*(z ++ k(1 — @)) + (1 - =) logy (1/k))*.

So
a_fgg_@ = M?*(1 - k) — 2log,(1/k)*(1 ~ z)
M2 2 .
> o 2log,(1/k)k(n —z) (since 1 —~ 2z < k(n —x))
M? 9 5 8
> T — ﬂoéﬁ%ﬁzkbgﬂl/k) )ﬂ > (§ - 'gm)—z)n > 0.

Since I(yp) minimizes I(y), it follows that z = 0, as desired. »

LeMMa 5.10. Suppose that n > 4 and that M? = (2/in2)nlogy n. Then
Yo = (1/n)X(0,n) and I(yo) = 2logyn + (log, n)?.

Proof. By Lemma 5.9, yo takes only one nionzero value k € [1/n,1) on
an interval of length 1/k. So I{yp) = M?k + (logs(1/k))?. Thus,

OI(w) _ 0 2oms(1/k) _ 2 Lo
ok =M T gk " ma\temnogleg) =0,

with equality if and only if k = 1/n. Since yo minimizes I(y), it follows that
k = 1/n, which gives the result. m

REMARK 5.11. Setting M? = 6n in Lemma 5.10 yields an approximaitely
convex set A € R™! with diam(A4) = O(y/n) and H(A4, Co(4)) > logyn —

¢log, log, n for some constant c.

6. Lower bounds in spaces of type p First we recall the notion
of type. In the following definition (£;)$2, is a sequence of independent
Bernoulli random variables, with P(g; = 1) = P(e; = —1) = 1/2, defined
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on a probability space (£2, %, P). The expected value of a random variable
Y is denoted by EY .

DErINITION 6.1, Let 1 < p < 2. A normed space X is of type p if there
exists a constant T,(X) (the type p constant) such that

(6] S ) <m0 L beuk)

for all n > 1 and for all choices of 2; € X (1 <4 < n).

The following theorem can be deduced from (and in fact is essentially
equivalent to) [3, Thm. 3.6]. For completeness we give a short direct proof.
We show in Corollary 6.6 below that the exponent of (p—1)/p in this theorem
is sharp.

THEOREM 6.2. Let 1 < p < 2 and let X be a normed space of type p.
Suppose that A C X is approzimately corvez. Let D = diam(A) and let
d == H(A, Co(A)). Then, provided d > 2, we have

i/p
(27) D> _.8_
16T,(X)

Proof. We may assume (cf. Theorem 5.3) that 0 & Co(A), that d =
d(0, A), and that ||alj < D for all a € A. Since 0 € Co(A) there exist m > 1,
a; €EAandp; >0 (1<i<m)withy o, p;i=1and )~ pia: = 0.

Let (Y;)$2; be a sequence of independent identically distributed X-
valued random variables defined by

P(ijai)zp,: (1Sz<_im)

Then ||¥;(w)] € D (w € 2) and EY; = 3.7, pia; = 0. Thus, [13, Prop. 9.11]
yields (for each n)

)

So there exist b7 € A (1 <i £ n) with

(28) 2 \; by

Since A is approximately convex,

(23— 1M/p,

lp)w S 2T“’(‘X—)(iﬂflllf’illp ) v < 2T, (X)n M7 D.
i=1

< (X )n-P/PD,

1 n
= T A< -1 <1 + 1.
d(ant, ) < k(n—1) <logyn

i=1
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So

1 n
<f=) b2
SRR ES 3

l n
d n < (1-p}/p )
+d(ni*-;-_1b“A) < 2T{X)n D+logan+1

Put n = 2[~? (noting that n > 1 since d > 2 by assumption) so that
logyn+1<d—1. Then

d = d{0,4) < 2T,(X)D (24 H0-Pp L g1,
which yields (27). »

REMARK 6.3. (28) and its probabilistic proof are from [2]. It is proved in
[2] that X has the conver approzimation property if and only if X has type
p for some p > 1. When X is a Hilbert space, Theorem 5.2 above gave a
deterministic proof of (28) with the sharp constants.

COROLLARY 6.4. Let X be a Banach space. The following are equivalent:
(a) X is B-conver;

(b) there is ¢ > O such that for every approzimately conver set AC X,
we have

(29) diam(A) > cexp(cH (A, Co(4))).

Proof It is known that X is B-convex if and only if X has type p
for seme p > 1 (cf. [17]). Thus, (a)=-(b) follows from Theorem 6.2. Now
suppose that X is not B-convex. By definition (see Section 3), X contains
“almost isometric” copies of £ for all n. So by Remark 4.5, X contains
approximately convex sets A, such that H(A,, Co(4,)) > logyn — 1 and
diam(A,) < Clog, n, where €' is an absolute constant. Clearly, (29) cannot
hold in X, and so (b)=-(a). m

REMARK 6.5. The above result is essentially equivalent to [3, Thm. 3.7],
which was first obtained in [12].

The following corollary is a partial converse to Corollary 4.2. When com-
bined with the latter it shows that the factor n(P—1/P in Corollary 4.2 and
the exponent of (p —1)/p in Theorem 6.2 are both sharp.

COROLLARY 6.6. Let 1 < p < oo. There emists a constant ¢, > 0 such

that if AC Ly(0,1) is approzimately conves and H(A, Co(A)) > logyn — 1,
then

diam(4) > =D/ (1<p<2),
= | epnt/? (2 <p< o).

Proof. It is known that Ly(0, 1) has type min(p, 2). Setting d = log, n—1
in Theorem 6.2 gives the result. =
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7. Sets with diam(A4) = H(4, Co(A)). In this section we show that
there exists -an infinite-dimensional Banach space Y such that for every
prescribed diameter D there exists an approximately convex set 4 C Y
such that diam(A4) = H(A4,Co(4)) = D. This is clearly “worst possible”.
More precisely, we prove the following theorem.

'THEOREM 7.1. Let M > 0. There exist a Banach space (X, || - ||) that

is linearly isomorphic to £1 and an approzimately convez set A C B (X)
such that H(A, Co(A)) = diam(A4) = 2M.

Iirst observe that Theorem 7.1 admits the following reformulation in
terms of e-convex sets.

THEOREM 7.2. Let ¢ > 0. There exist a Banach space (X,| - ||) that
is linearly isomorphic to £y and an e-convex set A’ C B(X) such that
H{A', Co(4")) = diam(A") = 2.

Proof. Let M = 1/¢ and let X and A satisfy the conclusion of Theo-
rem 7.1. Then A" = A hag the required properties. n

The following lemma is known [3], but for completeness we outline the
proof.

LEMMA 7.3, Suppose that A C X is approzimately Jensen-conves. Then
A is 2-conver. In particular, (1/2)A is approzimately conver.

Proof. Let f(z} = d(z,A) (x € X). Then f is a continuous approxi-
mately Jensen-convex function, i.e.

{55 < 5@+ sa)+s

2
By [16], f is a 2-convex function, which implies that A is a 2-convex set. m
Lemma 7.3 shows that Theorem 7.1 is equivalent to the following result.

THEOREM T.4. Let M € N. There ezist a Banach space (X,| - ||) that
is linearly isomorphic to £1 and an epprozimately Jensen-conver set A C
B (X) such that H(A, Co(A)) = diam(A) = 2M.

REMARK 7.5. The restriction M € N is made only to simplify notation
in the proof. Clearly, the result will held for all A > 0 by scaling.

The rest of the paper is devoted to the lengthy proof of Theorem 7.4. To
construct the space X appearing in the conclusion of the theorem, we begin
with the “tree-like” combinatorial structure which will form a Schauder basis
for X. Pix M € N, Let I; = N, and for n > 1 define L,, recursively as follows:

an{(a,b):l’IELi, bELj,i+j=n, 1S’i,j<n}.
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Let L = U3, Ln, and, for @ € L, let e, denote the indicator function of {a}.
For R C L, let coo{R) denote the vector subspace of £ (R) spanned by the
set {e,:a € R}. For z = ¥ .1 Aata € Coo, let supp(a) = {a € L : A, # 0}

We introduce two norms, || - Iy and || - ||1, on coo{L):
H S atal, = DAl
aEL acl
and
“Z)\aea S SV ER W
ach agl; a@I\L,
Note that || - ||; is the usual £, norm and that || - |1 is a weighted £; norm

with respect to the basis {e, : @ € L}. A linear mapping T : cog(L) — coo (L)
is defined (extending linearly) thus:

T _ 0 faoe Ly,
(€a) = (ey +e0)/2 Hfacg U:J—_-z L, and a = (b, ¢).

Note that T(cog(Ln)) € coo(lJpzs Lx) and that T"(z) = 0 for all z €
Coo( L,). Hence § =TI —T is an 1nvert1ble operator on ego(L) with inverse
= Y1 o T*. Note also that

Y T(a)a) <> xla

acl ael
if z(a) 2 0 for all @ € 4, with equality if supp(z) C Up—, L
Define a norm i - || on cgg (L) thus:

lzll = imf{Mylls + ISl : 2 =y + 2} (= € coo(L)).

Let (X, ||-||) be the completion of (cop (L), ||-||) andlet A = {e;:a € L} C X.
The verification that X and A satisfy the conclusion of Theorem 7.4 will
be broken down into four lemmas.

LeEMMA 7.6. Suppose that F € B(X*). Then the mapping ¢ : L — R
defined by ¢(a) = Fle,) satisfies the following:

(a) [¢la)| € M for all a € L;
(b) |é(a) — (¢(b) + ¢(c))/2] £ 1 for all a = (b,¢) € ULy Ln-
Conversely, every ¢ which satisfies (a) and (b) corresponds to a unigue
F e B(X™).
Proof. From the definition of || - || we see that F € B(X*) if and only if
{30) |F(z)] < min(Mljz], [SH2)]5) (= € coo(L)).
Indeed, if F' satisfies (30}, then for every = € cgo{L), we have
il = inf{MIlylis + 157 )N} s =y + 2}
> inf{F(y) -+ F(z): 2 =y + z} = F(z),
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and so ||F'|| < 1. Conversely, if | F|| < 1, then

F(a) < |lall < min{3]|z|lz, [| 5 ()[}7),

and {30) is satisfied.

The condition |F(z)| < M||z||; is clearly equivalent to (a). Since || - ||1 is
a weighted £; norm, the condition |F(z)| < || S~ (z)] is equivalent to
(31) (F(S(ea))l < llealy  (a € L).
Suppose that a € Ly. Then S{e,) = e, and |e, ||} = M, and so (31) becomes
|¢(a)| < M. Now suppose that a = (b,c) € | J°o, Ln- Then S{e.) = €, —
(1/2)(es + e.) and |leq]|} =1, and so (31) becomes

|#(a) — (6(8) + é(c))/21 < 1,

showing that (b) is satisfied. Conversely, if ¢ satisfies (a) and (b), then the
mapping F(e,) = ¢(a) will extend linearly to an element of B(X*). m

REMARK 7.7. From the description of X* it follows that

slzll < Jlz)l < MlJfls.

So (X, ||-|) is isomorphic to £; (and the Banach-Mazur distance from X to
¢y is at most 2M).

LEMmMA 7.8. Suppose that B C L has the property that whenever a =
(b,c) € E, then b,c € E. If ¢ : E ~— [-M, M] satisfies
(32) [9o(a) — (do(B) + dolc))/2l <1
for all a = (b,c) € E, then ¢o admits an extension ¢ : L — [~M, M]
satisfying
(33) |¢(a) —
for alla = (be) &€ Urog Im.
Proof We define ¢ recursively. First define ¢ from L; into [-M, M| to

be an arbitrary extension of the restrlctlon of ¢p to L. Suppose that n > 1
anc that ¢ has been defined on U,C ~1Ln to extend the restriction of ¢g to
Ukt ! Li. Let @ = (b,¢) € Ly. Then b,c € |JpZ L,rc, and so ¢(b) and ¢(e)
thV@ already been defined. If ¢ € E, then b,c € E and so ¢(b) = ¢o(b) and

dlec) = do(e). Tt follows from (32) that (33) will be satisfied with ¢(a} =
do(a). If a ¢ B, define ¢(a) = (1/2)((b) + ¢(c)), so that (33} is trivially
satisfied. This completes the definition of ¢ on Ly,. m

Now fix @ € L and let E, = |J,—osupp{T™{e.)} (which is equal to
Uf::ol supp(T™(e,)) for a € Ly). For d € Eu; we define the a-order of d,
denoted by o,(d), thus: :

04(d) = min{n > 0: d € supp(T™ (ea)) }-

(6(B) + #(c))}/2] < 1
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LEMMA 7.9. Given a € L, there exists ¢ : L — [—M, M) satisfying (33)
such that

(34) $(d) =~ (d e Ln\ Ea),
(35) ¢(d) = max(M ~ 0.(d), -M) (d€ LN E.),
(36) ¢(d) > max(M — o,(d), =M} (d€ E,).

Proof. First we define a mapping ¢o : B, ULy — [-M,M]. H d €
Ly \ B, let do(d) = —M, and if d € Eq (1 Ly, let

¢o(d) = max{M — o,{d),—M),
so that (34) and (35) are satisfied. Now extend to the rest of E, recursively
as follows. Suppose that n > 1 and that ¢g has been defined on EaﬂU,g é Ly,
to satisfy (33) and (36). Let d € E, N Ly. Then d = (b,c) for some b, ¢ €
E, N U?;g L. Define

¢o(d) = mm( —————————¢O(b) * $ol0) + 1).
If ¢o(d) = M, then, as ¢o(b) < M and gbo(c) < M, we have
pold) = a < AR g MEM 4y

so that

$0(d) — (do(b) + do(c))/2l < 1,
Le., (33) is satisfied by d = (b, ¢). Also, if ¢o(d) = M, then (36) is trivially
satisfied.

On the other hand, if ¢o(d) = (¢o(b) +do(c))/2+1, then (33) is trivially
satisfied by d = (b, c). In order to verify (36), suppose that o,(d) = k. Then
both 04(b) < k+ 1 and 0,(¢c) < k + 1. Moreover, both b and ¢ satisfy (36)
by the recursive hypothesis. Thus,

bo(d) = 050(5)';'%(0) +1
(= 00 2M) 4 (M — 0o, M)
o, max(M - (k+1), M)+ma:x(M (k-l—l),-—M)
- 2

> max(M — k,—M) = max(M — o,(d), —M).

Thus, (36) is satisfied by d, which completes the recursive definition of dg.
Now ¢ and B, U Ly (replacing E) satisfy the hypotheses of Lemma 7.8. Let
¢ be the extension of ¢ given by Lemma 7.8. u

The following lemma completes the proof of Theorem 7.4.
LEMMA 7.10. Let A= {eq:a € L}. Then A satisfies the following:
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(i) A C Bu(X);
(ii) A is approzimately Jensen-conver;
(iii) H(A4, Co(4)) = 2M.

Proof. Suppose that F € B(X*). By Lemma 7.6, |F(e,)] < M for all
a € A, and so (i) follows from the Hahn-Banach Theorem. Suppose that
byc € A. Then a = (b,c) € A, and by Lemama 7.6,

|F'(ea) = F((1/2)(es +ec)) < 1,
which gives (ii). To prove (iii), note that (i) implies that Co{A) C Bas(X)
(since Bpr(X) is convex), and hence
H(A, Co(A)) < diam(Bp (X)) = 2M.
So it suffices to prove that H(A4,Co(A)) > 2M. Fix N > 1 and choose

distinct elements ay,...,ay € L. We shall prove that
1
d(N—Zeak,A> > 2M — ey,
k=1
where ey — 0as N — co. Let a € L. If d € F, and o,(d) = k, then
T*(eqa)(d) 2 27%. Since ¥,z T*(ea)(b) < 1, it follows that By = {d € L :
0,(d) = k} has cardinality at most 2%. Thus
20d—1 20f—1

| U Ek|§ 3ok M g
k=0 k=0

Let ¢ : L—[—M, M| be the function associated with a defined in Lemma. 7.9,
and let F € B(X*) be the linear functional corresponding to ¢. If a; €
Ly \ E,, then ¢(a;) = —M by (34). If a; € E, and o,(a;) > 2M, then
d(a;) = —M by (35). Hence if a; @ G = (UM, By, then ¢(a;) = —M.
Moreover, ¢(a) = M by (36), since 0,(a) = 0. So

F(em— I_i,—(iea,.)) = ¢(a) — “leitﬁ(a)

k=1 k=1

1
2 M — (N~ |G){~M) +|G]M)
2 22M+1M
= 2M — ZIGIM 2 2M — ——,

and so

22M—EN7

1 N
F S eak - €q

where ey = 221 Af/N — 0 as N — oo, as desired. m
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THEOREM 7.11. There exists ¢ Banach space Y such that for everye > 0
there exists an c-convex set A C B(Y') with H{A,Co(4)) = 2.

Proof Let X, denote the space constructed above for M = n. Then
the £3-sum ¥ = (307, ®X,)2 has the required property. w

REMARK 7.12. Since X, is isomorphic to £, (Remark 7.7), it has both
the Radon-Nikodym property (see e.g. [6]) and the approzimation property
(see e.g. [14, p. 29]). Hence ¥ = (3 .-, ®X,)2 has the Radon-Nikodym
property [6, p. 219] and (as is easily verified) the approximation property.

Since C[0, 1] is a universal space for separable Banach spaces (Mazur’s
theorem), it satisfies the conclusion of Theorem 7.11. So, finally, let us re-
formulate Theorem 7.2 to make good the claim made in Remark 3.7.

CoroLLARY 7.13. Let £ > 0. There exists a (nonnegative) e-convez 1-
Lipschitz function on B{C[0, 1]} such that

sup{|f(z) — g()| : z € B(C[0,1])} = 1
for every conver function g.

Proof. By Theorem 7.2 there exists A C B(C[0,1]) such that 4 is
e-convex and H(A, Co(A)) = 2. Then f(z) = d(z, A) has the required prop-
erties. w
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