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A class of Fourier multipliers on H(R?)
by
MICHAL WOJCIECHOWSKI (Warszawa)

Abstract. An integral criterion for being an H'(R2) Fowrier multiplier is proved.
It is applied in particular to suitable regular functions which depend on the product of
variables.

‘We give integral criteria for a function of two real variables to be a Fourier
multiplier on the space H'(®?). The main result deals with functions whose
support is contained in the set {£: |{{1£2] < ¢}, and all the other results are
its direct consequences.

THEOREM L. Suppose that m € S'(R?*) is such that suppm C {¢ :

|€162| < C} and it has locally integrable derivatives %ﬁrfﬁ,(ﬁ) fora, B €

8u
acy oLy
{0,1, 2} which sotisfy for every r > 1,

- 8xth
(1) Lg(r) =r® | _ ﬁm(f)‘ de < C,
r<fy<2r 651 652
£1>€2

and a symmetricelly modified inequolity for £&2 > £,. Then M is a Fourier
multiplier on H*(R?).

The condition (1) is much weaker than Hormander’s integral condition,
which in general is not satisfied by the multipliers considered in this paper.
In general only the multidimensional Marcinkiewicz multiplier theorem can
be applied to multipliers of this type, but it gives no information about
their L'-norm behavior. Moreover, as shown in [W2], operators given by
multipliers described in Thecrem 1 which do not tend to 0 at infinity may
not be of weak type (1, 1). On the other hand, at least for sufficiently regular
multipliers which depend on the product of variables, one can check using
the method developed in [W1] that they are bounded on the multiparameter
Hardy space H'(R x R). This in turn implies that the norm of such a
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multiplier operator on L#(R?) is majorized by (p — 1)~% as p — 1. Clearly
Theorem 1 allows us to improve this bound to (p — 1)7%.

The proof of Theorem 1 is based on some refinement of the Stein theorem
on Fourier multipliers on H!(R) given in Lemma 1, the Littlewood-Paley
theory which is used in Lemmas 2 and 3 to construct, using Lemma 1, some
specific auxiliary Fourier multiplier on H(R?) and finally on the theorem
of Marcinkiewicz type for multipliers on H' spaces on product domains
(cf. [W1]). Notice that we use the theory of multiparameter Hardy spaces
to obtain a result concerning the classical Hardy space. Roughly speaking,
using the multiplier constructed in Lemma 3 and the Littlewood-Paley the-
ory, we are able factorize the multiplier from Theorem 1 through some other
multiplier m’ acting on H'(R x R). Condition (1) yields that m' satisfies
an integral condition of Marcinkiewicz type, precisely that which is the as-
sumption of the result of [W1].

Theorem 1 is applied first of all to multipliers which depend on the
product of variables.

COROLLARY 1. Let f : R — R have a bounded support and f*) € L'(R)
for k =0,1,2,3,4. Let m € §'(R?) be such that M(€) = f(£1€a). Then M
is a Fourier multiplier on H(R?).

Notice that the norm of the multiplier from Corollary 1 does not depend
only on the Sobolev norms of derivatives, but also on the size of the support
of f. Nevertheless one can remove the bounded support assumption at the
price of strengthening the integral conditions on f.

COROLLARY 2. Suppose that f: R — R satisfies

Fa 1) 7M@) dE < 0o for £=0,1,2,3,4.

R
Let (€) = f(£1&) for some m € S'(R*). Then 7 is o Fourier multiplier
on H(R?),

As a consequence we get immediately an answer to the question stated
in [BBPW].

COROLLARY 3. The function m(€) = f_(é—fg—zp- 18 o Fourier Tﬁultiplier on
HL(R?).

Elements of R* are denoted by = = (z1,%), ¥ = (v1,%2), and Greek
characters £ = (§1,&2), 7 = (171,72) stand for elements of the dual group.
"The symbol R, stands for positive real numbers, A function ¢ € L= (R?) is
called a Fourier multiplier on a translation invariant function space X (R?)
if the formula Ty f = (f1)V defines a bounded operator on X (R?). Here the
symbols “*” and “¥” denote the Fourier transform and its inverse, H*(R?)
stands for the space of functions f such that f, Ry f, Raf € L*(R?), where
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R is the Riesz transform with symbol &;/|¢|. By H'(Rx R) we mean in this
paper the subspace of L'(R?) consisting of functions with Fourier transforms
supported by the first quadrant.

The proof of Theorem 1 is based on a series of lemmas. Lemmas 1 and 2
deal with Fourier multipliers on F*(R).

Suppose that 1 : R — R is such that supp ) C (3/4,3/2) and

S [%(s)|ds < Cht™®  for some a > 0 and every £ > 0,
s>t

S [¥'(s)|ds = C < oo.
E
Notice that the estimate in (2) holds if, for example, {5 has square integrable

derivative. Let 9y, ¥y, € &'(R) satisfy 1?)\,\(t) = {/;(1 +{E—1)) for A > 1
and

(3) Van(t) = Balt/2"),

and let k) € S'(R) be such that

(4) }\LA = Z {EA,TL'
n=1

LEMMA 1. The norm of hy as a Fourier maultiplier on H*(R) is uni-
formly bounded for X > 1.

REMARK. The lemma is a refinement of Stein’s theorem on H' multipli-
ers which gives the boundedness of these multipliers. The refinement is the
uniform boundedness in A.

Proof (based on the proof of Hérmander’s theorem, cf. [H&], Th. 7.9.5).
We have |15 (s)] = A™[w(A"1s)| and

(5) | lwa(s)lds = | l(v)|dv < Cuaete,
8>t v> A1
Similarly
J lwi(s) ds = A" { |/ (v)| do = G227,
R R
which implies

(6) J1vals +y) —a(s) ds < CaA~2yl.
E
Let I{a,t) = {z : |z — o] < t}. We will show that

(7) S }h;\*wldeCSjme for w € C§°(I) with {wdz =0
®\I*
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where I* = I(a, 2t). It is enough to prove (7) for a = 0. Since the Fourier
transform of 1 (Rz)R is ¥, (§/R), (3) and (4) yield

halz) = Z%(zjm)?g

with & convergence. Since suppw C I, (5) and (6) give
| Run(-Ryswlde < | [4a(Ro)ld(Ba){lw! do
agI* |z >

< Gy (tR) ™ | |w| dz

and
{ Blun(- R)*wldo < [{lu@)@a((z —y)R) — va(zR))|Rdz dy
wg I
< CpA MR |w| da.
Hence the triangle inequality gives
| raxwlds<o(d 3 @07 +27 Y th)SIw]d:s
wgl 20t <A
< O’S Jw| dz,
which proves (7).

Let now u € HY(R). By [T, §XIV, Th. 1.10], » admits an atomic decom-
position

oQ
U= E Ajﬂj
j=1

where > [N S [|u[lgim) and uy are (1,2,0)-atoms. Recall that a function
v is called a (1,2, 0)-atom provided there exist ¢ € R and r > 0 such that

(1) suppv C I{a,r);

(@) Jloll2 < [{a, )73

(iti) fge v(z)dz =0
Therefore it is enough to show that ||k *v||; < C for some C' > 0 and every
2-atom v. We have

flha * v]ly = S [Py * |+ S [hy * vl
I B’n \I*

The second integral on the right hand side satisfies the required estimate
by (7). To estimate the first one, notice that since hy is a bounded function,
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|k * vl2 < ||v]l2- Thus, by the Cauchy-Schwarz inequality

1/2
[ 1hasvide < (§ da) " [y olls S [2(a, 20012 0fl> < 272 u
I+ I

LEMMA 2. Suppose i satisfies conditions (2) and supp+ C (3/4,3/2).
Let vy, be given by Ut ) =1+ (t—2")2") for n =1,2,.
Y omeg Y. Then @ is a Fourier multiplier on H(R).

Proof. Since H! Fourier multipliers are closed under bounded point-
wise convergence, it is enough to show that w; = Efr—«o ¥, is an H?!
Fourier multiplier with norm bounded _independently of k = 1,2,... Let

do, 1, 2,... € 8'(R) be such that 1 = 450 + 3 ¢>n is a smooth pa.rtltlon
of unity such that

fu(z)=1 forzesupp®, Pult) = G1(27"t).
By Littlewood—Paley theory we have

., and w =

(®) e = | (2 1 % 0ul?)
n=0
Let 2, 01,92, .. € &(R) be such that §: R — Ris a smooth functlon

samsfymg q&l(w) = 1 for ¢ € suppd and G(m) 1 for z € supp? and
n(t) = B(t—2"+1) forn =1,2,... By {8) and the Marcinkiewicz—Zygmund

theorem (cf. [MZ, Theorem 1], or [GR, Theorem V.2.7]),
® I

Hence, since &, x ¢, = 8, n=1,2,.

k
o |
n=0

éif*qsn <6)" | £ 17l

.., from (8) and (9} we get

S F .

To simplify the formulas we set x(t) = e*™*. Thus x*(t) = €*™***. Notice

now that
(11)

230\1

n
'w‘n = ¢2k k—mn>

(12) g, = G
Since 8; * ¢; = 8; and 6; x ¢p; = 0 for j # 1, we have

k k
B % 3 (F0x> T =g 3 T 4G,

n=0 n=0

_ fxzk—:,‘_zj * Hk_‘j — (f " gj)xzk—j_z.ﬁl
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Therefore, by Littlewood-Paley theory (we put f, = f % 6,),

(13) H}an "2 2453 S b

n=0 n=>0

(Dfnxz’“‘“-”m”?tll

n==()
ke k
/2
2 o
RSO ) AR
Notice that (13) holds for every collection of functions fo, f1,..., fk such
that supp f; C supp 8;, in particular for the collection f; *4, = 0,1,2,.

Therefore

1i

HI

%

= H Z(fn spa)xt

llwr * £l 21 0

k
D fax |,
n=0

k
k—n __nn k—n_zn
= i fnxz ? *"/}nx2
=0

HqHt

k
k—ﬂwzn
= Z fn.X2 * wzk,k—n

n=0

HY

Applying now consecutively Lemma 1, (13} and (10), we get

k
k—n__gn
NE DI

n=0
k
|- H;fn .

and the lemma follows from Lemma 1. =

fown * fllan S T3

H1

S Iz, - s

In the next lemma we apply Lemma 2 to construct some specific Fourier
multiplier on H*(R?). We now introduce some notation to be used below.
For every measure g on R we define a measure g (resp. "g“) on R? by g(z) =

g(z1) ® do(a) (vesp. Fx) = do(@r) ® g(w2)). Clearly §*(¢) = g(£1) and
" () = §(&2)- Also we put X(¢) = €*™ and X(£) = €™,

LEMMA 3. Suppose that n,m1,M2,. .- € S'(R) are suchthat 7: R - Risa
stnooth function setisfying supp 7 C [e,b] C (3/4,3/2) and 7, (t) = H(27"¢).
Let ¥, v1,72,... € 8'(R) be such that {[; is o smooth function with support
n [--1/2,1/2], v satisfies conditions (2} and Fn(t) = (27t). Let
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oo
Tof = fux7
n=0}

i.e. m € 8'(R?) is such that

m(§) = z M (€1} (€2)-

n=0
Then M is o Fourier multiplier on H'(R?).

Proof. Let [ be a smooth function which is a Fourier fransform of a
bounded measure u such that supp i is bounded and E(t) = 1 for —1 <
t < 1. Let B, € 8'(R), n =0,1,2,..., be such that F,(t) = fi(2~"t), and
v € §'(R) be such that

Tsf = Z £ # T # B
oyt
ie. T(&) = Yoo, ﬁn(gl)ﬁn(& . By the Stein theorem (cf. [S, Chap VII,
Theorem 9]), ¥ is a Fourier multiplier on H*(R&?). Also convolution with a
bounded measure is a bounded operator on H*{R?). Hence the formula

oQ o0
Tifwﬁ*z.f*ﬁﬂ Zﬁ*z.f*ﬁn *ﬂn

n=0 n=0
defines a bounded operator on H'{R?). Let g, g1, 02,... € &'(R?) be such
that g : B — R is a smooth function satisfying supp@ < [~3/2,3/2] x
[-3/2,3/2]\ [-3/4,3/4] x [-3/4,3/4] and () = 1 for z € [—b,b] x [—b,b] \
[—a,a] X {—a,a] and gn( y =52 "z) for n = 1,2,... Let f € HYR?).
Since 7ip * 7 * 0n = Tn * T, by Littlewood—Paley theory we get (setting
fn = f* (5n *ﬁ))

15 ), 255 4,

= | Tl - 1l S A e

Therefore
T fllr = || D F* (i *70) H Z x|
n==0
o0 oot 12
(i) I} = (S emer) ),
n=0
= noo\ -2
I s,
n=0
Notice that ”an = ’i,bn, where 9, are the functions from Lemma 2, and

W QT

W=y oo, Moreover, the Fourier transform of the function 3,00 £ %
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is supported on the halfplane {£ : & > 0}. Therefore, by Lemma 2,
og
_ |i== =27 2"
e S|, 5[ S
n=0
Since f,%° % op = fn¥> We can again use Littlewood-Paley theory to get

|55 5], = (), =S ) )

SFliz. m

Proof of Theorem 1. Tt is enough to show the theorem for multipliers
m =3 o Mg, with suppfi, C K, = [a2",b2"] x [~27""2,277"2] where
3/4 < a <1 < b < 3/2 are fixed. Indeed, first observe that since the
composition with a homothety does not change the multiplier norm, one can
assume that C' = 1/2. Then notice that one can easily construct nine smooth
functions go, g1,-..,9s such that go+g1 +... +gs = 1 on {£: [&1&a] < 1/2},
go has a bounded support, g1 is supported on A = Uﬂ_0 K, and for j =
2,3,...,8, g; is a composition of g; with some similarity, and g,/ satisfies
condition (1) as also does M (with, maybe, another constant). Clearly the
proof for g, gsm, . . ., gs is similar to that for g;7 and the last function
has the required property. The remaining summand g = gof has bounded
support and 8°+8g/0t20¢Y € LY(R?) for , 8 < 2. Therefore w‘{‘mgﬁ are
bounded functions for e, # < 2. Hence [§(z)| < (1 + )72 {(1 + 23)~* and
thus § € L(R?), which means that g is a Fourier multiplier.

Let 7,m1,7m2,... € & be such that 7 : R — R is a smooth function
satisfying 7j(t) = 1for ¢ € [e,b] and supp % C [3/4,3/2], and 7/, (t) = H(27 ).
Let v,7v,7,..- € 8'(R) be such that ¥ : R ~+ R is a smooth function
satisfying (2) and () = 1 for ¢ € [-1/4,1/4] and supp” < [-1/2,1/2],
and ¥, (t) = F(2"t). Clearly we have 7, (&1)Fa(&2) = 1 for € € K,,. We set

= f %7 *7,,. Applying Littlewood—Paley theory twice (in both cases
summands are supported by pairwise disjoint dyadic frames), we get

228

1T flls = | 3 %"«
n=0

Wt = St~ (St mr)
= (i|fn*mn)_2—nl) ”
==]1
(g e e,
~ gfniz_"*mnfrn .
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Notice now that 52 f.X% € H*(R x R) (because its Fourier transform
is supported by Ry x Ry ). On the other hand w € S'(R?) given by @ =
S i d(0,2~»y satisfies the assumptions of Theorem 1 of [W1]. Indeed,
we have

cx+4-3
2n(a—1)2—n(,5—1) S aa B(Tﬁ*é(ﬂﬂ_“))(f)‘ dufl d£2
Kn+(0,2-7) agl 362
HoetB
= on(a—p) m(g)’ dEidéy = I, g(2™) < C.
KSﬂ oszoef ’

Therefore, by Theorem 1 of [W1], it is a Fourier multiplier on H*{R x R).
Hence we derive that

lfm*flllf,HZf“‘2 '

Using Littlewood--Paley theory again we get

e (S ), = (S i),
m”;f” H1

By Lemma 3 the last expression is bounded by ||f|| g: and we are done.
Proof of Co'rollary 1. We have

Substituting s = r~*¢;, t = rés, we get
Lap(M Py | (@77 D k)| de

3 r<éik2r
£1>E€2
SNV ettt dsde S Y 1FP) m
j 1l<ea<2 k<adtp

Proof of Corollary 2. Let ¢, é1,¢,... € S'(IR) be such that 1 = g +
Yooy an is a smooth partition of unity satisfying supp¢: C [1/2,2] and
B (t) = $1( ~"t}. Denote by R(g) the operator given by the Fourier mu1t1-
plier () = g(€1&2). Let gn(t) = fdn(27t). Then

en)

IR < }j [R(F o)l = > IR{gn)l
n=1

=]
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and the functions g,, have uniformly bounded supports. So, by Corollary 1,

oo 4
IRAOIS I gl ls-

n=0 k=0
Clearly we have
1y ok
g1 S 2 0m 8 L e

n | supp ¢n
Therefore,
oo 4 . oo 1 .
IR S SOS ab-bmp® 1 3 fa+ 1) s o) at.
n=0k=0 n=0R
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