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On the other hand, Theorem 1 and the Cérdoba-Fefferman inequality in [6]
tell us that

2
ITasasloe <CTI (X 1D A5lBm0 ) 1 £ lpa

J=l agl|=m;

and so

2
173, 4 F o S CTT (32 1D 45llmio ) 1 -

=1 Jajl=m;

This finishes the proof of Theorem 1.
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Limit laws for products of free
and independent random variables

by

HARI BERCOVICI (Bloomington, IN) and
VITTORINQ PATA (Brescia)

Abstract. We determine the distributional behavior of products of free {in the sense
of Voiculescu) identically distributed random variables. Analogies and differences with the
classical theory of independent random variables are then discussed.

1. Imtroduction. The concept of free independence introduced by D.
Voiculescu has developed into a powerful noncommutative analogue of the
clagsical notion of independence in probability theory. The book [8] pro-
vides an introduction to the area, showing in particular that some results
about free random variables parallel in a rather striking fashion classical
facts of probability theory. One instance of this parallelism occurs in our
earlier work (2], where we studied the limiting behavior of sums of free,
identically distributed infinitesimal random variables. More precisely, let
{Xi; : 4 21, 1 £34 < n;} be an array of classical independent random
variables, and {Y;; : ¢ > 1, 1 < j < n;} an array of free random variables.
Assume that limi—,eo 7; == oc and the variables X;y,..., X, Y, ..., Yin,
are identically distributed for every i. The main result of [2] states that the
variables y_0) Xi; have a limit in distribution as i — co if and only if the
variables 7%, ¥i; do. Moreover, the classical and free limits are related in
a rather explicit manner.

Qur purpose in this paper is to develop a similar result for products of
positive random variables, Here the parallelism between freeness and inde-
pendence is not as perfect. An instance of this phenomenon was already seen
in [5], where it was shown that there exist two free multiplicative “Poisson”

laws with no commutative analogues.
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The results in this paper will be written in terms of convolutions (as
were those of [2]). Denote by M the Borel probability measures defined on
(0, c0). The classical multiplicative convolution of two measures p, v € ML
is denoted by £ ® v. Thus, u ® v is the probability distribution of XY,
where X and Y are classical (commuting) independent random variables
with distributions p and v, respectively. Free multiplicative convolution is
another associative composition law on M., denoted by ™. This was first
defined by Voiculeseu [7] (for compactly supported measures; see [5] for
the general case). For p,v € My, p® v is the probability distribution of
X172y X1/2 where X and Y are free random variables with distributions u
and v, respectively.

The remainder of this paper is organized as follows. Section 2 contains
notation and preliminaries concerning the calculation of multiplicative con-
volutions. Qur main result about free multiplicative convolution is in Sec-
tion 3, while Section 4 provides a comparison between the free limit theorem
and its classical counterpart.

The authors would like to thank Rick Bradley for several useful discus-
sions concerning the subject matter of this paper.

2. Preliminaries. We begin with the analytic method for the calculation
of multiplicative free convolution discovered by Voiculescu (7] (cf. also [4],
[5], and [8]). Denote by C the complex plane and set Ct = {z € C: Sz > 0},
C~ = —C*. For a measure v € M_ one defines the analytic function ¢, by

zt
Y(2) = S 1— 2zt
(0,00)

for 2 € C\ [0,00). The measure v is completely determined by 1. The
function %, is univalent in the left half-plane ¢C*, and 1, (iC") is a region
contained in the circle with diameter (~1,0); moreover, 1, (iC*)N(—~00,0] =
(—1,0). If we set 12, = ¢, (iC™), the function 2, has an inverse

Yo i §2, = iCF
Finally, define the §-transform of v to be
S, (z) = 1 -lz- z
The following basic result is proved in [7] (see [5] for unbounded supports).
2.1, THEOREM. Let ju,v € M. Then
Sy0(2) = Su(2)5.(2)

for every z in the connected component of the common domain of S, and
Sy containing the interval (—1,0).

du(t)

x.(2), =z€f.
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Recall that a measure v € M, is said to be ®-infinitely divisible if, for
every natural number n, there exists a measure p, € M, such that

v=p, 8.  Ru,.
[ 2

7t times

The notion of @-infinite divisibility is defined analogously. K-infinitely divis-
ible measures were characterized in terms of their S-transforms [5]. Namely,
a measure v € M_ is B-infinitely divisible if and only if 5, can be written
as Su(z) = exp(v(z)), where v is analytic in C\ [0,1], v(C*) ¢ C~ UR,
and v(Z) = v(z). One can then use the Nevanlinna representation of func-
tions with positive imaginary part in a half-plane to arrive at the following
Lévy—Khinchin formula.

2.2. THEOREM. A measure v & M, is R-infinitely divisidle if and only
if there exist a finite positive Borel measure o on the compact space [0, oc]
and a real number v such that S,(z) = exp(v(z)), where v is given by

1
(i) roae § e

[0,00)

with 8 = ¢{{oc}).

We denote by v the B-infinitely divisible measure determined by the
above formula.

The study of @-infinjtely divisible probability measures reduces (by a
change of variable} to the study of the usual infinitely divisible measures
on R. The Fourler trausform needs to be replaced by the Mellin-Fourier
transform of a measure v € M, defined by

D,(s) = S tdu(t), scR
(0,00)
‘We have
Pugu(s) = 2.(s)®pu(s),

and the classical Lévy—Khinchin formula is as follows (see [6] for the additive
case) (1).

2.3. THEOREM. A measure v € M4 is ®-infinitely divisible if and only
if there exist a finite positive Borel measure p on the space (0,00) and a real
number & such that

; islogt \log’t+1 }
= . - 1 dolt) .
D, (s) = exp [zds + o Sm) (t + og?t 4 1) Tog ¢ o(t)

(*) We should remark that in [2] the classical Lévy-Khinchin formula for the additive
cage is written incorrectly. This error has no bearing on the validity of the results of that

paper.
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We denote by Vg)’g the ®-infinitely divisible measure determined by the
above formula.

We conclude this section with a brief discussion of weak convergence
on (0,00). A sequence {v, : n > 1} in M, converges weakly to v &
My if limp e 2,((a,b)) = v({a, b)) whenever a and b are not atoms of
v. This condition implies the tightness of {r, : n > 1} on (0,00), ie.,
limle— g 8UP,sy Un (B (g, 1/€)) = 0. If the measures ju, are finite Borel mea-
sures (not necessarily of total mass one) then one moreover requires tight-
ness of the sequence. This convergence can moreover be characterized by
the requirement that

lm § f@)dm@®) = | ft)dv(t)
{0,00) {0,00)
for every bounded continuous function f on (0,00). We will also use weak
convergence for measures on the compact space [0,00]. Thus, a sequence
{vn : n > 1} of Borel measures on [0, 6] converges weakly to v if

lim v, ([0,00]) = v([0,00]) and lim wvn((a,d)} = v({a,b))
whenever a and b are not atoms of v. Equivalently,
Im | @)= | @
{0,00] {0,00]
for all continuous functions f on [0, o0|. Here, of course,
| foav@= | r@dv(t)+Lv({co}),
[0;0¢] (0,00}

where L = f(o0) = limy—, o0 F(£).

Weak convergence of measures in A, can be translated in terms of
convergence of the corresponding S-transforms. The following proposition
subsumes Propositions 6.4 and 6.5 in [5], and is more suitable for our pur-
poses.

2.4. PROPOSITION. Let {v, : n > 1} be a sequence in M. The following
assertions are equivalent:

(i} The sequence {vn : n > 1} converges weakly to a measure v € M.

(i) There ewist two positive numbers 0 < b < a < 1 such that the disc D
with diameter [—a, —b] is contained in (2, for all n, and the sequence S,
converges uniformly on D to a function §.

Moreover, if (i) and (i) are satisfied, we have S = 8, in D.

3. Limit laws for free multiplicative convolution. We are now
ready for the main result of this paper.
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3.1. THEOREM. Let {pn : n > 1} be a sequence of measures in M.,
and let {kn 1 n > 1} be natural numbers such that limn,eo ky, = 00. The
following assertions are equivalent:

(i) The sequence pn®.. K, (k, times) converges weakly to o measure
vE My
(ii) The measures
_ g, -1
dan(t) = kn“md,un(l/t)
converge weakly in [0, c0] to a measure o, and the limit
S 2 -1

v = lim k,
n—0a

5 dia(1/%)

exists.
If the equivalent conditions (i) and (ii) are satisfied, we have v = vF°.

Proof. Assume first that (i} is satisfied. By virtue of Proposition 2.4
there is a closed disk D with diameter [—a, —b] C (-1,0) such that

lim S, (z)* = 8,(2)

uniformly for z € D. The function S,(z) does not vanish in D, and we
conclude that there is a constant ¢ > 0 such that

1/e < |8y, ()" < e

for all n and all » € D. Therefore the sequence |S,,, (#)| converges uniformly
to 1 for z € D. Since these functions are actually positive on (—1,0), an
application of the Vitali-Montel theorem shows that in fact limn_ 00 Sy, (2)
= 1 uniformly in our disk.

A second application of Proposition 2.4 shows that the sequence .,
converges weakly to the Dirac measure é;; indeed, S5, = 1. Now, since
S, is not zero in D, it can be written under the form S, (2) = exp{v(2)),
where v is analytic in D and real-valued on {—a, —b).

For sufficiently large n, the principal branch log S, (z) is defined in D,
and ky log Sy, (2) converges uniformly to v(z). Since log(w)/(w —1) — 1 as
w — 1, we conclude that

lim ka(Spa () = 1) = 0(2)

uniformly for z € D. We want to rewrite this relation in terms of the func-
tions ¢, . In order to do this observe first that litin oo Xu. (2) = 2/(1+ 2),
My, 00 X%, (2) = 1/(1 + 2)? uniformly for z € D, while im0 ¢, (w) =
w/(1 — w) uniformly for w in a compact subset of ¢éC* (this follows easily
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from the weak convergence of u,, to 1). The last relation implies that

z
nl-l-{%oq’b“”(l—l— z) =
uniformly for z € D.

We can now calculate another approximation of v{z) by noting that

Sl =1 = 2200 - 1= 2 (1) =0 (0 (755 ) )

Denote by I, the line segment joining z and ¢, (z/(1 + 2)). If the point
z belongs to a smaller disk D' C D centered on the real line, we must have
In C D for sufficiently large n. If we set
1
!
X l¥) = T

+ &n (z)
we have

Xt (2) = X (mﬂ (ﬁ)) = ;5 ((1_J:§)7 + en(ﬁ))dé

B A I
T l4z 1+,2b#n(z/(1+z)) S"(g)

Now,

z Yun (2/(L+2) _ z— 9. (z/(1+2))
72 T4un/0+2) - Gtz CToW)

uniformly in D, and
3 z
2=t (75| = (2= 9 (125 ) ) o0

| Jenl® | < max|ea(6)
uniformly in D’ as well. Combining these relations yields
z 2=, (2/(1+ 2
o) = X (0 (75 ) ) = 2 ELEE D 1 4 o

uniformly in 2. Thus, modulo a factor which is 14+06(1), S,,, (2) — 1 can be
replaced by

m%:)-( %(Hz)) = (Oio)l—;%dﬂn(t).

Introducing the variable w = z/(1 4 z), changing the variable of integra-
tion, and exploiting the equality
(w—-DE—-1) -1 L1+tw (t-1)>
w—t 241 w—t 241
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we conclude that

. t2 -1 1+ tw
1 kn w
Jn| o ETT o e tdvn(t)] ()

uniformly for z € Do, where Dy = {z/{1+z) : z € D'} is another disk with
real center.

We are now ready to prove that (i) holds. Consider indeed the imaginary

part
w 2
S‘w( ) = —gw lim | L g ).
1—w nco Jw — ¢}2
(0,00}

The integrand stays bounded away from zero and infinity, and if w has
nenzero imaginary part this shows that the measures o, are bounded, and
have therefore a cluster point o which is & measure on [0,c0]. If we set
B = a({oo}), we then have

o wo\ o 24+ 1
Jw(l_w) = \sw[ﬁ—l— S w_f do(t)|.
[0,20)

'This equality shows that the measure o is uniquely determined, and hence
the sequence oy, converges weakly on [0, oc] to . Moreover, the difference

U(liuw>+ﬁw_ S lujrtwd"()

[0,00)

must be real-valued, hence a constant v whose value is

lim k,

N-—+00

Thus (ii) holds, and the above considerations show that v = »J”.
Conversely, assume now that (ii) is true. Then we have

Since the integrand is bounded away from zero and infinity, except at £ = 1,
we conclude immediately that the sequence p, converges weakly to dy. It
Tollows that the estitmates made in the first part of the proof still hold, and
one can basically reverse the steps in order to arrive at (i). m

4. Comparison with the commutative case. The classical analogue
of Theorem 3.1 is not usually stated because of its equivalence with additive
results. The additive results from [6] have the following multiplicative form.
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4.1. THEOREM. Let {un : m > 1} be a sequence of measures in My,
and let {k, : n > 1} be natural numbers such that lim, o k, = co. The
following ossertions are eguivalent:

() The sequence pn ®...® ltn (kn times) converges weokly to a measure
veMy;
(i) The measures

log2t
98 Y gua(1/t
gt 1 Hn1/)

converge weakly in (0,00) to a measure p, and the limit

—logt
e dn 1/t
| ot fin(1/t)

&= lim ky,
N300
(0,00}
exists.

If the equivalent conditions (i) and (ii) are sotisfied, we have v = V‘Ci)’g,

Note that weak convergence of the measures g, requires the tightness of
this sequence. Conditions (ii) of Theorems 3.1 and 4.1 are not equivalent.
The following is however true.

4.2. THEOREM. Let {u, : » = 1} be a sequence of measures in M,
and let {k, : n > 1} be natural numbers such that limp.eo bn = 00, The
following assertions ave equivalent:

(i) The sequence (i, ® ... ® uyn (k, times) converges weakly to v%;‘-’ :

(i) The sequence jin & ... B itn (kn times) converges weakly to vy°, and
a({0}) = o({oc}} = 0.

If the equivalent conditions (i) and (ii) are satisfied then the measures o
and ¢ are reloted by

Clog’t+1 (t—1)2

do(t .
o(t) Py de(t),
while
2 —1 log?¢ \log’t+1
d+v= ( - ) do(t).
7= | 2+1 log’t+1) log°t oft)

(0,00}
Proof. Define measures o, and g, as in the statements of Theorems 3.1
and 4.1, respectively. Then we have
log®t+1 (¢—1)?
log®¢ t2+1

don(t) = doa(t),

and the function :
log’t+1 (t—1)2
log?t 2 +1
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is continuous and bounded away from zero on (0,00). (The value of the
function for £ = 1is 1/2 and is defined to preserve continuity at that point.)
It follows at once that the convergence on (0,00) of ¢y, to a measure o is
equivalent to convergence of g, to g, and the two limit measures are related
as in the statement of the theorem. Note in addition that the convergence on
(0, 00) of o, is equivalent to the convergence of the sequence on the compact
interval {0, oc] to a measure which assigns no mass to 0 and cc. Assume now
that the limits o and ¢ exist on (0, c0), and set

—logt

bn=kn | —dua(1/9)
(0,00) 98" EF1
and
2 -1
o =Fn | g G (1/9),
(Dlw)

so that 7y, + 8, = S(O’m) F(t) don(t), where

2 -1 logt log® ¢+ 1
HOESE RPN 7,
t?+1 log’t+1/ logt
Note again that (upon defining f(1) = 0) f is continuous and bounded on
(0, 00}. Therefore -y, has a limit v if and only if §,, has a limit &, and these
limits are related as in the statement. The theorem now follows from the
characterizations of weak convergence given in Theorems 3.1 and 4.1. =

It is now fairly easy to give examples of sequences p, € M. such that
i 2. B, (ntimes) converges, but p, ® ... ® py (n times) does not. The
reader will have no difficulty verifying this for the sequence

1 1
iy = (1 - 5)51 + Ean-
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Non-regularity for Banach function algebras
by

J. F. FEINSTEIN (Nottingham) and D. W. B. SOMERSET (Aberdeen)

Abstract. Let A be a unita] Banach function algebra with character space ©4. For
x € 4, let Mz and Jy be the ideals of functions vanishing at # and in a neighbourhood of
x, respectively. It is shown that the hull of J, is connected, and that if o does not belong
to the Shilov boundary of A then the set {y € €4 : Mz D Jy} has an infinite connected
subset. Various related results are given.

1. Introduction. Let A be a Banach algebra and let Prim(A4) be the
set of primitive ideals of A. The hull-kernel topology on Prim(A) is defined
by declaring the open sets to be those of the form {P € Prim{4) : P Z I}
as I varies through the closed ideals of A. This topology is compact if A
has an identity, but not usually Hausdorff, nor even T}. Indeed it seemms, in
general, to have few useful properties, and it has not played a prominent
part in the general theory of Banach algebras. An attempt to find a more
useful topology has been made in [14].

The situation is different, however, for particular classes of Banach alge-
bras, such as C*-algebras and certain L-group algebras. Here the hull-kernel
topology does have good properties such as local compactness, the Baire
property, and (for separable C*-algebras) second countability. These prop-
erties have been considerably exploited in C*-algebra theory and abstract
harmonic analysis.

For commutative Banach algebras, the hull-kernel topology plays a sec-
ondary role. The primitive ideals of a (unital} commutative Banach alge-
bra A are precisely the kernels of characters. Thus Prim(A) is in bijective
correspondence with the character space @4, which carries the compact,
Hausdorff Gelfand topology. This is the topology usually employed in the
study of commutative Banach algebras, but the hull-kernel topology (de-
fined on ¢4 using the natural bijection) is also used from time to time.
The hull-kernel topology is a T: topolegy in this case, and is weaker than.
the Gelfand topology. Thus the two topologies coincide if and only if the

2000 Moathematics Subject Classification: Primary 46J20; Secondary 46J10.
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