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EXAMPLE. Let X be the closed unit disc and ¥ =T U {0,1/2,1/3,...}.
Let A be the uniform algebra of all functions in C{X) whose restriction to
Y ig in the restriction to Y of the disc algebra. It is easy to see that X is the
Shilov boundary of A, and that the only non-R-points for A are the points
of T and the point 0. Thus 0 is an isolated non-R-point for A. In fact, for
y €Y, Fy = {0,y}UT. All other points of X are points of continuity for A.
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Dirichlet series and uniform ergodic theorems for
linear operators in Banach spaces

by
TAKESHI YOSHIMOTO (Kawagoe)

Abstract. We study the convergence properties of Dirichlet series for a bounded
linear operator T in a Banach space X. For an increasing sequence p = {jn} of positive
numbers and a sequence f = {fx} of functions analytic in neighborhoeds of the spectrum
o (T, the Dirichlet series for {fn(7)} is defined by

Dlf,mz)(Ty= Y e #r*fu(T), zeC.

n=0

Moreover, we introduce o family of summation methods called Dirichiet methods and
study the ergodic properties of Dirichlet averages for 7" in the uniform operator topology.

1. Introduction. In this paper we attempt to study the Dirichlet series
in the ergodic theory setting for a bounded linear operator T in a Banach
space X with a view to making up for a gap in the structural properties
of the resclvent R(\;T") of T In particular, the abscissa of uniform conver-
gence of such Dirichlet series is investigated in an operator-theoretical sense.
Moreover, we introduce a new summation method of what is called Dirich-
let’s type generalizing the Abel methed and show that when [|T"|/n — 0,
the uniform (C, 1) ergodicity of T'is equivalent to the uniform ergodicity of
Dirichlet’s type.

Let X be a complex Banach space and let B[X] denote the Banach
algebra of bounded linear operators from X to itself. For a given T € B[X],
the resolvent set of T, denoted by o(T), is the set of A € C for which
(AT =T)=! exists as an operator in B[X] with domain X. The spectrum of T'
is the complement of o(T") and is denoted by o(T"). g(T) is an open subset of
C and o(T') is a nonempty bounded closed subset of C. So the spectral radius
+(T") of T is well defined: in fact y(T") = sup |o(T)| = limMpn 00 | T™||*/™. The
function R(A; T) defined by R(X\;T) = (M — T)~* for A € o(T) is called the
resolvent of T. Tt is well known ([3], [10]) that R(X;T) is analytic in o(T)
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70 T. Yoshimoto

and if T € B[X] and |A| > (T), then A € o(T) and

RNT)= (M -T)7" =3 A~

n=0

the series converging in the uniform operator topology. It is also known that
if d()\) denotes the distance from A € C to o(T'), then |[R(AT)|| > 1/d(}). If
we take A = e*, z = 5 + it (s,t € R), then the inequality |A| > v(T') implies
s > logy(T") when v(I") > 0. This characterization is of great interest in
connection with the question of what is the abscissa of uniform convergence
of R(M\T) as a series.

In this paper we consider a more general situation. Given T' € B[X]
let @(T) denote the class of all functions of a complex variable which are
analytic in some open set containing ¢(T). We consider the Dirichlet series
of the following type:

DIf, s 2(T) = ) e o= fu(T),

n=0

where z € C, f = {fa} (fn € ¥(T)) a:nd,u:{,un}, 0 pp <1 < ... <

opn, ~* 00

2. Main results. We first discuss the uniform convergence of the series
D{f, 1; 2](T") and the abscissa of convergence. The first result is the following
theorem which will play a fundamental role in dealing with Dirichlet averages
for operators in B{X].

THEOREM 1. Let T € B[X] and f, € ®(T), n > 0, and define

lim sup log | EZ;U LT if lim sup “ if;c(T)” > 0,
HT) =9 " T ko
" ~o0 if lim sup “ ka(T)” =0,

where f = {f,} and u= {p,}. Then the following statements hold:

(1) fs> 0 and D[f, ; s](T) converges in the uniform operator topology,
then s > a,(f;T).

(2) When a,(f;T) < oo, the Dirichlet series D[f, u; z](T) converges in
the uniform operator topology for any z € C with Re(z) > max(0, a,(f;T)).

Proef. In order to prove (1), we assume s > 0 and that D[f, u; s|(T)
converges in the uniform operator topology. Then there exists a constant
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M > 0, independent of n, such that

ke
H Ze"“"sfk(T)” <M, n>20.
k=0

For each n > 0, set
Dnlf, p3 8)(T) = > e £ (T).
k=0

Making use of the partial summation formula of Abel (cf. [1], Theorem 8.27;
[9], p. 2) we obtain

Dolf s 0)(T) = D ful(T) = D {e# (1) pekse
k=0 k=0

n—1
= 3 {e#* — e#s10)Dy[, s s)(T) + 4" Do [f, i 8)(T)
k=0

and hence
n—1

IDalf, 1 OUT) < MY {e#4+1% — ko) + Mekne
k=0
= M{2efr® — eH0%} < 2Mefn®.
Now for any given & > 0, choose an integer Ny = Ny{, §) so large that
IM < et®  n> Ny,

which is possible since lim,, ., ttn = o0 by assumption. Then we have

H zn:f’“(T)H = || Dy [f, 1 O)(T)|| < ghn(348)
k=0

for all n > Ny, which yields

o oup PN SEo (D _ g
n—00 M'ﬂ;
and we conclude that s > a,(f;T) as asserted.

Next we turn to the proof of (2). Since (2) holds trivially for the case
au(f;T) = o0, we assume a,(f;T) > —oo. Fix § > 0 arbitrarily small such
that a,(f;T) +d/2 > 0. By assumption there is an integer N2 = Na(p, ap)
(ap = au(f;T)) so large that

. §
log || Dn{f, 1; 0] (1) <a.,;(f;T)"f'§a n > Ny,

Hn
50 that

Dalf, 1 OUT)|| < einloalBTIHE/2E > A,
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Thus writing a, = a,(f;T) for short and using the partial sunmatien for-
mula of Abel again, we have for n>m +1> N2 + 1,

Z (e pe(autd) _ gmprt1(ap 1D [ F, 1 0)(T)
=m-+1

et DT 4 0)(T)
_ eHmi (“H+6)Dm[f: 13 01(T),

Z gmhelentd) £(T) =

k=m+1

so for such n and m,

“ Z “”k(ap+5)fk(T H < Z ep.h(ap+c5/2 {e pk(a#-}-d) _ e—,‘.,b},,.'.]{a“-l—g)}
k=m+1
+ e,un(a,_,_+5/‘2) pnlautd) | ghm(au+d/2)=pm(ep+)
n—1 HE+1
— (a‘# +5) Z e#k(au+5/2) S e“‘u(ﬂn+5) due
k=m Hk
4+ e_(d/z)#n + e—(5/2),um
n—1 Hik+1 ( |
6/2)—ufa,+8
b ) 3 | oD -ulend gy
k=m Mk
4 o6/ o= (8/2)tim
2a, +0) , _
- Hes e

+ e“(é/z}ﬂ'n + 8_(6/2)#’“

%/\

(6/2)pm _ o= (8/2)kin)

This gives

|| 32 et g m)| =,

N, M—+ 00
k=m+1

implying that D[f, p; a, +48](T') converges in the uniform operator topology.
Now let zg = (@, +8) +i0 and z = s + it (5,4 € R), s > a, + . Since
DI f, is; 20](T) converges in B[X], there exists a constant K > 0 such that

sup | S e (1) |<x
O(m(n k=m
As before, for n-+1 > m > 0 we obtain

n

Y e f(T) =

k=m+1

Xn? {emH fi(T) e Helemmo)

k=m1
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n—1
Z {e—#k(z—m) _ e‘“’”‘*l(z"zO)}Dk[f, w; z0) (T)
k=m-+1

+e P ET2IDLF s 20| (T)

_ e—ﬂm»l—l(z_z(,}Dm[f’ nu'; ZO](T)o

Therefore, for such n and m,

H Xn: 8—“J“sz(T)HSK ”il |e_“"(z_10)—e“ﬂk-*-i(zMZu)!

k=m+1 k=m-+1
+K{e—ane(z—zo) + g Hmt1 Re(zmzo)}
n-— HE+1
< K z |z — 2o S gmuRelz=20) gy,
k=m+41 F23
+K{e—un Re(z—zp) 4 g Hm Re(szn)}
K|Z - Zg'
~ Re(z — 20)
+ K{E_“" Re(z—zp) + e Hm R.e(z:—vzo)},

{e-}.nm Re{z—=zp) __ e Fn Re(z——zg)}

which approaches zero as n,rn — o0, Consequently, D[f, u; z)(T) converges
in the uniform operator topology. The proof of Theorem 1 is complete,

When 0 < a,(f;T) < co, we say that the number a,(f; T) is the abscissa
of uniform convergence of the Dirichlet series D[f, u; 2]{T).

ExaMPLE 2. If T' € B[X] satisfies sup,,», [|[T"||/n* = C < oo for some
real w > 0, then (T < 1, and this yields the uniform convergence of the
series for the resolvent R(\;T) for |A] > 1 (i.e., log|A| > 0). This fact can

also be restated in terms of a,(f; 7). Indeed, if f = {fro}, fa(T) =T", and
p={tin}, #n =n+ 1, then
. log | E}L«o |
£ < o Ll
a‘.“-(fa T) -2 llf}_i'ip n 4+ 1
lo 1} +1 Tk COn®
< limsup g(n +1) +log(suppgien [[T°]| -+ Cn®) 0,
n—o0 n+1

where N is a positive integer sufficiently large such that |[T"|| < Cn® for
all n > N. Hence Theorem 1 is applicable to yield the uniform convergence
of E:;n e—{(ntlleqm.

ExampLE 3. If T € B[X] satisfies sup,» [|[7"]|/(n +1)¥ = D < oo
for some real w > 0, then for z = s + 4t with s > 1 + w we have, with
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e=s—(1+w)>0,
Iz _ T 1 D
(=17~ (n+1) @+l (n+lp=v " (n+1)i+e
which yields the uniform convergence of Y oo, T™/(n + 1)*. This fact can
also be restated in terms of a, (f; T). Indeed, if f = {fs}, fa{d)=T", and
i = {pin}, pn =log(n + 1}, then
: log || 350 T
. < —_—
6u(f; T) < lim sup Tog(n 1 1
. log(n + 1) + log{supg<z<n IT%]| + D{n + 1)*}
< litn sup
n-—)-oo log(n + 1)
=14w,

where N is a positive integer so large that [T < D{n + 1)* for all
n > N. Hence Theorem 1 is applicable to yield the uniform convergence
of Zzozo ew{log(n%—l)}sTﬂ..

As mentioned in the introduction, we now introduce a summation meth-
od of Dirichlet’s type with a view to relating the properties of D[f, u; 2](T')
for an operator T' € B[X] and the uniform ergodic theorem for T".

Let g1 = {un} (n = 0) be a sequence of real numbers satisfying the
following conditions:

(1) mo = 0 and infa>o{tnt+1 — pin} = & for some § > 0,

su n{e™Hrd — gTHn i) g
@) up o7 >k }<os
where g(s) = 3 oo e #+° converges for s > 0. The basic assumption is
(i) and it also implies the strict monotonicity of {gn} and pn > né + ug.
Moreover, it follows that lim, o4 g(s) = oo, because

N-1
E_U'ns - N
s—04 — s—04

n=()
for every integer N > 0. Condition (ii} is needed whenever we deal with
operators which satisfy ||[T7]|/n” — 0 for some 0 < w < 1. Such a sequence
¢ = {pn} determines a strongly regular method of summability (Dirichlet
summability) which will be called a (D, u1)-method in what follows. Then we

can define the so-called Dirichlet averages Dg“ ) [T for T by the formula

1 >0
D_g“) T = — Ay S B N (R
] 9(s) 2

where a,(f;T) <0 with f = {fu}, fu(T) =T, 2> 0.

lim g(s) =z lim

=0
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For example, let 1 < a < oo and define pu = {an +b}* for some a > 0
and b > 0. Clearly

o) =820, inf {0} = (a+h)* - =6 >0
and
S =7 Zn{e‘(‘m“ _ e—latns)4h)™sy o o
>0

Tn particular, when p, = n+1, we get the Abel averages (1—r) 5 oo r*T™,
0 <r <1 (or, equivalently, (A — 1)R(\T), A > 1).

The study of Dirichlet methods is particularly natural, appropriate and
interesting because they contain the Abel method as a special case. We are
in particular interested in the connection between uniform convergence of
Dirichlet averages and Cesiro averages of order c.

THEOREM 4 (). Let T' € B[X] satisfy ||[T"|/n — 0 as n — oo. Then the
following are equivalent:

(i) =L SSRT0 T converges, as m — oo, in the uniform operator topol-
0gy.

(i) (1 —r) 322 ,r™"T™ converges, as v — l—, in the uniform operator
topalogy.

(iii) For every (D, p)-method, D )[T] converges, as 3 — 0+, in the
uniform operator topology.

(iv) For some (D, u)-method, DT converges, as s — 0+, in the uni-
form operator topology.

Proof. The proof starts with (iv). Assume that for some (D, p)-method

po= {pnt D [T] converges, as s — 0+, to some E € B[X] in the uniform
operator topology. Given small € > 0, choose a number N = N(g) > 1 such
that |T"|| < en for all n > N. Then we have

00 o0
1 N
<l St ey
- n=1
D feThet — e ),
n=N-+1

(}) The statement of Theorem 4 is due to the referee's suggestion. This theorem
remains valid even if X is a real Banach space.
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which tends to zero by first letting s — O+ and then ¢ — 0. (We use
the fact that sup,.q||(1/9(s)) Ty e #*T™|| < oc.) That implies that
E=TE=FET and

E = (uo0) lim S)Ze—#nSTnE B2
S—} g

Hence E is a projection operator and EX = N{I — T) Now it follows that

Z I TY) = ST T) Z ( Z em#n ) TE,
=0 n=k+1
Let x € X and T = z — Ez. Clearly Ex is an element of N(I —T'). On the
other hand,

T = (s) lim L Z e B (T — Tz
n=0

§—0- g( )
i ( i e )T*e € R{I - 1).
k= =k+1

We claim that N(I ~T)NR({I — T) = {0}. Let £ > 0 be given as before.
If z is of the form 2 = {I — T)y + o, ¥, %0 € X, l|%ol| < £, then

I i’; ehn s

1 = 1 =
e B T (] — Ty + == 3 e nepm
”g(a) 2 T-Tw+ 552 vo

= (s} lm

s—04 g(s

1 — o8 - E] — iy, § m i 8 n
< sl Il + Y (et - e Ty e 3 ez )
n=1 ni=(0
N 00
M e~ H03 —kin~18 —Hn S\ || —pn—18 —fins
< o) +3 (e —e T e Y (e — emkno)n)
n=1 n=N41

e 5 el
n=0

n=N+1
so that [|[(1/g(s)) > ooy e #*T™z|| — 0 as s —+ 0+. This means that
1 o0
so) lim | —— g pnIm
o 1, (i o T")

where # denotes the zero operator in B[X]. Consequently, if z € N(I -T)n
R(I —T), we get « = Ex = 0 as asserted. Evidently R(I — T) is invariant

R{I-T) =0,

icm

Dirichlet series and uniform ergodic theorems 77

under T" and we let S = T|\R(I — T). Then on R{I — T},
l o0
(uo) m —— e Hn88™ — @
=0+ g(s) :4:3
Thus for a fixed s sufficiently small, I — (1/g(s)) -7, e”#»*S™ is invertible
on R(J — T). Hence, s0 is the operator I — 5 and R(J — 1") must be closed

because we have
z st = (=93 (D e)st

n-—O
We have thus proved that

X=N{I-TY®R(I-T), R({I-T)is closed.

Bence we may apply Dunford’s uniform ergodic theorem ([2}, Theorem 3.16)
to conclude that
n—1

k=0
and (i} follows.
(i) implies (ii) by Hille’s theorem ([4], Theorem 6).
(i) implies the ergodic decomposition (special case of (iv)). One gets
I-TRI-T)={I-TY{I~T)X =(I-T)*X
=(I-T)X = R(I - T).
It turns out that I — T is a bijection of R(I — T) onto itself and R(I —T) is

invariant under 7. Let S = T|R(I —T). Then I — S is invertible on R(I —T).
Since by assumption, fy, > né + ug and |T7||/n — 0 as n — oo, it follows

that a.(f;T) <0, where}- = {fn}, fu(T) = T™ Taking into account that
[g()]7* o2 e~#=*T™ converges in B[X] for s > 0 > a,(f;T) in virtue of

Theorem 1, all that is to show is

9(8 Z e

n=0

.9~+0+

Now for sufficiently small & > 0, there exists by assumption a positive
integer N = N(e) such that ||5"/n| < e for all n > N. Then

HE??) 2 et | < =T~ 9) 7| i et (1~ 5)57)

< SlIT-9)" 1n[~ﬁ°ﬂ+z{e”~n—” e~} 5™
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e 1
~ g(s)

o0
+ Z {e_'lun—ls _ e"#na}nj| ,

n=N+1

N
e | i Y G s (k|
n=1

whence the required convergence to 0 by first letting s - 0+ and then e — 0
since lim, o4 g(s) = oo and 3 oo, {e7#n=1* — ¢7#n°In converges uniformly
for s > 0. We have thus proved that (ii) implies (iii). This completes the
proof of the theorem.

Next let 0 < o < oo and let Aﬁf‘), n > 0, denote the (C, @) coefficients
of order ¢, which means that
‘ o0
Q-r)y~letd =3 Al 0<r <L
n=0
Then the Cesaro (C,a) averages (T, n > 0, of the sequence of powers
T™ are defined by

CiT) =

1 i a1
ye ;;DASM TR n>o0.

As early as 1945 E. Hille obtained, as applications of Abelian and Taube-
rian theorems to ergodic theorems, the uniform (strong) ergodic theorems
for T € B[X] with a view to relating the uniform (strong) (C, o) ergodic
theorems and the properties of R(\;T") (see [4], Theorems 6 and 7). In par-
ticular, the fact that the uniform (strong) convergence of (A — 1)R(X;T)
as A — 1+ implies the uniform (strong) (C, ) convergence of {T™} has
been established on supposing the power-boundedness of T'. Hille’s uniform
ergodic theorem has recently been improved by the author [11], where the
power-boundedness of T' is replaced by the condition lim, o ||T™|/n* =0
with w = min(1, ). Using this fact, we have the following theorem which is
a further extension of Theorem 4.

THEOREM 5. Let 0 < & < 00 and let T € B[X] satisfy ||[T"||/n* — 0 as
n -+ 0o, where w = min(1, ). Then the following are eguivalent:

(i) i [T converges, as n — oo, in the uniform operator topolagy.
(1) (1= 7)Y me o™ T™ converges, as v — 1—, in the uniform operator
topology.
(ili) For every (D, u)-method, D }[T] converges, as s — 04, in the
uniform operator topelogy.
(iv) For some (D, u)-method, DY)[T| converges, as s — 0+, in the uni-
form operator topology.
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Proof. The equivalence of (i) and (ii) follows from the author’s extension
of Hille’s uniform ergodic theorem ([4], Theorem 1). On the other hand,
since ||T™||/n — 0 as n — oo, it follows from Theorem 4 that (ii)-(iv) are
equivalent. Hence the theorem follows.

THEOREM 6. Let 0 < a < oo and let T' € B[X] satisfy |[T"z||/n“ — 0
(as n — o0) for allz € X, where w = min(1, a). Suppose sup,,»q HC,(f‘)[T]mH
< oo for all z € (I —T)X. Then the following are equivalent:

{i} For all z € X, C,g&)[T]m converges strongly as n — 00,
(i) Forallz € X, (1 —7) Y00 ,r"T"x converges strongly as r — 1—.
(ili} For every (D, u1)-method and oll z & X, D [Tz converges strongly
as § — O+,
(iv) For some (D, p)-method and oll z € X, D_g”)IT]m converges strongly
as s — 0+.

Proof. The equivalence of (i) and (ii} follows from the author’s exten-
sion of Hille’s strong ergodic theorem {[4], Theorem 2). Next, instead of
{T™}, we consider the sequence {T™z} for every € X. Then the proof
of the equivalence of (ii)~(iv) follows exactly the same lines as the proof of
Theorem 4. The theorem follows.

Following Laursen and Mbekhta [5], we say that T € B[X] is a quasi-
Fredholm operator if there exist two closed T-invariant subspaces M and N
of X such that

(1) X =Na M;

(2) T\ is nilpotent;

(3) (T'|M)(M) is closed;

(4) (T|M){M) contains all subspaces N((T'|M)"), n = 1.

Using the uniform ergodic theorems in Dunford [2], Lin [6], Mbekhta and
Zemanek [8] and Laursen and Mbekhta [5] together with our Theorem 4 we
have the following theorem which shows that the uniform ergodic theorem
of Dirichlet’s type has a close connection with the usual umiform ergodic
theorems and the spectral theory of hounded linear operators on X.

THROREM 7. Let T € B[X] and let = {un} be a (D, p)-method. Then
the following statements are equivalent:

(1) n—t ZZ:& T* converges, asn — 00, in the uniform operator topology.

(2) [T"||/n — 0 as n — co and DS[T] converges, as s — 0+, in the
uniform operator topology.

(3) |T™|l/n — 0 as n — oo and the point A = 1 is either in o(T) or else
a pole of R(\; T).
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(4) T satisfies |n~1(I —T)* E?—ol Ti| — 0 as n — oo for some inieger
k> 1 and the point A = 1 is either in p(T) or else a simple pole of R(A; T'.
(5) |T*||/n — 0 as n — oo and I — T is a quasi-Fredholm. operator.

(6) |T™||/n — 0 as n — oo and inf{n € NU {0} : R(( - T)") =
R((I - T)"*")} < c0.

(7) §T*i/n — 0 asn — oo end R((I — T)¥) is closed for any integer
E>1.

&) |IT*||/n =0 asn—ocoand X = NI -T)® R(I -T).

(9) |I7™||/m — 0 as n — co and N(I —T) + R(I — T} is closed.

THEOREM 8 (2). Let T € B[X] satisfy a,(f;T) < 0, where f = {fn},
f(T) = T™ and pp = {tn}, n = an + b for some a,b > 0. Let z € X and
suppose that

(1) sup;~g I DT € M for some constant M > 0,
(2) there ezists o sequence {tx}, tx — 0 as k — oo, end an element
y € X such that (w)limg_, Dgf) Hz=y

Then DY [Ty =y for all t > 0 and (s)lim,_o DI [Tz = y.

Proof We first show that Dg”)y =y for all ¢t > 0. For any £ > 0 we
choose k so large that 0 < ¢, < ¢. The resolvent equation yields

ela—b)(iin)
g(t)glts)
ela—b}(i+in) 1
glae) e — ot D)
(a.—b)t 1 (a Bt 1
_ e _ 3
edt . gatr g(t) Dtk [T] eat _ paty Q(tjg)

DM TIDWT) = R(e®; T)R(e®; T)

— R(e™; T)]

D).

So, if we let k& — oo, the members of this equation converge in the weak
operator topology and we obtain Dt("‘) [Ty = y for all £ > 0 in the limit.
Write 2 = y+ (z—); then we have D"z = y+ D) [T)(z—y). The assertion
will therefore be proved if we can show that D™ [T](z—y) converges strongly
(as £ — 0+) to zero. Using the resolvent equation we have for 2 € X of the

(%) Tt should be noticed that a,(f;T) < 0 does not necessarily imply ||T™||/n* — 0
(w > 0). However, if " € B[X] satisfies ||T™]|/n” — 0 (asn — o0) for some 0 < w < 1,

we can use the proof of Theorem 4, which shows that ||(I — T}Dg‘”‘ ) [T]| = 0 as 5 — 0+.

This yields (I — T)y = 0, and therefore D{* [T]y = y for every ¢ > 0. Then some of the
computations in the proof of Theorem 8 can be shortened.
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= (] — D X
form 2 = { 1T THu, u e X,

DTz = DI [Tlu ~ DI [T) D [T]u
1 Eamb ( 1 e(a.—b)t
Y R () o ()
{1 e P e

which approaches zero in norm as £ — 04 since supy. ]|Dt(“ ) [T} < M.

Moreover, the same result is obviously true for all z € R(I — DY [T). Hence
ﬂ Now suppose
on the contrary that z — y does not belong to R(I — DE‘“ ) [T7). Then there
exists an x§ € X such that zj(z —y) = 1 and z§{z) = 0 for all z €
R(I — DW[T)). Since u — DM [Tlu & R(I — DIITY)) for any u € X, we
have zi(w — DY) [TTu) =0, ie., z3(D¥[Tlu) = 23 (w). It follows that

Dé#) [T){z —y) — 0 in norm whenever x —y € R(I

<3 (DMTw) = 3 (D [T]z)

eaub

1 *
= ——)mo(Dif) [T]z) -

es — eats g(1

e(a b)tk 1 (
—eatn glg) O

so that since g(t) = e(@™9! /(e — 1), we have -To(Dt MTz) = a}(x) for
all k. In the limit as k& — oo we obtain 23(y) = zj(x) and this contradicts
the assumption that zf{z —y) = 1. Hence z —y € R(I — Dg“) [T]) and
(s) im0 Dg’i ) [T](z — y) = 0. This finishes the proof of the theorem.

THROREM 9. Let T € B[X] satisfy |[T™||/n® — 0 {as n — o0) for some
0 < w<1and let u = {pn} be a (D, u)-method. Suppose that for each
z € X, {Dg“ ) [Tz : s > 0} is weakly relatively compact. Then for each

e X, Dy [T\ converges strongly to Bz, where E is the projection of X
onto the null space N(I =T} of I -T.

Proof. Let z € X be arbitrarily fixed. There exists a sequence {sx}
with s, > 0, sx — 0 as k — oo, and an element y € X such that

(w) limg o0 D(“) [T} = y. Using the argument applied in the proof of The-
orem 4, we see that y e NI —T),z —y € (I —T)X, and

X=NI-T)e{T-1)X.

All that remains is to show that (so)lim, o4 D M = 6 on (I-T)X.
Assume z € (I — T)X; then for given ¢ > 0 we can find v € X such that
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|2 — (I = T)ul| < &. Thus, writing w = z — (I — T)u, we get

o0
DTz = L Z e HnS Ty — T 4 )
9(s) =

_ b
 g(s)

Since {Dg“ ) [T}x} is assumed to be weakly relatively compact for each z € X,

it turns out that the operators {D%¥[T]} are uniformly bounded. Take an
integer N so large that |T™| < en® for all n > N. The uniform boundedness

of {D(s“ ) [T} and the strong regularity of the (D, u)-method give

oo
{e—#nsu+ Z(B—un.ms _ e—-MnS)Tn+lu} + Dg“){T]w.
n=0

N
1
1D < o {emrorllull + Yoot — eThonse )Tl } + e,
=0

where M is a positive constant independent of s and £. Hence we have

(s) limg_04 D 1z = 0 by first letting s — 0- and then € — 0. The proof
is complete.

EXAMPLE 10. Let Cp[0, 1] be the space of functions f = f() continuous
for 0 < ¢ < 1 which vanish at 0, with || f|| = max||f(¢}]|. Let 8 > 0 be any
real number. Following Hille [4], we define Qgf = (I — Jg) f for f € Cy[0, 1],

where
t

1
Ja)®) = ==Vt -uw)? 1 flw)du, 0<t<1
a0 = 5 § 6= 5)
Then for each n > 1, the iterate Qg f has the form

(Q3NE) = () — | Pt — u, 8) f () d,
where
wk,ﬁ—l

Pu(w,B) = i(—l)kml (Z) &3y’

k=1

If 0 < # £ 1, then by Hille’s theorems ([4], Theorems 7 and 11), Qg is
strongly (but not uniformly) (C, a)-ergodic for o > 1/2. Therefore the op-
erators {C’,(f‘)[Qﬁ]} are uniformly bounded and ||Q3/|/n® — 0 as n — cc.
From this and Theorem 6 we see that for 0 < § < 1, Qp is strongly (but
not uniformly) {D, u)-ergodic.

Next we define Tp = I'(8 + 1)Q1Jg for 8 = 3/2. Then ||T}|| = O(nt/4)
and T3 is uniformly (C,a)-ergodic for @ > 1/4 (see [11]). From this and
Theorem 5 it mow follows that T} is uniformly (D, u)-ergodic for 8 > 3/2.
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