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Raising bounded groups and splitting of
radical extensions of commutative Banach algebras

by

W.G. BADE (Berkeley, CA), P.C. CURTIS, JR. {Los Angeles, CA) and
A M. SINCLAIR (Edinburgh)

Abstract. Let A be a commutative unital Banach algebra and let .A/R be the quo-
tient algebra of .4 modulo its radical R. This paper is concerned with raising bounded
groups in A/R to bounded groups in the algebra .A. The results will be appiied to the
problem of splitting radical extensions of certain Banach algebras.

1. Introduction. Let A be a commutative, semisimple, unital Banach
algebra. A unital Banach algebra A with Jacobson radical R is an extension
of A if A/R is topologically isomorphic to A. Thus we have a short exact
sequence

0+RHAT A0

The sequence splits topologically if there is a continuous algebra homomor-
phism 6 : A — A such that 7 o # = id4. The topological splitting of an ex-
tension is equivalent to A having a Wedderburn decomposition A =B &R,
where B = 8(A) is a closed subalgebra of A. An extension is commutative
if A is commutative, nilpotent if R™ == 0 for some n € N, and singular if
RE = 0. A treatment of splittings of extensions of Banach algebras may be
found in [BDL].

The question of the topological splitting of commutative extensions A of
the algebra C(X), X a compact Hausdorff space, has been explored under a
variety of conditions on X and on the radical R of 4. In 1960 Bade and Cur-
tis [BC2] proved the splitting in the case where R is nilpotent and X is to-
tally disconnected. They proved that one may take B = §p{p € A : p* = p}.
A crucial observation was the fact that under these two conditions the set
of idempotents in 4 is uniformly bounded in norm. In 1962 Kamowitz [Ka]
established splitting in the case where R is nilpotent and R and the closure
of all even powers of R have a Banach space complement in 4. He did not
require that X be totally disconnected. Returning to the hypothesis that X
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is totally disconnected, Gorin and Lin [GL] in 1967 proved the boundedness
of idempotents, and hence splitting of extensions, when the radical R sat-
isfies the following condition weaker than nilpotence, which will concern us
later.

DEFINITION. A commutative radical algebra R is uniformly topologically
nilpotent {UTN) if there is a positive sequence () with g, — 0 such that

™ <irflun (n€N, r€R),
REMARK. A radical Banach algebra R is called topologically nilpotent if
imsup{fry... 7|l i €R, |l =1(=1,...,n)} =0.
0

It is called uniformly topologically nil if
lim sup{|r"|*/" ;7 € R, |Irl =1} = 0.
n—od
When R is commutative, these definitions are equivalent, and equivalent to
uniformly topologically nilpotent as we have defined it. We prefer “nilpotent”
to “nil” in this context. See [Di] and [P, page 515] for excellent discussions.

Let 1= [0, 1] and let C, denote the Banach space C(I) with the uniform
norm and convolution multiplication. The subalgebra Cug = {f € Ci :
£(0) =0} is a simple example of a radical Banach algebra R which is UTN.
In this case ||r™||¥" < |lr{lpn (r € R, n € N), where

o =[(R—DI7V" (neN).

After {GL], all subsequent results required that R be nilpotent, but not
that X be totally disconnected. The first progress toward the general case of
nilpotent extensions came in 1993 when M. Solovej {[Sol] and [So2]) proved
the existence of a topological splitting in the case where X = I and C(I)
is isometrically isomorphic to .4/R. Recently, E. Albrecht and O. Ermert
[AlEr], building on the ideas of Solovej, proved splitting for all nilpotent
radicals. Supposing R? = 0, the strategy in [Sol] and [AlEr| is to resolve
the problem for X a compact subset of R by passing to the second duals
A** and C(X)**, which are Banach algebras under the first Arens product.
We have the diagram

A_,___,_,,_,_,—:,,A**
,,l “"l
CX) —cx)™
Fortunately, C{X)** = C(12) for 2 a certain extremely disconnected com-

pact Hausdorff space. The problem is that 4™ need not be commutative.
However, by deep arguments they show there exists a short exact sequence

Oﬂ-Ple—PA],—*C(_Ql)—?U,
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where {2 is totally disconnected, 4; is a commutative subalgebra of .A**,
m = 7|4, and R C R; C R}*, where ’R’{*2 = 0. This sequence splits
by the results of [BC2]. From this splitting one obtains the splitting of the
sequence
0-R—-A—-C(X)—0.

Albrecht and Ermert then show how, knowing the result for X a compact
subset of R, one obtains the result for all nilpotent extensions and arbitrary
compact spaces.

In contrast to these results there is an example in [BC2] of a radical
extension of the algebra ¢ of convergent sequences which does not split even
algebraijcally.

In this paper we give a direct proof of the following theorem which ap-
plies directly to all UTN extensions and all compact spaces and avoids the
complications associated with the second duals.

1. THEOREM. Let X be o compact Hausdorff space and
0-R—-A—=A/R -0

be a commautative extension, where A/ R is topologically isomorphic to C{X).
If the radical R of A is uniformly topologically nilpotent, then the extension
splits topologically and this topological splitting is unique.

2. Raising bounded groups. Let A be a commutative unital Banach
algebra with radical R. Denote by = : A — A/R the canonical quotient
map. Our aim is to show that if G is a bounded commutative group of
invertible elements in A/R and R is uniformly topologically nilpotent, then
there exists a unique bounded group & in A such that x(G) = G and the
map 7 : G — @, g — g 18 a continuous isomorphism.

We first prove this result for the simplest type of group. If A is an in-
vertible element of a Banach algebra A, we call the set

orb{h) = {...,h"2,h" e, h, h%, ...}
the orbit of h. The element h is doubly power bounded (DPB) if orb(k) is
a bounded subset of A. Clearly, as A is commutative, the product of DPB
elements is DPB. We are going to prove that if g € 4, [g + R] is DPB in
A/R and R is UTN, then in the coset [g + R] there exists a unique element
g such that g is DPB in .A. Moreover, § has the form § = ge", where r = r,
is a unigue element of R. We can formulate the result as follows.

2, TuroREM. Let A be a commutative unital Banach algebra with radical
R which is UTN. Let g be an invertible element of A and K be a constant
with K > 1 such that

llg+R"lar <K (neZ)
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Then there exists a unique » € R and o constant M which depends only
on K such that

g las M (nel)
The proof proceeds by several steps. The first is to exploit the hypothesis
that R is UTIN.

3. LEMMA. Let C be o positive constant. If b € R with {|b]| < C, then
|log(1+8)|| £ L, where L is a constant depending only on C and the sequence
(tr). Moreover,

1+ b = exp(log(1 + b)).

Proof. Since ||p7?||Y/™ ~ 0 for b € R, the series Y or(—1)**1b"/n
converges absolutely. Since R is uniformly topologically nilpotent, 57| <
C"pl, where p, — 0, and hence

o0
llog(1+B)| < >
n=1

=1
n

tn

That 1 + b = exp(log(1l + b)) follows by standard analytic functional argu-
ments (see [DS], VIL3.12). =

Returning to the proof of Theorem 2, suppose g € A is such that [g+ R]
is DPB, say, ||[g + R]*|| €< K {n € Z). We seek r € R such that gexpr is
DPB in A. By definition of the guoctient norm, for each n € Z there exists
&, € R such that

g™+ sall <BE+1 (ne)
Let y, = g ™s, for each n € Z. Then
(21)  [g"Q+y)ll = llg" 1+ g7 sn)|| = lg" + saf| <K+ 1.
Let w{n) =log(l 4+ y»), so w(n) € R. For m,n € Z,
| explw(m +n) + w(-m) + w(-n)]||
= g™ " expw(m +n) - g™ expw(-m) - g™ exp w(—n)||
= g™ " (1 + tman) - gL+ Y—w) gL+ )|
< (K +1)%
Then
llw(m +n)+w(—m)+w(-n)| <L (mneZ)
where L is the constant in Lemma 3 corresponding to ||| < (K + 1)3.

4. PROPOSITION. Let X be a Banach space and w : Z, — X be a map
such that

lw(m+n) +w(-m)+w(-n)[| <L (mnecZ.
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Then there ezists v € X such that
lw(n) —nr| <L (neZ).
Proof. Replacing m and n by 2n gives
lw(dn) + 2w(—2n)|| < L,
and replacing m and n by -n,

|lw(—2n) + 2w(n)|| < L.

Hence
[lw(dn} — dw(n)l = |w(dn) + 2w(—2n) — 2w(-2n) — 4win)||
< |jw(4n) + 2w(—2n)|| + 2|jw(-2n) + 2w(n}|
< L +2L=3L.
Replacing n by 4n successively, we get
w(4n) —u(m)| < 2,
4
42n) 4n) 3L
< -4—2',
43n) {4%) 3L
# 2 | <@

For cach p € N, set
w({4?Tn)  w(4Pn)

'u.p('n,) - 4P+l AP
Then |[u,(n)|| < 3L/4P*" (n € Z), so (w(4Pn)/4P} is a Cauchy sequence in
X uniformly in n. For
w(dPTrp) - w(4Pn)
gtk g

+Fup(n)]

” < Nupte—1(n) + upse—a(n) +

4p+1 Z k= 4p

Set V{(n) = limp—,00 w(4Pn) /47 (n € Z). The limit exists uniformly for n € Z.
Now

4p7

”w(‘lp (4mp +n) | w i;m)) + W(4”4(p—??))

}L
<m

V(im4n)+V(~=m)+V(-n)=0 (mneZ)
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Letting m = —n yields
V(O + V() +V(—n)=0 (neZ)
so (taking n = 0) we get V(0) = 0. Thus V(—n) = —V(n} (n € Z). Conse-
quently,
Vim+n)=V{m)+V(n) (mnei).
It follows that
Vin) =nV(l) (ne€Z)
Now for each n € Z, we have

l[w({n) — nm<H im ﬂ%l §§W+
) utn) ety
<§w$%M$W

Z 3L 3L 1
T A gkt 1—1/4
Taking r = V(1), we have
|lw(n) —nr|| <L (ReZ). m
Now consider the element ge™. Then
ll(ge™)™ [l € lgme* ™| - fle™ )|
< (K + 1)]|em_’”(”)|| <K+l =M (nem).

Thus ge” is DPB.

‘We now prove that ge” is the unique DPB element in the coset [g + R].
Indeed, a coset can contain at most one DPB element. This result does not
require that K be UTN.

5. PROPOSITION. Let h, k be DPB elements in A. If h—k=r € R, then
h=k.

Proof. Suppose ||A"|| and ||k™|| are bounded by M, N for n € Z. Then
k7'h = 14 k7 'r is DPB with bound MN. By Gelfand’s Theorem [HP,
Theorem 4.10.1], k~'r =0, s0 7 =0, proving h = k. =

6. THECREM. Let A be a commutative unital Banach algebra whose rad-
ical R is uniformly topologically nilpotent. Let G be a bounded subgroup of
the group of invertibles in A/R. Then there ewists a unique bounded group
G in A such that n(G) = G and G is isomorphic to G.
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Proof. The elements of G are cosets [g -+ R]. We form ge”, which is the
unique DPB element in [g + R]. (We remind the reader that we could have
chosen any other element 2 € [y + R] and s € R so that he® is DPB. But
then ge” = he® by Proposition 5.) For [g + R] € G, let 7([g + R]) == ge” and
set

G={r(lg+R):[g+R] e G}

Let [g+ R], [h-+R]bein G and let a = 7([g + R}), b = 7{[h + R]) and
¢=7{lg + R|[h+R]) = rlgh + R] be in A. Then ab and ¢ are DPB in A
and 7(ab) = m(c), so by the uniqueness of Proposition 5, ab = c. This shows
7 is a homomorphism. The product is well defined on G. Moreover,

g+ Rllg+RI™) =7([g+Rllg™ +R) =7([L+ R)) =® =1,

the identity in .A. Thus Gisa group and T is an isomorphism of G onto G.
If K is a bound for the norms of elements of G, then the constant M of
Theorem 2 is a bound for the norms of elements of G. »

3. The splitting of topologically nilpotent extensions of [*(G).
As a first application of Theorem 6, let G be an abelian group and let A be
the Banach algebra I'(G) under convolution multiplication. For each g € G,
the unit mass d, is DPB in A and has norm one. Suppose that A is a
cormmutative extension of A. Let ® = rad.A and suppose R is uniformly
topologically nilpotent.

Consider the short exact sequence

0-+R—-ASA—0.

We show that this sequence splits topologically. Thus we will show there
exists a continuous homomeorphism @ : A — A such that w0 8 =id4. Then
B = 8(A) is a closed subalgebra of A such that

A=BaR.

7. THEOREM. Every commutative uniformly topologically nilpotent ez-
tension of 1"(G) splits topologically and this topological splitting is unique.

Proof. For each g € G, let §; denote the unit point mass at g. Given
g1, g2 € G we have

591+92 = 691592'
By Theorem 6 there exists a unique bounded group {hy : g € G} in A and
M > 1 such. that
wlhg) =8g, gl <M (g €G)

The map 8 : §, -~ hgy (g € G) defines an isomorphism of G onto a hounded
mult1phca.twe group of elements of A, We extend 8 to a bounded isomor-
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phism of I*(G) into A by
G(Z agag) = Z Cghg.
geG geqG

It is clear that (7 0 #)(a) = a (a € I}(G)). Since the map 6§ is uniquely
defined, the splitting is unique. =

4. Raising Hermitian equivalent elements. Let A be a unital com-
mutative Banach algebra. An element a € A4 is Hermitian if

llexpiat| =1 (Lt €R).
1t is Hermitian equivalent if there exists a constant M > 1 such that
lexpiat| < M (t€R).
More generally, let § C A and let S(F) be the real linear span of the elements
of §. The exponentiol group of § is the set
G(F) = {expih: h € S(§)}.

We say § is Hermitian equivalent if G(F) is a bounded set in A. The theory
of Hermitian elements may be found in [BD2} and [Lu].

We record the following theorem which will be important to us. (See
L], [Gr].)

8. THEOREM. If § C A is Hermilian eguivalent, then there exists an
equivalent norm | - | on A such that, with respect to | - |, the elements of §
are all Hermitian.

Let [o + R] be Hermitian equivalent in .4/R. We can raise the bounded
group {expitfe+ R]:t € R} to A
9. THEOREM. Let A be a commutative unital Banach algebra with uni-
Jormly topologically nilpotent radical R, and let a € A sotisfy
fexpit(fa+ R < K (teR)

where K > 1 4s a constant. Then there is a constant M > 1 depending only
on K, and a unique r € R, such thai

lexpit(a+r)li < M (t&R).
Proof Clearly,
lexpinfa + R]|| = [[[(expia) + R]*[| < K (n € Z),

so expila+ R] is DPB in A/R. It follows from Theorem 2 that there exists
r € R so that expi{a +r) is DPB in A. Now for t € R,

expit{a+ )| < llexpilt](a + )| - lexpi(t — [t]}(a + )|
' <M sunp” llexp 2u(a + 7}

nE|
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It follows that o + r is Hermitian equivalent in A. To show » is unique,
suppose § € R and Jlexpit(a + s)| is bounded for ¢t € R. Then

expi{a+r) - exp(—i(a+ s)) = expi{r — s)
is DPB and hence r = s as in the proof of Proposition 5. =m

5. Splitting of extensions of C(X). Let X be a compact HausdorfF

space and let
0-R— AL C(X) =0

be a radical extension of C(X), where C'(X) is topologically isomorphic
to A/R and R is uniformly topologically nilpctent. As we remarked in
the introduction, the splitting is known to hold when R is nilpotent. Qur
results on raising bounded groups give us a new method for proving splitting
theorems which is applicable to the larger class of algebras with uniformly
topologically nilpotent radicals.

The proof that the extension splits has two parts. In the first part we use
the raising of Hermitian elements to prove there always exists a splitting

A=YaR,
where ) is a closed subspace of A. We use this fact in the second part to
show that A has a splitting A = B @ R, where B is a closed subalgebra.
10. THEOREM. Let X be a compact Housdorff space and
0-R—-A—-C(X)—0
be a commutative extension of C(X), where R s uniformly topologically

nilpotent and C(X) is topologically isomorphic to A/R. Then R has a closed
Banach space complement in A.

Proof. Let ¥ : C(X) — A/R be a continuous isomorphism, and let K

be a constant which satisfies K > |¥|l. Note that if f € Cr(X), then
lexp(it? ()] = [[#(expitf)} < K
for all ¢ € R. The set ¥ (Cr(X)) is Hermitian equivalent in A/R. If [a+R] €
P (Cr(X)), let S([a+R]) = a+r be the unique Hermitian equivalent element
of [a + R] selected by Theorem 9, and define
o= S8oW: Cg(X)— A

Given fi, fa € Cp(X) and oy, a9 € R, we see that

ene(fr) +aao(fa) — elarfi + aafe)

is a Hermitian equivalent element which belongs to the radical R and hence
is zero. It follows that g is a real linear map. Since the product of Hermitian
equivalent elements need not be Hermitian equivalent (see [Lu]), it is not
clear whether p is a real homomorphism. However, g is continuous. To see
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this let |- | be an equivalent norm on A such that with respect to |- |, the set
Vi = o(Cr(X)) is Hermitian. Since the norm of a Hermitian element is its
spectral radius, we see that if f € Cr(X), then |o(f)| = v(e(f)) = I f1loo
Hence p is isometric for | - |. Consequently, Vg is closed for | - | and hence
for |- -
Now consider Y = Vg + ¢V and adopt the norm | - |. If b, ¢ € Vg, then
ol + le| _ v(8) +v{e)
2 2
Consequently, ) is closed for |- | and || - {|. We now extend p from Cr(X) to
C(X) by defining

< v{b+ic) £ |b+ic| < 1b] + .

o(f +1g) = o(f) + ialg).
A calculation shows that the extension is complex linear. For each a € A,
there is f € C(X), f = fi + if2, where fi, fa € Cr(X), and a1,02 € A
80 that
a=oa1-+ia, w(a;)= fi.

Let bi = Q(fi), 1= 1,2. Then a; = bz + 7, where b-i. S y]R; € K. Thus
a € YV + R. Since clearly ¥ R = (0), we have proved that Y is a closed
complement to R in A. =

11. THECREM. Under the hypotheses of Theorem 9, every short ezact
sequence
0—-R—-A—=CX)—10
splits topologically and this topological splitting is unique.

Proof. As the first step of this proof we construct a closed amenable
subalgebra B of A such that we have the short exact sequence

0 —rad(B) — B z B/rad(B) — 0,

where @ = w|g and B/rad B is isomorphic to C(X).
To prove this let G be the unitary group of C(X). Thus
G=A{feC(X):|f(x)l=1(zr € X)}
and let ¥ : C(X) — A/R be the continuous isomorphism of C'(X) onto
A/R. By Theorem 6 we can raise ¥((G) to a bounded group in .A. Recall
that for g € A such that [g 4 R] € ¥(G), there exists a unique r =r, €
R such that ge” is DPB in A. Let ¢ : G — G C A be the continuous
group isomorphism defined by 4([g + R]) = ge”. We extend ¢ linearly and

continuously as a map of all of £*(G) into A as in the proof of Theorem 7.
Define

B =4(tHG),
where the closure is in A. Since £{G) is amenable, so is B. (For facts about
amenable Banach algebras see the references [CuLal, [Jo], or [He].)
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We next note that 7 maps B onto C'(X). This follows from an cbservation
of Kamowitz [Ka, p. 366] that each f € C(X) has a representation as a linear
combination f = $°% | Aig;, where g; € G and ); € C. Since #{B) contains
G, it follows that 7(B) = C(X). Hence B/rad(B) is isomorphic to C(X). We
have B+ R = A and rad(B) = BN'R. We next show that rad(B) = 0. Since
rad(B) C R, it is uniformly topologically nilpotent. Thus by Theorem 9,

B =) @ rad(B),

where )V is a closed subspace of B, complementary to rad(B). Now B is
amenable, and if rad(B) is different from zero, rad(B)* is complemented
in B*. Therefore by [CuLo, Theorem 3.7} or [He, II, Proposition 32] we have
rad(B) = (rad(B))?. However, by Dixon [Di], a UTN radical algebra never
has such a factorization. Consequently, rad(B) = 0. It follows that

A=BagR.

_ Since the unitary group G can be raised uniquely to the bounded group
G of Theorem 6, it follows that B is the unique closed subalgebra satisfying
A=BOR. m

12. CorROLLARY. Let X be e locally compact Hausdorff space and
0-R—-A—=C(X)—0

be o commutative topologically nilpotent extension where Co{X) s topolog-
ically isomorphic to A/R. Then the extension splits topologically and this
splitting is unique.

Proof. Adjoin an identity e to A to form .A#, Then A# has radical R
and A% /R ~ C(X#) where X# is the one-point compactification of X. But
A* = BoR = {de} @ By © R, where By > Cp(X) and A ~ By & R. Since
B is unique in A%, By is unique in A. w

13, CoroLLARY. The subspace Y coincides with the subalgebra B.

Proof Let 6 : C(X) — B be the continuous homomorphism such that
%8 = idg(x) and let g : C(X) — ) be the continuous linear map constructed
in the proof of Theorem 10. It suffices to show that for f real we have
0(F) = o(f)- Since o{ f) is Hermitian equivalent, expip(f) is DPB and exp i f
is DPB in C'(X). Since # is continuous, expif(f) is DPB in A. But wof = wop
and hence 0(f) = o(f) + 7. But then by Theorem 6, 8(f) = o(f). =

REMARK. In the case of a nilpotent radical R, the splitting of the short
exact sequence 0 — R — A — C(X) — 0 is necessarily algebraically unique
by [BC1, Theorem 4.5]. However, if R is only uniformly topologically nilpo-
tent, the splitting is unique topologically, but not necessarily algebraically.
For, assuming the continuum hypothesis, H. G. Dales has shown how, for
any infinite compact Hausdorff space X, one can construct an extension A
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of G(X) for which the radical R is the UTN algebra C,o and for which there
are both a strong splitting A = B@&R and a splitting A = By @R, where Bp
is not closed in A. See the construction in the proof of {Da, Theorem 7.8].
As shown there, a similar construction can be carried out for certain other
radicals.

6. Applications. For X locally compact, situations in which the short
exact sequence

(%) 0+ RHADG(X)—0

arises most naturally occur in the study of problems of spectral synthesis
for locally compact Abelian groups. For a locally compact Abelian group G,
if we regard A = LY{G) ~ A(I') via the Gelfand representation of L'(G),
where I' is the dual group of G, then the short exact sequence (*) describes
the existence of a Helson set X of non-spectral synthesis for the group I'.
(For a proof that every non-discrete locally compact group contains such a
set see [Sa).) If

I(X)={fe A(I"): f(X) =0}
and
J(X) = {f € A(I") : supp f is compact and (supp f) N X =9},

then I(X) # J(X) and R = I(X)/J(X) is the radical of A = A(I")/T(X).

Always J(X)2 = J(X) and our next result shows that for Helson sets of

non-spectral synthesis this relationship holds for both I(X') and the radical
I(X)/J(X).

14. THEOREM. Let X be a Helson set of non-spectral synthesis in the
locally compact non-discrete Abelian group I'. Then I(X)? = I(X) and
R2=R.

Proof. Assume K = I{X)? # I{(X). Then B = A(I')/K has radical
Ry = I(X)/K, which is nilpotent of order 2, and furthermore

B/Ro =~ Co(X).
By Corollary 12 the short exact sequence
0—=Ryg—B—Ch(X)—0
splits topologically. Consequently, B ~ Cp(X) @ Ro and R is a comple-
mented subspace of B.
Since I' is an amenable group, A(I'} and hence B are amenable as Ba-
nach algebras. Since R is complemented in B, Ry is complemented in B*.

Therefore by [CuLo, Theorem 3.7] or [He, II, Proposition 32], Rg has a
bounded approximate identity. This is clearly impossible since R3 = 0. The
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same argument shows that R? = R. Indeed it shows that if K (X) is any
closed ideal of A(I") satisfying J(X) C K(X) < I(X), then
(I(X)/K(X))? = I(X)/BE(X),
An interesting question in this context is whether for a Helson set X of
non-synthesis the radical R = I(X)/J(X) can ever be weakly complemented

in A, i.e. R+ complemented in .A*. This would imply that R has a bounded
approximate identity and comsequently R would be amenable.
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Edward Marczewski (Szpilrajn) (1907-1976), one of the most distinguished Polish
mathematicians, was a disciple and an active member of the Warsaw School of Mathe-
matics between the two World Wars. His life and work after the Second World War were
connected with Wroctaw, where he was among the creators of the Polish scientific centre.

Marczewski's main fields of interest were measure theory, descriptive set theory, gen-
eral topology, probability theory and universal algebra. He also published papers on real
and complex analysis, applied mathematics and mathematical logic.

A characteristic festure of Marczewski's research was to deal with problems lying on
the border-line of various fields of mathematics. He discovered a fundamental connection
between the n-dimensional measure and topological dimension, and made a deep study
of similarities and differences between the Lebesgue and Baire o-algebras of sets. He also
established the relationship between the notions of set-theoretic and stochastic indepen-
dence. The discovery of such analogies led Marczewski to interesting -generalizations of
the existing theorems and notions. The examples to this effect are his theorem on the
invariance of certain o-algebras of sets under the operation (A} and his notion of an in-
dependent set in universal algebra. Among important notions and properties introduced
by Marczewski are also the characteristic function of a sequence of sets (nowedays often
called the Marczewski function), universally raeasurable set and universal null-set (abso-
lutely measurable set and absolute null-set in his terminology), properties (8) and (s90) of
sets, compact class and compact measure. Many of Marczewski's results found their way
to monographs and texthooks. .

The book contains 92 research papers and announcements arranged in chronological
order. Four papers, originally published in Pelish or Russian, appear here for the first
time in English translation. The mathematical papers are preceded by a biography of
Marczewski, a reminiscence of him and a list of papers about his life and work. The list
of Marczewski's research and other publications is also included.
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