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Dirichlet problem for parabolic equations on Hilbert spaces
by
ANNA TALARCZYK (Warszawa)

Abstract. We study a linear second order parabolic equation in an open subset
of & separable Hilbert space, with the Dirichlet boundary condition. We prove that a
probabilistic formula, analogous to one obtained in the finite-dimensional case, gives a
solution to this equation. We also give a uniqueness result.

1. Introduction. There is a well known correspondence between Markov
processes and partial differential equations in finite dimensions, on the whole
space, as well as in open subsets. Consider an equation of the form

i,y=1

ou 1 < o? - 8
5 (H2) =5 >, qt,j(m)m“(f:m) + ;Gi(m)a—m“(m«“)

(1.1)
= S T Q(a)D*u(t,z) + (4(), Dulta)),  £>0, & € R,
u(0,2) = ¢(z).
Here Q(z) = [gi;(x)]};=, is a symmetric, positive definite matrix and

Alz) = (a1(z), ..., an(z)); A(x) and \/Q(z) are Lipschitz continuous and
bounded. Denote by X¥ a diffusion process satisfying the stochastic equa-
tion

(1‘2) dXt = A.(Xt)dt + 4/ Q(Xt)th, Xo =,

where W, is a standard Wiener process. Then the formula u(t, z) = By(XF)
defines the unique solution to equation (1.1). This probabilistic approach to
parabolic equations was presented for example in [13] and [12]. In [17] the
problem of existence and uniqueness of solution to (1.1) with unbounded
coefficients was studied. There are also results concerning parabolic equa-
tions in an open set O C R", with Dirichlet boundary condition {see [13],
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[12], [21]):

du 1
(1.3) 5 (t2) = 5 TR(@)D*u(t,2) + {A(e), Dult,a)), ¢>0, 2 €O,

w0,z) =p(z), z€O, ult,z}=0 t>0, zd0.

Let 7§ denote the time of the first exit of the process X from O after 0+.
It is known that if the boundary of © is smooth enough, A(z) and /Q(z)
are Lipschitz continuous and bounded and there exists v > 0 such that
{Q(x)v, v} > ~y|v|, then for ¢ bounded and continuous, the function

u(t,z) = E{p(X}) : 75 > t}

satisfies equation (1.3).

The probabilistic approach to parabolic eguations in infinite dimensions
was presented in [4], [14], [15], [16], [18], [2], 3], [6], [23] and [22]. For more
references see e.g. [23]. But most of the results concern equations on the
whole space.

First results have been obtained by Gross [14] for the heat equation on
a Banach space. In the special case of Hilbert space the equation considered
in [14] is of the form

Bu
Bl
with a positive, symmetric nuclear operator Q. If ¢ is bounded, twice contin-
uously differentiable, with bounded derivatives, and W} is a Wiener process
with covariance operator @, then u(t, x) = E(x+W,) satisfies (1.4). It was
shown by Gross that the regularity assumption on ¢ can be weakened when
Tr QD?u(t, ) is replaced by the so-called Gross Laplacian. This replace-
ment is necessary because of the lack of the smoothing property of the heat
semigroup in the infinite-dimensional case. This lack causes problems when
considering the heat equation in an open set. Gross’ results were generalized
by Priola [19! to parabolic and elliptic equations on a halfspace.

A parabolic equation with a term involving the first derivative with re-
spect to the space variable was studied by Piech [18)], Cannarsa and Da
Prato (2], [3] and Zabcezyk [23] (see [23] for more complete references). On
a separable Hilbert space H the following equation is considered:

(14) ) = s TrQDA(s,2),  u(0,2) = p(o),

;
(1.5) 3—?(ta~’0) = -;-'TTQD%(??,E) + {z, A*Du(t,z)}, t>0,z€H,
u(0,%) = p(z),

where €} is a symmetric, nonnegative bounded operator, not necessarily nu-
clear, A is the generator of a Cy-semigroup on H and ¢ is a uniformly con-
tinuous bounded function on H. Equation (1.5) is related to the Ornstein—
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Uhlenbeck process satisfying
(1.6) dX =AX dt+dW, X(0)=z,

where W is a @Q-Wiener process. As shown in [9], the presence of the un-
bounded operator A may have a regularizing effect, in the sense that under
certain conditions the transition semigroup of X has the smoothing prop-
erty. Jt was shown that in this case (1.5) has a unique classical solution
which has the form u(t,z) = Ep(X¥) (see e.g. [23)]). '

In the present paper we consider the following Dirichlet problem on an
open subset O of a separable Hilbert space H:

(1.7) %%(t,m)x%T&QlﬁDzu(t,m}Q”z—k(w,A*Du(t,a:)) ifze®, t>0,

(1.8) uw(0,z)=w(z) fzecO, ulte)=0 ifzecdl, t>0

In (1.8), ¢ is a continuous bounded function on ©. Note that the traces of
the operators QD?u(t, z) and QY2 D?u(t, )Q*/? are equal if both operators
are nuclear. We denote by 78 the first exit time of the process X from O.
In view of finite-dimensional results we define a generalized solution to (1.7},
(1.8) by u(t,z) = PPwlx) = B{p(XF) : 7§ > t} for X} satisfying (1.6). A
natural question is whether the generalized solution satisfies (1.7), {1.8) in
the classical sense. As in the problem (1.5), the smoothing property of the
transition semigroup of the process X plays an important role in our ap-
proach. The restricted semigroup PP was studied by Da Prato, Goldys and
Zabezyk in [8] but they only showed that under certain conditions for each
bounded Borel ¢ and t > 0 the function PPy(z) is Fréchet differentiable.

We show that under conditions similar to [8] the generalized solution
satisfies (1.7) and (1.8) in the strong sense. That is, we prove that for ¢ > 0
and z € O, PPy(z) is twice continuously differentiable with respect to x
and once differentiable with respect to ¢, and we show that the operator
QY202 PO p(2)QY/? is nuclear and DPP(x) belongs to the domain of A*.
This means that both sides of (1.7) are well defined. We prove that the
equality in (1.7) holds. Moreover, we show that the derivatives of PPy(z)
are Jocally bounded and the nuclear norm of @Q*/2D?PP ©(z)Q/? and the
norm of A*DPPy(z) are locally bounded. The estimates obtained depend
on the distance of » from the boundary of O and also on the speed of
convergence to zero of |S(h)z — z| when h goes to zero. Finally we prove
that PPo(z) converges to ¢ as t goes to 0, and for t > 0, PPop(z) — 0 as
¢ goes to a regular point of the boundary. In general, irregular points do
not have this property. It was shown in [8] that even for sets so simple as
a ball or certain halfspaces the set of irregular points may be dense in the
boundary. However there also exist sets whose boundaries consist of regular
points only.
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We also prove that a strong solution is unique if the process Xf exits
from the set @ only through regular points of 80.

Thus this paper not only answers the question stated in [8] by showing
that the generalized solution is a strong solution to (1.7), (1.8), but also pro-
vides a uniqueness result. We hope that our result can be useful in studying
the more general equation

%%(t,m) - LT QY2 DPu(s, 2)Q* + (3, A”Dut, )+ (Fla), Dult, )

ifze @, t>0,
u(0,z) =p(z) fze0, ultr)=0 fzxecdO, t>0,

where F' is Lipschitz.

Let us briefly describe the methods used in the proofs. As we mentioned,
the existence of the first order derivative of PP (z) with respect to z was
already shown in [8]. We extend this method to show that there exist deriva-
tives of higher order. The key idea is to write PC (%) as a series of functions
involving the global semigroup P;. A similar method was used in [21] for the
restricted semigroup of a finite-dimensional Wiener process. To show that
QY2D2 PP ()@ is of trace class and that DPPw(z) belongs to the do-
main of A* we work with the same expansion but now we have to treat
it more carefully. The elements of the sum are of the form Pty for some
bounded Borel 1. The idea is to write them as P, /2(Pt J2%k)- Since Py otk
is a smooth function, we can use formulas for the derivatives of the global
semigroup acting on a smooth function. Later we use exponential estimates
of the probabilities involving exit times of the Ornstein—Uhlenbeck process
XZ. We use similar methods to show that the derivative of PP p(z) with
respect to t exists and (1.7) is satisfied.

We prove that PP (z) satisfies the boundary condition for regular points
via excessive functions and their lower semicontinuity. The proof for the
initial condition is straightforward.

Next we show the uniqueness of a solution of (1.7) and (1.8) when the
process X7 exits O through regular points only. We show that any solution
must be of the form u(t,z) = PP¢(x). We prove this using It&’s formula
and several levels of approximation of the process X* as well as of the set 0.

2. Notation and results. Let H be a separable Hilbert space with
norm |- |, and let O be an open subset of H. We denote by By(O) and
Cp{O) the sets of bounded Borel functions on O and bounded continuous
functions on O, respectively. Let

llelio = sup [e(z));
ze®

icm

Dirichlet problem 113

we denote by | - ||lus the Hilbert—Schmidt norm and by || - ||1 the nuclear
norm of a linear operator on H.

‘We consider the following equation:

) 1
(2.1) %(t,x) = 5 Tr QY2 D%ult, 2)Q? + (z, A"Duft,a)) €0, >0,
(2.2) uw(0,2) =p(x) fzrecO, ultz)=0 ifzecdO, t>0.

Here A is the generator of a Cp-semigroup S{t) on H, Q is a symmetric,
nonnegative bounded operator, and ¢ € Cy(@). D and D? denote Fréchet
derivatives with respect to x.

Problem (2.1)—(2.2) is closely related to the Ornstein-Uhlenbeck process
satisfying the equation
(2.3) dX = AX dt+dW, X(0)=uz,
where W is a @-Wiener process.
One of our assumptions is the following:
¢
(2.4) Joca<t Vizo SO'_GHS(U)Qlﬂn%{S do < oc.
0
1t is known (see [10]) that under condition (2.4), there exists a unique solu-
tion X* to (2.3) given by
t
(2.5) Xg = S(t)x + | S(t — 5) dW,,.
0
Moreover, the process X® has a continuous version. The transition semi-
group F; of X will be called the global semigroup,

(26)  Pu(z) = Bo(XZ) = | o(S(t)z+v) Na.(dy), ¢ € Bu(H),
H
where
t
(2.7) Q.= 5(0)05"(0) ds,
0

and Np, denotes the centered Gaussian measure on H-with covariance op-
erator ;. By (2.4) the operator @Q; is nuclear.
The second important assumption is

(2.8) Viso ImS(t) C Im QL%

By (2.8) and the closed graph theorem it follows that the operator A; de-
fined by

A= Q7YP8(t), t>0,
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is bounded. Moreover, again by the closed graph theorem, it follows that
for each t > 0, S(t) is Hilbert-Schmidt, and consequently, by the semigroup
property S(t) is nuclear.

Condition (2.8) holds if and only if the global semigroup has the smooth-
ing property (see [9]). Both (2.4) and (2.8) were also assumed in [23] when
solving equation (2.1) on the whole H.

For z € H denote by 78 the first exit time of the process X7 from O,

T8 = inf{t > 0: X7 € O°}.
By the Blumenthal 0-1 Law the probability P(7% = 0} is either 0 or 1. We

say that a point x is regular if P(7§ = 0) = 1, otherwise we call it irreguiar.
We define the restricted semigroup by the formula

PPy(x) = B{e(X8): 175 >t}, z€0, g€ B,(0).
The function
(2.9) u(t,x) = PPyp(z) = B{p(X7) : 7§ > t}

is called the generolized solution to (2.1), (2.2). In view of finite-dimensional
results this is a natural candidate for a strong solution of {2.1), (2.2).

DEFINITION 2.1. We say that a continuous bounded function (¢, z) on
[0,00) x © is a strong solution of (2.1) and (2.2) if it satisfies

(i) for each ¢ > 0 the Fréchet derivatives Du(t,z) and D?u(t, z) exist
and they are continuous functions of & € @, locally bounded as functions of
two variables, i.e.

(2.10)  Vieo Yizo Joct<icT Ir>o

swp  {|Du(s,g)| + [D%u(s, )} < oo,
(3)y)6[t11T]XB(maT) )

(ii) for £ > 0, Du(t, =) € D(4*), |A* Du(t, z)| and || Q2 D%u(t, z)Q*/?||;
are locally bounded, and for fixed ¢ > 0, @2 D%u(t, )Q'/? is continuous as
a function of = &€ 0 into the space of linear trace class operators on H,

(iii) for each = € O, Fu(t, =) exists for ¢ > 0 and is a continuous function
of t,

(iv) equation (2.1) is satisfled in the classical sense,

(v u(0,2) = @(z) for z € O,

(vi) for any sequences {z,} of points in O converging to a regular point

z of the boundary, and {¢,}, t, > 0, converging to ¢ > 0, u(t,, ©, ) converges
to zero.

REMARK 2.2. By the compactness of {z} x [y,T] for 0 < v < T < o0,
it follows that (2.10) is equivalent to

Veco V0<7<T<oo EIr>0 sup

{|Du(s, )| + [1D*u(s, )1} < oo
(s,w)€lv,T) X B(z,r)

icm

Dirichlet problem 115

THEOREM 2.3. Assume thot (2.4) and (2.8) are satisfied. If ImS(t) C
D(A) for oll t > 0 and there exist to,C > 0 and § > 0 such that for all
0 < t é tﬂa

(2.11) las®)] < o/t
(2.12) 1Al < C/t,
then for ¢ € Cu(0), ult,z) = PPy(x) is a strong solution of (2.1), (2.2).

REMARK 2.4. If ImS(t) < D(A) then, since A4 is closed, AS(t) is a
bounded operator. Consequently, 5(2)A can be extended to a bounded op-
erator; this extension is equal to AS(t). Moreover, Im 5*(3) € D(A*) and
|A*S* ()] = [|AS ().

Assumption (2.11) is satisfied for analytic semigroups with 6 = 1 (see
[11]).

ExaMmpPLE 2.5, Let

dQ
H=1TL*0,1), A= - D)= H2(0,1)n H(0,1), Q=1Id

and let @ be an open set in H. The operator A has eigenvalues —n?n?,
n=1,2,... The semigroup S(¢) generated by A, and the operator th, have
the same eigenvectors as A. The corresponding eigenvalues are e™™ ™ ¢ and

- ﬂzﬂ‘z'r .
1““—;-;—7——'- respectively. All the assumptions of Theorem 2.3 are satisfled:

(2.4) holds for all 0 < or < 1/2, (2.11) is satisfied for § = 1 and (2.12) with
§ = 1/2. Thus for each ¢ € Cy(O) the function PP¢(x) is a strong solution
to (2.1), (2.2).

If @ = B(0,r) is a ball in H then, as shown in [8], every z € 80 such
that (Qz,2) >0,z€ D(A)or z € D((—A)?) is regular, and consequently,
fort >0,

- (@] _
%%% P w(z) = 0.

But in [8] it was also shown that there exists a dense set of irregular points.

Under a weaker assumption on the initial function we obtain the follow-
ing theorem that deals only with equation (2.1):

THROREM 2.6. Let the assumptions of Theorem 2.3 be satisfied. Then
for each o € By,{0) the function u(t,z) = PP () satisfies (i}-(iv) of the
Definition 2.1, Moreover, lm D2PPo(z) € D(A*) and A*D?PPop(z) is a
bounded operator. o

The next theorem provides the following result about the uniqueness of
a solution. .

THEOREM 2.7. Assume that (2.4) is satisfied, the solution X® of (2.3)
exits from the open set O only through regular points of the boundary and
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forallz € @ andt > 0, P(1% =t) = 0. If u(t,z) is a strong solution of

(2.1) and (2.2), then u(t,z) = E{p(X]) : & > t}.

REMARX 2.8. There exist sets ¢ for which all points of 80 are regular.
The method used in the proof of Theorem 3.1 of [8] shows that for each
v & R and @ € D(A*) such that (Qa, o) > 0, the sets {z € H : (z,a) > 7}
and {z € H : {z,a} < v} have regular boundaries. A finite intersection of
sets of this form also has a boundary consisting of regular points only.

3. Proof of the existence theorem. First we will show Theorem 2.6.
Let us gather here a few results that will be frequently used in the proof.
The first one is an extension of the interpolation lemma given in [8].

LEMMA 3.1. Let U be an open subset of H. For ¢ € U define dy(z) =
dist(a:,UC)/\Q Then

1Dg(z)] < d \/i|9||U\/||9HU+||D29||U if g€ C*(U),

3/2
|D%9()] < (dj(m)) (lalle) (gl + 1029 )"

x (|1Dgllw + I1D%llv)*  if g € C2(U),

T/4
D0 < (g5 ) Ualko)™alio + 1%l

x (|1 Dglly + 1 D*gll)*(1D?gllw+ |1 D*glle)/?  if g€ C*(U).

Proof. The first inequality was shown in [8]. Now let V' be an open ball
with center at z and radius dyy(z)/2. We apply the first inequality to V" and
functions of the form f,(z) = {Dg(z),v), v € H, to obtain

(3.1) 1D%g()ll < ~ : )\/lIDglivx/liDgllv+||D39|lv

< 5o 7V Dallv v IBalls + 15%T.
For y € V 'we have
129 < g5 Tolloy el = 157
Now, since di(y) > dy(z) /2, we obtaln
I1Dglly < e Tallov/Tel + D%l

Combining this with (3.1) we get the second inequality of the lemma. The
proof of the last one is similar. u ;
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Let Wh(y) = (h, Q7 /*y). On the probability space (H, B(H), No,), Wi
is a real-valued centered Gaussian random variable with variance |A{?. Let us

introduce the Wick products Gp,, . n,(Wh,, ..., Wh, ), defined recursively in
the following way (cf. [20]):

,ch) = 13
’xk) = annlv“:nj "'1!'")'"'k (wl? . )xk))
EGﬂlw-,nk (Wh_l, o .th) =0 for (nl, Ve ,nk) :,é (0, ‘e ,D)

It is easy to see that Gy, .0 (Why,...,Wh,) is the orthogonal projection
of the product Wy ... Wy* onto the Wiener chaos of order ng +...+ng in
the space L?(H, Ng,) and therefore Gy, (Wh,) is a Hermite polynomial of
order ;.

G(],_,_,o(ﬂij, e
a3

%Gm,---,’fbk (.’El, .
3

LEMMA 3.2. Assume that (2.4} holds for o = O ond (2.8) is satisfied.
Then for all ¢ € B,(H) and h,...,hp € H,

(3.2) DMt P (A ... Q@ hpF)

= { Guuponn Wahy 8), . Waun, ))0(S(8)z + y) No, (dy).
H

Moreover, putting it = ny + ... - Np,y
(3.3) Vizo  |ID"Pegllren < Crllollm 4™

Proof. By the Cameron-Martin formula we can write

Pup(a+ h) = | o(S()z +v) exp {(4ch, Q7 5) — §|4:h[*} N, (dy).
H
And since

~ AR} = Y Goy(Wh),

n1=0

exp { (4sh, Qﬁl/z

it is easy to check that (3.2) holds for D™ Pyp(h®"). The general case
follows by polarization and linearity.
Since the vector (Whl, ., W4, ) is Gaussian, we have an explicit formula:

A (Why, o =y [ IT wa 11 (—EthWh,»)],

PEPn {"-]'EP {kaj}ep

where P, denotes the class of all distinct partitions P of the set {1,...,n}
into disjoint subsets which contain either one or two elements, i.e. every
P € P, has the form P = {{i1, 2}, ..., {iam—1.92m}, {famt2}s - o {ta}h P

is unordered. We also have for p € N,
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(3.9 [{Ag, Q%) No,(dy) < Gy § (g Q7 ) Noy ()]
H H

= 5p|-’1t9!2p‘

Applying Hélder’s inequality and (3.4} (alternatively, Schwarz’ inequality
and the formula for mixed moments of jointly Gaussian random variables) to

V16 W, @) s Wan, (1)) No, (dy)
H

we get estimate (3.3). m
Let @ € By (0). Define

P?‘P( )= {Pt plz) fae0,

0 if x € O°.
LEMMA 3.3. Let t > 3 > 0, z € O and p € B,{(0). Then
(3.5) 1PPp(@) ~ (P 0)(=)| < lleloP(7§ < s)-

The above lemma is proved in [8] and [23]. The next lemma, which gives
estimates for the exit probabilities, is taken from [23]; another version of it
can be found in [8].

LeMMA. 3.4, Assume that condition (2.4) holds. Then

(1) the process Z(t) = SE S(t — s} dW, has a continuous version and for
each T > 0 there exist positive constants C1, Ca such that for all t € (0,7T)]
and r > 0,

(3.6) P(sup | 2(s)]| > r) < Cre~C"/t",
<t
(ii) for all € © and T > 0 there ewist positive constants ro, to, Cs, Cy
{depending on x, T' and O) such that for all t € (0,1,

8.7 sup P18 <t) < Cae” G/,
yEB(E,T‘u)

The previous results are used to show the smoothness of PPy as a
function of 2 € O. We need one more lemma to prove that for arbitrary
@ € By(0), z € O and t > 0 the operator Q*/2D2PPip(2)Q"/? is of trace
class and that DPP () is in the domain of A*. This result is due to Goldys
(see also [23]).

LEMMA 3.5. Assume that (2.4) a.nd (2.8) hold. Then

(i) we have

Dirichlet problem 119
(38)  DPg(z)= {5t ) + y) No, (dy) if ¢ € CL(H),
H
(3.9) D'Pig(z) = | S*(1)D*$(S5(t)x + y)S(t) Ng,(dy) if ¢ € C2(H).

H

(ii) DPy(x}) € D(A*) for allt > 0, z € H and ¢ € By (H) if and only
if Im S(¢t) € D(4).

(iii) The operator D*Py¢ is of trace class for allt > 0, z € H and
(}5 = B1)(H)

Proof of Theorem £.6. STEP 1. First we need to show that for all ¢ > 0,
PPp(x) is of class C* with respect to the space variable z € @, with locally
bounded derivatives. Since we have Lemma 3.1 this fact follows by a simple
extension of the proof for the first derivative given in [8]. For completeness we
recall here the method of [8] and show for example the existence of the second
derivative of PP, and its continuity and boundedness on small balls in ©.
The proof for the third derivative is analogous. In fact extending Lemma 3.1
in a natural way we can conclude that PPy is infinitely differentiable.

Fix z € QO and 0 < ¢ < T. Let rg, tp be as in Lemma 3.4(ii). Taking ¢,
smaller if necessary we can asswmne that for all s < £ assumptions (2.11) and
(2.12) are satisfied. In what follows € will always denote a positive constant
depending only on 2, T' and the set ©. This constant can be different in
different expressions below.

For k € N, k > 1 we define functions ¢ as follows:

(3.10) Yr(y) = PnPh_pely)  forye H.

By Lemmas 3.3 and 3.4 the sum 41 (y) + ¥ pes (¥x{¥) — ¥r-1(y)) converges
uniformly to PP o(y) for y € B(z,ro). Each 9y, is in C°(H), hence to prove
that PPy is twice differentiable at z it suffices to show that

=0}
(3.11) D% || Bgayrere) + 3 1D %k — Y1) Blo,ne/2) < 0.
k=2

For each & > 1 the norm || D% 3(a,ro/2) 18 finite. For k > 2 such that
t/k < to we will use Lemma 3.1 with gx = 9 — ¢r-1, U = B(z,m0). By
Lemma 3.2 and assumption (2.12) we have for y € B(z,70/2),

5
[ Dg ()l < lelloll el + 14e k- :)H)<C'||<PH (k/t)°,
ID2g )| < Cligllo(k/t)*,
|1 D%gk @)l < Cliello(k/)*.
As a congequence of Lemma 3.1 we get

1D (4 — Pp—1) @) < Cllt0% — Yr-1llB(e, m))1/4|190||3/4(k/f)255
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which, by Lemmas 3.3 and 3.4(ii), can be estimated by
Cllplloe=(=D/0%/ /ey,
Thus the series in (3.11) is convergent and for y € B(z,rg/2),

(3.12) D?PPy(y) = D¢ (y) +ZD2(¢;¢—¢;¢ ()
[

and we get (i) in the definition of the strong solution.

STEP 2. We now prove that if (2.4) is satisfied then

oo
(3.13) > /RS RQ s < co.

k=1
Since {S(t)}s»0 forms a Cy-semigroup, there exist constants N > 0 and
a € R such that | S(o}|| £ Ne®™ (see [11]). Define M = sup, 7 [|S(o)}|| V 1.
From (2.4) we have

t o0 t/k
00> (o7 8()Q Y |Rgdo 2 72> | 11S(0)QY2 ([ do
0 k=1¢/ (k1)
oo t/k—t/(k+1) ¢
>ty S(— +a)Q1/2 do.
1 0 k+1 HS
By the semigroup property,
1/2 < g t — 1/2
“ ( )Q = (k e )H (k+1+a)@ -

< _r 1/2
< MHS(k+1 +0’)Q
for 0 < o < t/(k(k +1)). Thus we get

> 5 L e |(6)

HS

and (3.13) follows.

STEP 3. Now we show that for arbitrary t > 0 and z € O the operator
Q2D2PP p(z)Q*? is of trace class and DPPy(z) € D(A*), which means
that the right hand side of (2.1) is well defined for u{t,z) = P7p(z). We
also prove local boundedness of A*DPZp(z) and ||QY/2D2PP p(z)Q?|;.

Fixz € 0,0 <t < T and ko > 2 such that for all k > ko, |S(t/k)z—1x| <
ro/4 and t/k < t. To prove that Q*/2D?PPu(z)Q/? is nuclear it suffices
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to show that
o0
(314) 11Q2 D%, (2)Q* 1+ 3 QYD (5 — 1) (2)Q /21 < o5,
k=ho+1

where v, are defined in {3.10). Then we will also have
nI‘rQl,’ZDZPC’) $)Q1/2 T‘I‘Q1/2D2‘¢' (m)Qlfz

+ Z T QY*D? (31 — thre-1 ) (2) Q2.

k==lop+1
Set
(3.15)  Wy(m) = Pojany Ph 1y /ne(z) — Pi(om1)—t/(26) P2yt /o136 ().

By the smoothing property of the global semigroup P, we see that ¥, <
CZ(H). Applying Leroma 3.5 to
D9k = Y1) (%) = D*(Pyy(ar) %) ()

we get

(3.16) D3 (th ~ Pp1)(z)

== ;s* (%)Dm (S(;k)m + y)S(;—k) NG (9,

and consequently we have

(317) Q2D (b — 1) (@)Q"|lx
1/2 2 t
<fs()o ], S e (o))

First we estimate the integral in (3.17). From the definition of ¥, and
Lemma 3.2 we see that

(3.18) ||\ D*]a < Callello (Al + e gem1y—t/ (2 I1P)
< Cllgllo(k/t)*.
Thus by (3.18) and Lemma 3.4(i),

(3.19) | |[p?w (S( ;k):r + y) HNQt oy (AY)

lylzro/4
B\ t/(2k) ¢
<alvlio(5) P(| 1 8(g-v) o
0

k 24 o0
< Cllplo(£) etnre.

NQt,’(Z}c) (dy).

>t9)
— 4
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If |y| < ro/4 then S(¢/(2k))z+y € B(x,r0/2), since [§(t/(2k))z —z| < ro/4
and by Lemmas 3.3 and 3.4,
t 11
(3.20) sup  |¥i(z)| < 2{¢llo sup P(frgJ <=7 —_)
z€B(z,mq) z€B(x,m0) -1 2k
< Cllglloe™*07/C.

Using Lemma 3.1 and next Lemma 3.2, estimates (2.12) for Ay and (3.20)
we obtain

t
(3.21) S ng}k (S<2k>m+y>”NQw(2k (dy)
jy|<ro/4
<C 0 O (@l + [ D)
lyl<ro/4

x (HDWk”H + HDBWkHH)l/z NQ:/(M) (dy)
< Clip| o (k/t)P e +/A7/C.
Applying (3.19) and (3.21) to (3.17) we get

(3.22)  [|QY2 D% (g — v—1) (2)Q*|1
1/2 KN o c
s(ze)e], (5) e

< Cliwllo
In view of (3.13) the sum of these terms over k is finite, since k7e=*"/¢ — 0
ag k — oo for each v € R. This completes the proof of {3.14).
The proof that DPPw(z) belongs to the domain of A* is similar. It
suffices to show that the series

(3.23) A"Dypo(2) + D A*D(hs — Yr-1)(2)

k=kg+1
is convergent in H; then, as A* is a closed operator, we get the desired

result.
j5( ) Do (s( 2 )e+u) Moy (@
4 3% k o5k | Y Qe/(zk)( y).
Moreover,

By (3.8) we have

Doy — 1) (=) =
s (2)om o
<|+(a

o+

2k
)44 oo (5o +0) | ot
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We can estimate the integral in the last expression in a similar way to (3.17)
and use assurmption (2.11) to see that

A% D3y, — 1) (@) || < C(k/tye”*M/C
for some v > 0. Thus
|4 Dipro (@) + Y A D(gor — a1 ()] < 00
k=kg+1

and the series in (3.23) is convergent.

By (3.9) we also have D?PPy(z)v € D(A*) for each v € H. Since A* is
closed it follows that A*D?*PPp(z) is a bounded operator.

Notice that from the above discussion we can infer that for all z € O and
0 <t < T < oo there exists r > 0 such that both ||@Y2D?PPp{(y)Q 2|1
and |A* DPPy(y)| are uniformly bounded for (t,y) € [t1, T} x B(z,r). More-
over, @2 D? PP p(x)Q*/? is continuous as a function of z € O into the space
of nuclear operators on H.

If we take r = rg/(lﬁM) where M = sup,cior) S V1 and ko >

_2VT /tp is such that |S(h)x—z| < ro/8forany h < T/kg,then fory € B(z,r)

and t; <t < T we get |S(t/k)y — 3! < ro/4. Now we can follow Step 3 of
the proof and use the estimates
21\ H1/2
5(z)2

s(&)e],
o B =)

1 A¢c2my ]| < C( ) )
Cam(:/9%/0 < Q- T /8)%/C

<

p
HS

to obtain

(3.25) sup
(¢ €t T B{z,r)

o2

+ sup
,c:%;“ (&) €[t T B(z,r)

QY2 D%, (1) QY21

QY2 D2 (3hr, — 1) () QY ||y < 0.

Thus
sup 1QY2D* PP ()@ /%11 < oo
('ﬂ,'y)E[t]_,T]XB(.'E,T‘)
The argument for | A*DPPp(y)| is similar.
The continuity of QY2D?PP(x)Q/? follows from (3.25) and the con-
tinuity of Q2D (y)@Y?. Thus we get (ii) of Definition 2.1.
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STEP 4. In this part we show that for fixed = € O the right derivative of
PP y(z) with respect to ¢ exists for each t > 0 and satisfies

ot Lo
(326) S PPp(a)=
If0 < h <t then
P& plz) — PPo(z)
h
_ P PPy(z) - PPo(2) . PR pp(z) — PuPPp(x)
- h A

and by Lemmas 3.3 and 3.4(ii) the second term on the right hand side
of (3.27) converges to zero as h — 0. Let M = sup,< [1S(s)|| V 1. By
Lemma, 3.4(i),

F

[wlZro/ (8M)

T&Q1/2D2Ptotp(m)Q1/2 + {z, A*DPCyp(x)).

(3.27)

(PP o(S(h)z +y) — PPo(x)) Ng, (dy)

< 2lpllof e/ 0

and (3.27) takes the form
PErp(s) — PPy(z)
h

= —o(h) +

(3.28)

juy

=V (PPe(S(he +y) - PPy(z)) N, (dy).
fyl<ro/(8M)

Suppose that A is so small that |S(u)z — z] < ro/(8M) for each u < k. If

ly| < ro/(8M) then S(h)z + y is in the ball B(z,ry/(4M)) and here PPy

is three times continuously differentiable, with bounded derivatives. We use

Taylor’s formula to see that the right hand side of (3.28) is equal to

1 1
(3.29)  o(h) + ¢ |
Iyl <ro/(834)

(DPP (), 5(h)x — © + y) Ng, (dy)

- % { (DBPy(@)(8(h)a — = +1), S(h)w — 5 + ) N, (dy)
lyl<ro/(80M)
+ —% U (DPPPop(z + 8y ) (S(h)z — o + 1) (S(R)z — o + 1),

[yl <ra/(8M)

S(h)z — = +y) Ng, (dy)
= %o(h) + L (R) + L(h) + Is(h),

icm
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where 8py = Mny(S(R)z — z + y) for some 0 < 7py < 1. Notice that if

|y] < ro/(8M) then |Oy,| < ro/(4M).
Since the measure Ng, is symmetric we have

B30 hit = HDF ), st - 5P (1200 < 5 ).

where Z(h) = Sg S(h — u)dW,. Moreover,

1 1
(3.31) E(DPtotp(m), S(h)z —z) = <DPfjtp(:t:), ZA§)S’(U)$ du>
h
<A*Dpt%(m), % j s(w)z du>
. (A"DPPp(s), )
and

< = 1,
11m P(}Z(h)| SM)

Thus from (3.30) we get

(3.32) lim Iy (R) = (A*DPPo(z), z).
Next, Ip(h) in (3.29) can be written as

2i<D2Pt°so(mj<sch>m—m),S(h)wm (1014 )

T % ;(Dth%(m)y ¥} Naw (dy)

(3.33) L(h)=

1
AL S <D2Pto(|0(m)y!y) NQh(dy)
lwlzre/M

= Iy (h) -+ Joo(h) + Ips(h).
As in (3.31) we get

h
In(h) = (A“DQP{%( )(S(h)m—m),%éS(u)mdu>P(1 ()] < 8M)

Recall that by the end of Step 3, A*D?PPp(z) is a bounded operator. Since
S{(h)z ~z — 0 and ™" Sg §(u)z du — = we have

(3.34) limm Jos (h) = 0.
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Finally, by Hblder’s inequality we get

1 1/2 1/2
Is(B) < ID?BPe@l(  §  Nou(aw) (§ Iyl Now (@)
ly|zro/{8M) "

By Corollary 2.17 of [10}, for each m & N there exists a constant Cp, > 0
such that

(3.35) { 172" Ng, (dy) € Con(Tr Qr)™.
"

Thus by Lemma 3.4 and (3.35),

(3.36)  las(h)| < OHDZPFcp(m)H%e*” (O T Qn —0.
The term Ja3(h} in (3.33) can be written as follows:

(3.37)  Inp(h) = %Tr@lﬂDthotp(:u)Ql/g

+ % (% Tr QpD?PP p(z) — Tr Q1/2£)2PF¢(9:)Q1/2>.

We will show that the last term in (3.37) converges to zero as h — 0.
Let {e;}§2, be an orthonormal basis of H. We have

(3.38) TrQnD*PPyp(z) = “S WQS* (w)DEPP p(z) du]

0

oo h

= 3" [S@)QS* (W) D* PP p(w)es, ) du
0

=0
and
oo h
> 1(S()QS* () D2 PP p()e:, €1} du
i=00

It

O ey Dt__——z;r

> Sm)QS™ () D* PP y(w)es, &) du
FE=14)

h
S Y IS@QS* WD B p(z) |y du < | D* PP p(z)] | [1S(u) Q2| s du,
0

which by (2.4) is finite. Thus interchanging summation and integration in
(3.38) we get

T QD> PP () = | Tr[S(w)QS* (u) D*PP p(z)] du
0

Dirichlet problem 127

Using the fact that the operators S(u) are nuclear, we get

h
TrQnD PP p(z) = | Tr[QY/25" (u) D* PP ()8 () Q%) d.
0
Thus for the last term in (3.37) we obtain the estimate

(3.39) & Tr QuD*PPy(z) - T Q2 D*PPp(2) QM

h
< = | T Q728 (W) D*PL ()3 () Q™2 -
0
It suffices to prove that the integrand in (3.39) tends to zero as A — 0. Let
ky be as in Step 3, but assume that |S(t/k)x — x| < ro/(8M) for all k > kq.
We can use the expansion (3.12) of D?PPp(z) but starting from ko instead
of 1. Both series are absolutely convergent. For the first one this is obvious
since S(u)@? is Hilbert-Schmidt and ¥ | D?(¢x — $x—1)|| < oo. For the
second we have (3.14).
Thus we can estimate the integrand in (3.39) by

T QY2 D?*PPyp(x)QY?| du.

(340) Y [(QY28" () Dy (2)S ()@Y — QY7 Doy ()@Y )i, €)]
i=1

o0 00

+ > Y QY87 (w) D (9or — k-1 )(@) S (w) QY

k:kn i=1

— QYD (g — 1) (2) Q" ?es, e4)|
where {e;}2 1 is an arbitrary orthonormal basis of H. By (3.9) and the
estimate ||S(u)|| < M we have

(3.41)  [{(QY25" (u) D, ()8 (H)Ql/sz”zDzw o(@)Q e, €]

< OS HDZPW@kn)ﬁaD‘“l)t/ko(p(S(zk )a"-}_y)HNQt/@kn) dy)

1/2¢,
( Zko) ¢
and

(3.42)  [[QY2S5* (W) Dy — Y1 )}(z)S(w) Q>
~QV2D% (¢ — 1) (2)Q%]es, )]

2
colon(s(5)e )i l(5)

H

x
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Since Y00, |S(t/(2k)) QY ?es* = I15(t/(2k))Q /2|4, the sum of the right
hand sides of (3.41) and (3. 42) is exactly the same as the one that has been
estimated in Step 3, thus it is finite.

But for all v € H, |S{u)v — v| — 0 as u — 0, hence each summand of
(3.40) converges to zerc as well. By the domma.ted convergence theorem,
(3.40) converges to zero. Putting this together with (3. 39) and (3.37) we see
that

(3.43) }lig%]fzz(h) = %ﬁ@1/2D2aﬁw(m)Ql/2.

Applying (3.34), (3.36) and (3.43) to (3.33) we obtain
(3.44) lim Lp(h) = L QY2 D2PP o(z)Q/2.

We now show that I3(h) in (3.29) tends to 0 as h - 0, First we look at

(3.45) Isi(h) =

| (DRPule = 0u)(S(e ~ 2) (5~ ),
jul<ro/(8M)
h

A(S)S(u)m du> NQh(dy)].

From (2.6) it is easy to see that for ¢ € C3(H) and f,g,q € H,
(3.46) {(D*Pig(z)f)g,q)

= { (5" () D*&(S ()= +y)S(8) /)5 (t)g, @) Na.(dy)-
H

P

The third derivative of PP in the ball B{z,ry/(4M)) can be written as
D3y + Y he o1 D (W1 — ¥r). Applying (3.46) and then estimating the
norm of the third derivative by Lemma 3.2 we get

(3.47) | <[D3Pt/(k03P&_l)qkuw(w-{-fmg)(S(h):c-w)}(S(h)cc—m),
lyl<ro/(83)
1 h
A | S(u)z du> No, (dy)
0

ﬁ
ly|<ro/(8M) H

s( 22 )(S(h) :L‘)]S(%ko) (Sth)s — =), %ASS(U);C du>

NQt/csz) (dz) Na, (dy)
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2% 48
< (22) ololsihe - o

1 h
> | S(w)zdu
8]

— 0.
h—0

Applying (3.46) to the terms containing % — 1x—1 we obtain

(3.48) S <D3 (W — Yr—1)}(z + Oy ) (S(R)z — 2} (S(h)x — =),
lyi<ro/(8M)
h
5 j st du) No, (0
§ h
s IS()e — 22|+ | S(h)wd
( ) & h;) e dut
® D3y, (4 Bny) + Na oo (d2) N, (dy),
M<T‘a/(8M ‘ k( ( ) hy z)' Qe/c2n) Q

were ¥y, is defined by (3.15). Recall that |8p,| < ro/(4M), thus

S(Ek)(:r ot Ohy) —

Processing the inner integral in (3.48) as in (3.19) and (3.21), but taking
|z2| < ro/8 and |z| > ro/8, we see that the expression in (3.48) can be
1k
+ | S(h)z du

estimated by
£\ “
(?) e~ /DT
0

Hence the sum of these terms over k tends to zero. Since we also have (3.47),
we see that for I3; (h) defined in (3.45),

ClS(h)z — =

(3.49) }llimo I3 (R) == 0.
As for Iz (h) we get
(3.50) Iga(h) = S [D2 PR (4 Oy )] (S(h)x — ),
ly|<ro/(8M)
, L
EA S S{u)z du> Ng, (dy)}
0
h
1
< 0|8k —=l|x { S(h)z du ——0.

0
There is a slight difference when estimating

. |
Ls(y=| | <[Da PCo(z + by )uly, %A i S(u)mdu> N, (dy) ’

lul<ro/(8M)
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Here instead of (3.48) we get
A

! SS(u)m du
0

O(?)sz

x Wi]

[y|<ra/(8M) H

i
D, (S (2_75) (z + Ony) + z) H NQ':/(%) (dz) Ng,, (dy)

AR )
< c(;) = e~ W% Q.
The sum over k converges to zero because Tr @ — 0 by (2.4). Also the
term with kg converges to zero. Consequently,

(3.51) lim Ty (h) = 0.

L SS(u)w du
0

Now we need to estimate

1
(352)  Ta)=3| |
lyl<re/ (BM)

([DEPP (@ + Bny )y, ) Ng,, (dy)|.

To do this we can write D3 PP as a sum and then applying {3.46) we obtain

(3.53) % |
lyl <ro/ (8M)

1 *
S SK[S (gk )D Pryana) Pl 110740 (5'(% )(w+9hy)+2>

lyi<re/(8M) H
t t
S(Q_%)y] S(W)y’ y>‘ NG, /o (d2) Ng, (dy).

We estimate D3 Pt/(QkD)P(ko_l Je/ko ® USing Lemma 3.2. Hence (3.53) is less
than

C(’“—;’)Mumo% | (5 v 2
<o(%) oo 2] s () 4

We again use Corollary 2.17 of [10] to get

D2 Py o Py 136100002 + O )8l )| Na,, (dy)

’NQh (dy)

L/2

@) 18 g ()]

(3.54) % |
ly|<ro/(8M)

< G(’“") l¢llo % Tr [th* (% )5(2—;—0)} VTEQn.

D Py g Py 1yt /00 (T + By W], 1) Na, (dy)
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S“fl'" (Zko)Qh (5%6) 1
§ 5(22 )S(u)QS*(u)S*( ) 1
| (2kO)Q1/2

1
2
<M % S
0
Q1/2 .
(%o) HS

This shows that (3.54) tends to zero, since Tr Qr does.
The term with the difference ¢k — 41 can be estimated by
1
(355) C3 |

t
()4
lyl<ra/(8M) 2k

% S D3y, (S(;k) (2 + Ory) + z)

H \
Again, if z is small D3¥, can be estimated by Lemma 3.1, (2.12) and (3.5),
otherwise we use Lemma 3.2, the assumption (2.12) and notice that the
measure of the set |z| > rg/8 is small. That is, we get the following estimate
for (3.55):

AN 1Tr g+ £ 5 t o—e/t)® \/—"‘Q_
() tello 31 @5 ()5 (5 ;
44
sc(%) lello ( )QW e~ BNC T Qp,

HS
and a sum over k converges to 0 as h — 0 since Tr @y — 0. Thus

(3.56) lim Tsa(h) = 0.

Moreover

1 ot £
’E“Q"S (z—ku)s(ék—o)

du

IA
23"?1—'

du
HS

= M3|§

NQt/‘(zk) (dz) NQh (dy)

Since I3(h) in (3.29) can be estimated by a sum of terms of the form I31, 133,
Is3 and Isg, it follows from (3.49)—(3.51) and (3.56) that I3(h) converges to
zero. Combining this with (3.32); (3.44) and (3.29) we get (3.26).

STEP 5. To finish the proof of the theorem we need to show that PP o (x)
is differentiable with respect to ¢ for t > 0.

Fix z € (. First notice that by Step 3 for arbitrary 0 < t; < T < oo the
right hand side of (2.1) is uniformly bounded for ¢ € [t1,T]. Thus % = PP ()
is bounded for ¢ € [t1, T'.
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It is easy to see that estimates (3.24) and the argument from Step 4
give the uniform convergence of (P, p(z) — PP¢(z))/h with respect to
t € [t1,T] as h — 0. Therefore there exists hy such that for each 0 < A < hy,

Pﬁhw(m) - PtO‘P(x)
h

o+
‘é‘EPtO‘P(a:)

<O+ sup
1E€[¢1,T]

H

tE[t, T
hence PPp(z) is continuous in (t1,T). Since on compact subsets of (¢1,T),
%Ptotp(m) is the limit of a uniformly convergent sequence of uniformly

continuous functions, it follows that %—:Ptow(m) is continuous in (¢1,7T).
Fix t € (t1,T). For h > 0 and v > 0 such that v < (t — t1)/2 we have

Pto(p(:c) - Pfcih(p(w) _ _l’?ipo

P2 npl2y— PP p(x) Bt
< [ — 5 Bitue(e) +1 a7 Picutp(@) = = PO o)
N PP p(z) — P2, p(x) + P2, np(x) ~ PPo(z)
h 3 :

The first term converges to zero as h — 0 uniformly with respect to w. It
follows from the continuity of PP (z) and %it'-ﬂ@cp(m) that PPp(x) has a
continuous derivative with respect t. This finishes the proof of (iii) and (iv)
of Definition 2.1, w

For the proof of Theorem 2.3 we need a result on regular points of the
boundary of &.

LEMMA 3.6. Assume that (2.4) and (2.8) hold. If x is a regular point of
80 then fort > 0, :

(3.57) éiﬁl,% Pt >t)=0.

Proof. A nonnegative measurable function f on H is called o-excessive if
(3.58) Vizo e MRf<J,
(3.59) Vocr  lime P f(z) = f(q).

a-excessive functions were studied in [1] on locally compact spaces, which
is not our case, but some arguments are similar.

Define
(3.60) fz) = Be™®,

This is a Borel measurable function, since 7§ is measurable with respect to

T and w. The function f is 1-excessive. The latter fact is an analogue of a
special case of Proposition 11.2.8 of [1].
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By the Markov property,
e tP,f(z) = Ee™"o",
x

where 755" = inf{s > ¢t : X? € O°}. It is obvious that o' > 7§ and for
t— 0, 75"% — 7&. Thus (3.58) and (3.59) follow with e = 1.
A bounded a-excessive function f is lower semicontinuous. By (3.58),

(3.61) f(y) - f(z) 2 (e Pif(y) — e B f()) + ("™ Pef(a) - f(=))-

By (2.4) and (2.8) the semigroup P; has the smoothing property and P, f is
continuous. We also have (3.59), thus f is lower semicontinuous.

The function f defined in (3.60) is bounded by 1, is lower semicontinuous,
and f(z) = 1 for a regular point z € 80. Therefore if y tends to z then for
each t >0, P(7§ > t) tends to 0. =

Proof of Theorem 2.3. In view of Theorem 2.6 it remains to show that
u({t,z) = PPyp(x) is jointly continuous on [0, 00) x O and (v) and (vi} hold.

PP p(z) is jointly continuous on (0,00) x O, since PPy(z) has locally
bounded space and time derivatives.

Let zn € O, T, — = € 0 a8 n — 00, and t, > 0, £, — 0. Fix £ > 0. By
the continuity at = of the initial function ¢ and by Lemma 3.4 there exist
positive constants r,rg, ¢ such that 0 < re <7 < dist (e, 0°%)/2, and

VyeB@r 19W) - plz)] <e/2,

Vi<t sup  P(7he,, S ) < e~ /(G
yEB{m#"'O)

Let ng be such that for all n > np we have |z — fﬂn|. < 1o, tn < to and
2||p||0CeV/(Cta} < g/2. Then for all n > no,
|Bo( X5 Lrzp e, — 0l@)]

< Elo(Xgr) — @lz)| 1z

B(w,r)

>tn T lelloP(re” > tn, T;,Em,r‘) <)
loloP(, . <)

< 2 +2plloP(rEy,y Sta) S

Thus we obtain the continuity of u on [0, 00) x O and (v).
Let ¢, be a sequence of positive numbers converging to ¢ > 0 and {zn} C
@ converge to some regular z € 80. Then for n large enough, ¢, > t/2 and

|Bo(X5 ) Lozn e, | £ lelloP (5 > £/2)-

By Lemma 3.6 the right hand side converges to zero as n tends to infinity,
and we get property (vi). We conclude that = is a strong solution of (2.1)
and (2.2). m :
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4. Proof of the uniqueness theorem. We now pass to the proof of
Theorem 2.7.

Fixz € OQandt > 0, ¢ < T. In the proof we will always consider
processes starting from , therefore we omit the superscript z in X®. It will
also be more convenient to write X (t) instead of X,.

STeP 1. Let ¢ > 0,0 < v < t, ¢ € N. First we construct sets Ugn i
that increase as i increases and such that |Du(s,y)|, [D%u(s,y),
Q2D s, y)Q*/?||; and |A*Du(s,y)| are bounded on [y, T] x U, ,,; and
that the exit times of X (t) from Uy - ; converge to 78 when ¢ goes to infinity,
on a subset of £2 with probability grater than 1 —e.

For each £ > 0 there exists a compact set L. in H such that
(4.1) P(X(s) € Le, Voeor)) 21—¢

(sce Proposition 2 of [24]). Let iy € N be such that dist(z, 0%)/4 > 1/iy.
For ¢ > ip we define an open set (O°); = |J cpe B(y,2/1). Then z ¢ (O°);
and dist(OQ°, (O°)§) > 2/i. Let K, ; = Lo N (J ©)$; it is a compact subset of
O. By properties (i} and (ii) of a strong solution, for each y € K, ; there
exists vy > 0 such that |Du(s, )|, |D?%u(s, y)||, |QY2D%*u(s, y)Q*/?|); and
|A* Du(s,y)| are bounded on [y,T] x B(y,ry). By compactness of K, ; we
can choose a finite covering {B(y;,ry; A 1/)};27" of K. Let Vi, =
U;’;'i’ * B(yj, ry; A 1/i). We define sets U, ,; for i > 4o inductively, taking
Uciyiio = Veiyyip and Up 5 = Ue -1 U Vs,—y,z‘-

For each i > g we have U ; C Uy yi41. Moreover, Uy 4; C O, 2 €
Uiy and [Du(s,v)], 1D%u(s, )], |4*Duls,y)| and Q2 D%u(s, 1)@
are bounded on [y, T] x U, 4 ;.

Denote by ¢y, the first exit time of X from U, ;, that is, Tepy,i =
inf{s > 0: X(s) € U{,,;}. We show that

(4.2) 511»%75’7"' AT=75AT on{w:X(s,w)€ Le, Yocpo,1}-

Let w be such that X(s,w) € L. for all s € [0, T). It is obvious that 7e ,i{w)
< 75(w) with a strict inequality if 73(w) # oo. Consequently, if
lim;. o0 Te, 4,4 (w) AT = T then (4.2) holds. Suppose that lim;_, e 7e ,i(w) =
o(w) < T. We observe that X (7., (w)) € (O°);. Indeed, X(7e4(w)) €
Ug i and Ko s =L:N(0°); CUs,y5. Thus X (7,4 ,:(w)) € (O°); 0F X (7e,,: (w))
€ LZ but our assumption on w excludes the second case. Hence, by the con-
struction of {O°); we see that dist(X (r,,y,:(w)), 0°) < 2/i. By the continuity
of X and the dist function we obtain

dist(X(0(w)), 0°) = lim dist(X (re q,4(w)), 0%) =0,

Since O° is closed, X(o(w)) € OF, which means that o(w) = 75(w).
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STEP 2. We now show that
(43)  Bult— (1) AT X((E = 7) ATens)) = ().

We would like to apply Itd’s formula to u(t — s, X (s)). Since in general X (s)
is not a strong solution to (2.3) we will apply It&’s formula to approximating
Processes.

Let {e;}f2; be an orthonormal basis of H and let {8;} be a sequence
of independent one-dimensional standard Wiener processes. Write W, (¢) =
%‘,?:1 efi(t) and W (t) = 52, e15i(2). Let Ay, be the Yosida approximations
O

o0
Ay = AkR(k,A), where R(k,A}= | e 5(s)ds.
0
Let X, %, X, and X be the mild solutions to the following equations:
(4.4) dXn 5 (t) = A X x(t)dt + QY 2dW, (t), Xnz(0) ==,
(4.5) dXn(t) = AXn(t)dt + QY 2dW, (1), X,(0) = z,
(4.6) dX(t) = AX (£)dt + QY dW (¢), X(0) =z,

respectively. Of course the process X has the same law as the process satis-
fying (2.3) and X, , is a strong solution to (4.4).
By Thecrem 2.2.6 of [7] we have

lim sup E|X, . (s) — Xn(s)? =0,
<T

k—co ¢

lim sup B|X.(s) — X(s)]* =0.

n=r00 4T
Let us fix temporarily g, v and ¢ and define exit times
Tag = inf{s > 0: X, ¢(s) € UZ, 5}
Tn = inf{s > 0: X, (s) € UZ, ;},
7= inf{s>0:X(s) € UZ,,;}-
Set ¢ = 7,k ATn AT. Since X, ; is a strong solution to (4.4), by Itd’s formula
we get

(47 wlt=-(F-NA0Xux((t-7)A0))
{t—y)Ao
=u(t,z) — S Eiu(t — 7, Xnk(r)) dr

{t—y)ne
+ | (Dult =, Xnx(r), ARR(K, A) X 1(r)) dr
0
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{t—7)he
= (Dult =7, Xup(r), @ 2AWa(r))
0
(t—y)reo
+5 | TDRult—r Xk ()@ )QY L) dr,
0
where I, denotes the orthogonal projection on span{es,...,en}. The fact

that u satisfies (2.1) allows us to write (4.7) in the form

(4.8) ult—(t—1 AT, Xnw((E—7) Ac))

{t—y)ne
=ult,z)+ | (A Du(t —r, Xnw(r), kR(k, A) Xnx(r) = Xnu(r)) dr
0

{t=1Ne

+ | (Dult =, X (1), QY 2dW(r))
0

1 (t—7)Ao

+3 | TQY2Du(t — r, X k() QYL —~ I dr.
0]

After taking the expectation of both sides of (4.8) the term with the stochas-
tic integral disappears since [Du(s,y)| is bounded on [, T] x U, ,;. Hence
we get
(49) EBult-(t—7)A0,Xpx{(t—7)Ac)) =ult,z)
(t—yine
+EB | (A"Dult—r, Xox(r),kR(k, A)Xn g(r) — X 1 (r)) dr
0
1 {t—mhAe
+E3 | TrQY2D%u(t — r, Xpw(r))QY2[I, — Idr.
0

To pass in (4.9) to the limit as ¥ — oo and n -+ co we show first that

a.8. N-N
(4.10) T AT 21 and  Tug A Ty ——r T,
T—+00 ! k-0

Consider first 7, A 7. It is enough to show that P(liminf, o m < 7) = 0.
Suppose that it does not hold. Then

P(liminf 7, < 7) = P(J;rationar iminf 7, < a < 7) > 0.
TL—+00 n—r00
Hence there exists an a such that

(4.11) P(liminfr, <a <) >0
n— 00
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On the set a < 7,

(4.12) dist(X,UZ,, ;) = inf {dist(X(5), U7} > 0

and
(4.13) | Xn(7a) — X{m)|Llr, cacr > Sei%f;a]{dist(x(s), Us » i) e <acr
Thus we get
lim inf B| Xn (7 A a) = X( A @) 2 lim inf B| X () ~ X(m)|*Lr. <a<r-
By (4.13) and Fatou’s lemma
lim inf B X, (tn Na)—X(ma Aa)|? > lin inf E[dist(X, UZ, ) r,<acr
2 Bldist(X, U7, )}* iminf 1 cocr.

But iminf,, o0 1, <acr 2 liiminfn. .0 ra<a<r and

(4.14)  Liminf B|Xn(7a Aa) ~ X (70 A a))?
> Bldist(X, US_ )* limintn_. e ra<a<s-

eyt

By (4.11) and (4.12) the right hand side of (4.14) is positive. But on the
other hand
TnAQ o 2
| S(m Aa—35)QY2dW,(s)
0

where Wn =W — W,,. Thus we see that
E\Xp(th A @) = X (1o A a)}?

EXn(tnha)=X(mAa)>=E

TG

=E S 'IEcS('rﬂ/\a—s)Qlfz(I«In)QlﬂS*(Tn/\a—s)ds
0
TnAa

=B | T8()QYP (I - [.)QVS5"(s)ds ——0,
0

which is a contradiction. Thus we have P(liminf, o7 = 7) = 1, and
consequently 7, A T converges to 7 almost surely as n goes to infinity.
Similar arguments prove the second convergence in (4.10):
(4.15)  E|Xn (o A @) — Xa(Tagp Aa)|®
< 2E|Sk(Trp A @)z — S(Tai A a)z}?

'T'n,,k/\a

+2B] | [Su(rms Aa s}~ Slrus ha— 1QH2Wa(s)]
4]
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< 2sup |Sk(s)z — S(s)e]
s

T kMG
+2B | TilSk(s) — S()QY QY [Sk(s) — S(s)]" ds —0.
[i]

Thus T,k A Tn — Tn 88 k — oo and the proof of (4.10) is complete.
Now we are ready to pass to the limit in (4.9). To do this note that
X i(lt =) ATap AT AT) converges in L? to Xp((¢ — ¥) Ao A ), since

(4.16)  EXpp((t =N A Tk ATn AT) = Xn({t —7) ATn A )|
2B\ X b {(t — N ATap ATn AT) = Xn{(t = V) ATopg AT A )?

+2E| Xn(E— V) ATapg AT AT) — Xn(E—¥)ATp A T)]z.

As in (4.15) we can show that the first term on the right hand side of (4.16}
converges to zero as k goes to infinity. So does the second term, since U - ;
is a bounded set, X,, is a continuous process and 7, x A T, converges to 7,.
The function u(s,y) is jointly continuous on [0,T] x O. Thus

(4.17) leﬂélo Bu(t— (= ATap ATn AT, Xng((t = V) ATap AT AT))
= Bu(t — (t— Y) ATo AT, Xn((E—7) AT A T)),

and similarly, by the first part of (4.10) and the continuity of X we have

(4.18) n]LIlé.o Bult - t—VATAT X (=) AT AT)}

=EBult—-{t—y) AT, X((t =) AT)).
Now we show that the integrals on the right hand side of (4.9) converge to
zero. Since |A*Du(s,y)| is bounded on [vy,T] x U,,,,; we obtain
(t—7ine

(4.19) |E [ (4" Dult — 1, Xou(r)), KRk, A) X () — X g(r)) dr

t—y
< CE | |kR{k, A)Xpk(r) — Xox(r)|dr
0
=y
< C \ (BlkR(Kk, A)Xnx(r) = Xnp(r)P) 2 dr
0
t—y
<C | ( sup E|Xnn(r)— Xa(r)?)/2dr
0 T‘E[U,t-—")‘]
t—ry

+C | (BlkR(k, A)Xn(r) — Xu(r)P)/? dr — o0.
0 k—0
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For the last term in (4.9) we have
(t—v)Are
(20) |E | [10QY2D%u(t - v, Xon(r) QM - L)) dr
0
=y
$ | BIQYDPult — 1, X k()@Y Lrgrunrans
0
— QY2 Dt — 1, X (M)QY? Loy arlL dr
t—y
+ | BIQY*D?u(t — r, Xo(r)QY2(I = In)lrgrynr 1 dr
0
By assumption (i) and (4.10) the first term on the right hand side of (4.20)
converges to zero as k tends to infinity. For the second term we have
Ty
421y | BIQY*Du(t -, Xn(r)QY 2 Lornr(I = In)ll1 dr
0
t—ry
< | B|QYV*D?u(t -, X (rNQY  ocrnr
0
- QI’IZDZU(t - X("'))lelrg-r“l dr
t—ry
+ § BIQY*Dut — r, X(r)Q* (I = In)legr |y dr-
0
Again, by (i) and (4.10} the first term on the right hand side converges to
zero as n goes to zero. So does the second term since for any r < (t—IAnT
the operator Q/2D2u(t —r, X (r))@'/? is nuclear. Hence (QY2D%u(t — r,
X (r)QY*I — I,)|l1 converges to zero and
By
| EIQY*D*u(t - r, X(r) QY gl dr < co.
0
Thus we obtain
{t—7Ae
(4.22) lim lim B | [Tr@Y 2Dt —7, X p(r))QY (I —I,)] dr = 0.
n—oo k—oo p
Recall the notation 7, 4 = 7. Letting first & — cc and then n — co in
(4.9), by (4.17)~(4.19) and (4.22) we obtain (4.3).

STEP 3. We now show that if 4 — oo, ¥ — 0 and finally € — 0, then
the left hand side of (4.3) converges to Ep(X (t))lfgx, which is the desired
conclusioz.
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We have
(4.23)  |Bu(t ~ (T =) ATepy,is X((t = 7) A Teyi)) — Bip( X () Lrg >
<|Bul(y, X (¢t — V) r., iot—rlxer, — Bo(X(8)1rg>ilxer.|
+ [ Bult — 74,0, X(TE{')’ai))1Tc,7,-i<t—'7’1XEL=1 + ZHUH[O,T]xOP(X & L)

= Ii(g,7,%) + L(e, 7,1} + Ia(e).
Observe that
(4.24) D7) < Eluly, Xt —7) — (X (8)[1rg >
+ el rix0 Bl 4 izt—y — Lrgstllxer, .
By (4.2) and the fact that 7, 4 < 78 if 7§ < o0 we see that
(4.25) lmsup E|l,,  >s— — lrg>ellxer.

T—0Q
= limsupEll‘J’;,q,v‘,Et—q - 1Té>t—’}'|1XEL= + P(t z Téc) >t~ ")’)
=00
=Pt>715>t—17).
Moreover, by the assumption on 7§,

(4.26) %ij}l%P(t > >t—y)=Prg=1t)=0.

By (4.25) and (4.26) the second term in (4.24) converges to zero when we
let 4 -+ co and then v — 0. The fizst term on the right hand side of (4.24)
does not depend on 4 and converges to zero as v — 0 by the joint continuity
and property (v) of the strong solution. Thus from (4.24) we obtain

(4.27) lim sup lim sup I1 (g, v,%) = 0.
~y—0 Fued 00

By (4.2) and property (vi),

(4.28) lim Ip{e,~,4} =0.

We also have
(4.29) lim I3(g) < lim Ce = 0.
£=0 g0
By (4.27}-(4.29) applied to (4.23) we obtain
lim sup lim sup lim sup | Bu(t ~ (£ — ) A ey, X ((E = 7) A Te i)

a—~+{) y—0 i—so0
- E@(Xt)l-rg>i’ = 0.
Consequently, from (4.3) it follows that u(t,z) = E{p(X (ENlrg>e}. m
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M-complete approximate identities in operator spaces
by

A, ARIAS (San Anionio, TX) and H. P. ROSENTHAL (Austin, TX)

Abstract. This work introduces the concept of an M-complete approximate identity
(M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central
approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cal
in Y, then X ig a complete M-ideal in Y. Tt is proved, using “special” M-cai's, that if J is a
nuclear ideal in a C*-algebra A, then 7 is completely complemented in ¥ for any {isomor-
phically) locally reflexive operator space ¥ with J € Y € .4 and Y/J separable. (This
generalizes the previously known special case where ¥ = A, due to Effros-Haagerup.}
In turn, this yields a new proof of the Oikhberg—Rosenthal Theorem that X is com-
pletely complemented in any separable locally reflexive operator superspace, where K is
the O -algebra of compact operators on £2, M-cai’s are also used in obtaining some special
affirmative answers to the open problem of whether X is Banach-complemented in .4 for
any separable ("*-algebra 4 with K C .4 C B(#2). It is shown that if, conversely, X is a
complete M-ideal in Y, then X admits an M-cai in Y in the following situations: (i) ¥
has the {Banach) bounded approximation property; (it} ¥ is 1-locally reflexive and X is
A-nuclear for some A > 1; (iii) X is a closed 2-sided ideal in an operator algebra ¥ (via
the Effros—~Ruan result that then X has a contractive algebraic approximate identity}.
However, it is shown that there exists a separable Banach space X which is an M-ideal in
Y = X**, yet X admits no M-approximate identity in ¥
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Introduction. Let X denote the C*-algebra of compact operators on a
separable infinite-dimensional Hilbert space H. Consider the following open

PROBLEM A. Let X CY be separable operator spaces, and let T : X — K
be a completely bounded (linear) operator. Does T admit a bounded linear
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